首页 Capacitive proximity sensors

Capacitive proximity sensors

举报
开通vip

Capacitive proximity sensors Capacitive Proximity Sensors 4–1 General Information Quick Selection Guide page 4–2. . . . . . . . . . . . . . . . . . . . . . . Technical Definitions and Terminology page 4–3. . . . . . . . . Introduction page 4–5. . . . . . . . . . . . . . . . . . . . ...

Capacitive proximity sensors
Capacitive Proximity Sensors 4–1 General Information Quick Selection Guide page 4–2. . . . . . . . . . . . . . . . . . . . . . . Technical Definitions and Terminology page 4–3. . . . . . . . . Introduction page 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Products 875C General Purpose Tubular page 4–9. . . . . . . . . . . . . . . 875CP Plastic Barrel Tubular page 4–13. . . . . . . . . . . . . . . . Accessories Mounting Brackets, Sight Glass Style page 4–21. . . . . . . . . Sensor Wells page 4–22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indexes Catalog Number Index page 9–1. . . . . . . . . . . . . . . . . . . . . . . Comprehensive Product Index page 10–1. . . . . . . . . . . . . . . Contents Capacitive Proximity Sensors 4–2 ����������� � � �� �� ��������� ���������� � ��� ���������������������� ��������� • ��������� ��� � ��� ���� • �� � ���� ���� �������� • � � �� ���� ������������������� ��� �������� ����������� ��������� • ����� �������������� ��� • �� ����!�� ���"� ������������� • !���������� ������� ������� �������� ��� � ����� �������� �������������� �� � ��� �� ��� • � ��������������������� �� ���� • � � �� ���� ������������������� ��� �������� ����������� ��������� • ����� �������������� ��� • �� ����!�� ���"� ������������� • !���������� ������� ������� �������� ��� � ����� �������� �������������� �� � ��� �� ��� • � ��������������������� �� ���� ������� ��� ����� • #$%&'(�!� • "&%"&$(��� • #$%&'(�!� • "&%"&$(�� �������� • #"��#'���$�� • #'���$�� • #'���$���&�� • #'���$���&�� � ��������! "��� • !����)������������� ��� �� ���� ���� • ���"�)������������� �� �� ���� ���� • !����)������ � ���� ���� • ���"�)������ � ���� ���� � ���� • �(��� �� • �����*!�+#'��, • -�����*!�+�$��, • �(��� �� • -�����*!�+�$��, • �(��� �� • �����*!�+#'��, • -�����*!�+�$�.��&��, • �(��� �� • -�����*!�+�$�.��&��, # �� ���� • ��������� ��� � ��� ���� • �/-��#�����&��0��#�� ����1�02 • ��������� ��� � ��� ���� • �/-��#�����&��0��#�� ���1�02 • �� � ��� ���� • �/-��#"��1�02�+1/��3"4, • �� � ��� ���� • �/-��#�����&��0��#�� ���1�02 �""��� ���$ � • 5���� ���&%#$ • 5���� ���&%#4 • 5���� ���&%#� • 5���� ���&%#0 Quick Selection Guide Capacitive Proximity Sensors 4–3 Axial Approach: The approach of the target with its center maintained on the reference axis. Complementary Outputs: (N.O. & N.C.) A proximity sensor that features both normally open and normally closed outputs, which can be used simultaneously. Correction Factors: Suggested multiplication factors taking into account variations in the target material composition. When figuring actual sensing distance this factor should be multiplied with the nominal sensing distance. Current Consumption: The current consumed by the proximity switch when the output device is in the off condition. Differential Travel: See Hysteresis. Dual Output: Sensor which has two outputs which may be complementary or may be of a single type (i.e. two normally open or two normally closed). Effective Operating Distance: (Sr) The operating distance of an individual proximity switch measured at stated temperature, voltage, and mounting condition. False Pulse: An undesired change in the state of the output of the proximity switch that lasts for more than two milliseconds. Flush Mounting: A shielded proximity sensor which can be flush mounted in metal up to the plane of the active sensing face. Free Zone: The area around the proximity switch which must be kept free from any damping material. Hysteresis: The difference, in percentage (%), of the nominal sensing distance between the operate (switch on) and release point (switch off) when the target is moving away from the sensors active face. Without sufficient hysteresis a proximity sensor will “chatter” (continuously switch on and off) when there is significant vibration applied to the target or sensor. Isolation Voltage: Maximum rated voltage between isolated outputs or input and output. Lateral Approach: The approach of the target perpendicular to the reference axis. Leakage Current: Current which flows through the output when the output is in an “off” condition or de-energized. This current is necessary to supply power to the electronics of the sensor. LED: Light Emitting Diode used to indicate sensor status. Maximum Load Current: The maximum current level at which the proximity sensor can be continuously operated. Maximum Inrush Current: The maximum current level at which the proximity sensor can be operated for a short period of time. Minimum Load Current: The minimum amount of current required by the sensor to maintain reliable operation. Sensing Distance: The distance at which an approaching target activates (changes state of) the proximity output. Normally Closed: Output opens when an object is detected in the active switching area. Normally Open: Output closes when an object is detected in the active switching area. NPN: The sensor switches the load to the negative terminal. The load should be connected between the sensor output and positive terminal. Operating Distance, Rated: The operating distance specified by the manufacturer and used as a reference value. Also known as nominal sensing distance. PNP: The sensor switches the load to the positive terminal. The load should be connected between the sensor output and negative terminal. Programmable Output: (N.O. or N.C.) Output which can be changed from N.O. to N.C. or N.C. to N.O. by way of a switch or jumper wire. Also known as selectable output. Repeatability: The variation of the effective operating distance measured at room temperature and constant supply voltage. It is expressed as a percentage of the sensing distance. Residual Voltage: The voltage across the sensor output while energized and carrying maximum load current. Response Time: See Switching Frequency. Reverse Polarity Protection: Proximity sensors which are protected against a reversal in voltage polarity. Ripple: The variance between peak-to-peak values in DC voltage. It is expressed in percentage of rated voltage. Sensing Range: The rated operating distance. Shielded: Sensor which can be flush mounted in metal up to the plane of the active sensing face. Short Circuit Protection: (SCP) Sensor protected from damage when a shorted condition exists for an indefinite or defined period of time. Sinking: See NPN. Sourcing: See PNP. Switching Frequency: The maximum number of times per second the sensor can change state (ON and OFF) usually expressed in Hertz (Hz). As measured in DIN EN 50010. Target: Object which activates the sensor. Three-Wire Proximity Switch: An AC or DC proximity sensor with three leads, two of which supply power and a third that switches the load. Two-Wire Proximity Switch: A proximity sensor which switches a load connected in series to the power supply. Power for the proximity switch is obtained through the load at all times. Voltage Drop: The maximum voltage drop across a conducting sensor. Technical Definitions and Terminology Capacitive Proximity Sensors 4–4 Notes Capacitive Proximity Sensors 4–5 Principles of Operation for Capacitive Proximity Sensors ��� � 6����� �� 7�� �8��� 9�� �� 6� �� ������ Capacitive proximity sensors are designed to operate by generating an electrostatic field and detecting changes in this field caused when a target approaches the sensing face. The sensor’s internal workings consist of a capacitive probe, an oscillator, a signal rectifier, a filter circuit and an output circuit. In the absence of a target, the oscillator is inactive. As a target approaches, it raises the capacitance of the probe system. When the capacitance reaches a specified threshold, the oscillator is activated which triggers the output circuit to change between “on” and “off.” The capacitance of the probe system is determined by the target’s size, dielectric constant and distance from the probe. The larger the size and dielectric constant of a target, the more it increases capacitance. The shorter the distance between target and probe, the more the target increases capacitance. Standard Target and Grounding for Capacitive Proximity Sensors The standard target for capacitive sensors is the same as for inductive proximity sensors. The target is grounded per IEC test standards. However, a target in a typical application does not need to be grounded to achieve reliable sensing. Shielded vs. Unshielded Capacitive Sensors Shielded capacitive proximity sensors are best suited for sensing low dielectric constant (difficult to sense) materials due to their highly concentrated electrostatic fields. This allows them to detect targets which unshielded sensors cannot. However, this also makes them more susceptible to false triggers due to the accumulation of dirt or moisture on the sensor face. The electrostatic field of an unshielded sensor is less concentrated than that of a shielded model. This makes them well suited for detecting high dielectric constant (easy to sense) materials or for differentiating between materials with high and low constants. For the right target materials, unshielded capacitive proximity sensors have longer sensing distances than shielded versions. Unshielded capacitive sensors are also more suitable than shielded types for use with plastic sensor wells, an accessory designed for liquid level applications. The well is mounted through a hole in a tank and the sensor is slipped into the well’s receptacle. The sensor detects the liquid in the tank through the wall of the sensor well. This allows the well to serve both as a plug for the hole and a mount for the sensor. Target Correction Factors for Capacitive Proximity Sensors For a given target size, correction factors for capacitive sensors are determined by a property of the target material called the dielectric constant. Materials with higher dielectric constant values are easier to sense than those with lower values. A partial listing of dielectric constants for some typical industrial materials follows. For more information, refer to the CRC Handbook of Chemistry and Physics (CRC Press), the CRC Handbook of Tables for Applied Engineering Science (CRC Press), or other applicable sources. Dielectric Constants of Common Industrial Materials Acetone 19.5 Acrylic Resin 2.7–4.5 Air 1.000264 Alcohol 25.8 Ammonia 15–25 Aniline 6.9 Aqueous Solutions 50–80 Bakelite 3.6 Benzene 2.3 Carbon Dioxide 1.000985 Carbon Tetrachloride 2.2 Celluloid 3.0 Cement Powder 4.0 Cereal 3–5 Chlorine Liquid 2.0 Ebonite 2.7–2.9 Epoxy Resin 2.5–6 Ethanol 24 Ethylene Glycol 38.7 Fired Ash 1.5–1.7 Flour 1.5–1.7 Freon R22 & 502 (liquid) 6.11 Gasoline 2.2 Glass 3.7–10 Glycerine 47 Marble 8.0–8.5 Melamine Resin 4.7–10.2 Mica 5.7–6.7 Nitrobenzine 36 Nylon 4–5 Oil Saturated Paper 4.0 Paraffin 1.9–2.5 Paper 1.6–2.6 Perspex 3.2–3.5 Petroleum 2.0–2.2 Phenol Resin 4–12 Polyacetal 3.6–3.7 Polyamide 5.0 Polyester Resin 2.8–8.1 Polyethylene 2.3 Polypropylene 2.0–2.3 Polystyrene 3.0 Polyvinyl Chloride Resin 2.8–3.1 Porcelain 4.4–7 Powdered Milk 3.5–4 Press Board 2–5 Quartz Glass 3.7 Rubber 2.5–35 Salt 6.0 Sand 3–5 Shellac 2.5–4.7 Shell Lime 1.2 Silicon Varnish 2.8–3.3 Soybean Oil 2.9–3.5 Styrene Resin 2.3–3.4 Sugar 3.0 Sulphur 3.4 Teflon 2.0 Toluene 2.3 Transformer Oil 2.2 Turpentine Oil 2.2 Urea Resin 5–8 Vaseline 2.2–2.9 Water 80 Wood, Dry 2–7 Wood, Wet 10–30 Introduction Capacitive Proximity Sensors 4–6 Shielded vs. Unshielded Construction Each capacitive sensor can be classified as having either a shielded or unshielded construction. Shielded Probe Shielded sensors are constructed with a metal band surrounding the probe. This helps to direct the electrostatic field to the front of the sensor and results in a more concentrated field. �%���"�"��� �� ��� � 5����� :������ $$2$%�;%<= Shielded construction allows the sensor to be mounted flush in surrounding material without causing false trigger. �%���"�"��� � �������%�! � ��" � '� � ��5� '� $#$"%�;%<= Shielded capacitive proximity sensors are best suited for sensing materials with low dielectric constants (difficult to sense) as a result of their highly concentrated electrostatic fields. This allows them to detect targets that unshielded sensors cannot. Unshielded Probe Unshielded sensors do not have a metal band surrounding the probe and hence have a less concentrated electrostatic field. Many unshielded models are equipped with compensation probes, which provide increased stability for the sensor. Compensation probes are discussed later in this section. & �%���"�"��� �� :������ ������� ��� ��� � $$2#%�;%<= ��� � Unshielded capacitive sensors are also more suitable than shielded types for use with plastic sensor wells, an accessory designed for liquid level applications. The well is mounted through a hole in a tank and the sensor is slipped into the well’s receptacle. The sensor detects the liquid in the tank through the wall of the sensor well. & �%���"�"�� ������� �! � ��" �� ��!������ "�! � ��"�� � ���������� � ��'��� $#$&%�;%<= � � ��5� '� ��� �� ��8���� � �� �������������8����� �� ����� � ��>����+#"��#'���������,��� #>3��+�$���&���������,��8����� �� ����� �> ��?��� �� ������ �� ���8� � ������������8 �� 5��?������ ������������� ��� 9���� � �� ���������������� ������� ����� ��� �� ��'��8���� @���������� ��� �> The electrostatic field of an unshielded sensor is less concentrated than that of a shielded model. This makes them well suited for detecting high dielectric constant (easy to sense) materials or for differentiating between materials with high and low constants. For certain target materials, unshielded capacitive proximity sensors have longer sensing distances than shielded versions. Introduction Capacitive Proximity Sensors 4–7 Wood Industry 1���� ��� ���@��� � 5����� 5 ��� ���7� �����8�� ��� ������ )��� � � �� �������@��� � 5����� Level Detection ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ É É ÉÉ ÉÉ É É É ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ Granular Fill � � �� �������@��� � 5�������8���:���� �� <� �<�����!� �� ��� Liquid Level Detection � � �� �������@��� � 5�������8���:���� �� <� �<�����!� �� ��� ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ ÏÏÏÏ ÏÏÏÏ Liquid Food Processing Sight-Tube Level Detection � � �� �������@��� � 5�������8���A��� ���� 9���B�(���8�� ��� Applications Capacitive Proximity Sensors 4–8 Notes Capacitive Proximity Sensors 4–9 Description Bulletin 875C and 875CP capacitive proximity sensors are self-contained solid-state devices designed for noncontact sensing of a wide range of materials. Unlike inductive proximity sensors, the 875C and 875CP can detect nonmetal solids and liquids in addition to standard metal targets. They can even sense the presence of some targets through certain other materials, making them an ideal choice in some applications where inductive proximity and photoelectric sensors cannot be used. Each unit has an adjustable sensing distance and is equipped with two LEDs to indicate power and output. They are housed in either a nickel-plated brass barrel (shielded models) or a plastic barrel (unshielded models) which meets NEMA 12 and IP67 (IEC 529) enclosure standards. Connection options include PVC cable as well as micro and pico quick-disconnect. � !�������������> Features � Metal, nonmetal solid and liquid sensing capability � Adjustable sensing distance � Cable or quick-disconnect styles � Short circuit�, overload�, reverse polarity�, and transient noise protection � Plastic models have glass filled nylon housings � Meets NEMA 12 and IP67 (IEC 529) enclosure standards � CE marked for all applicable directives Styles DC 3-Wire Nickel-Plated Brass Barrel page 4–10. . . . . . . . . . . . . DC 3-Wire Plastic Barrel page 4–13. . . AC 2-Wire Plastic Barrel page 4–16. . . AC 2-Wire Nickel-Plated Brass Barrel page 4–19. . . . . . . . . . . . . Accessories Quick-Disconnect Cables page 7–1. . . Mounting Brackets Sight Glass Style page 4–21. . . . . . . . . Sensor Wells page 4–22. . . . . . . . . . . . . Bulletin 875C and 875CP Plastic Face/Plastic Barrel or Nickel-Plated Brass Barrel Capacitive Proximity Sensors 4–10 ����������� ��� ������������ ��� ����� ������������� ����� ��!��"" ����� ����"#����� ��� ����� ��������$��� ����� ��!��"" ����� ���� ��� ����� Features � Metal, nonmetal solid and liquid sensing capability � Adjustable sensing distance for 18mm and 30mm models � 3-wire operation � 3-conductor, 3-pin or 4-pin connection � Normally open or normally closed output � Short circuit, overload, reverse polarity, and transient noise protection � CE marked for all applicable directives Specifications � ������ ����� �� �������!������� � ������ � ���� � ��� ��� $>23 ��������7���� $>#$�%�$>"3 ��� $>$ ������� $>'3 ������ $>2$�%�$>'3 ������� $>&$ ��������5��� ���� $>4'�%�#>$ � ���� � $>"$ ���C��� $>#$ � � ���!��@��� $>$ � � ���=� � �������� $>#$ ��������� $>#3 ����� ��� ��� $>"3 ���� � $>#3�%�$>�$ ���������<����� $>#$ / ��� � $>#3 /��@��7���� $>#3�%�$>�3 / � ��� $>'3 / �������D����� $>4� 9�������� $>$3 9���� $>$3 9�����7""�.�3$"�+������, $>�3 D ������ $>#$ D� �� $>"$�%�$>33 D�������� $>4' - � �� $>3$ -�� �����7���� $>"3�%�$>33 -�� $>�3 �� �� ��C��� $>4� ����� $>"$�%�$>�$ 6���5 �� ���� ��� $>"3 � � 88�� $>#$ � ��� $>#$ � ������ ����� �� �������!������� � ������ � ���� � ������@ $>#3 �� ������ $>$3 �������7���� $>"$�%�$>0$ ���� �� � $>"$ ���� ���� $>�$ ������ ���7���� $>#3�%�$>3$ ����� ������ $>#$ ������������� $>#$ ����� ����� $>#3 �������������������7���� $>#3 ������ �� $>"3�%�$>&$ �� ������-��� $>"$ �������� �� $>#$�%�$>�$ *� � C�D� �� $>"$ 7� �� $>#3�%�$>4$ 5 � $>�3 5 �� $>#3�%�$>�$ 5���� � $>#3�%�$>"3 5�����<��� E$>$3 5�������( ����� $>#3 5�� � ��6�� $>#3 5 ������7���� $>#3 5�� � $>#3 5������ $>#3 �=9/ $>#$ =������ $>#$ =� ��8������6�� $>#$ =����� ����6�� $>#$ F�� �7���� $>�$�%�$>&3 ( ������ $>#$ ) �� #>$ )�����!�� $>#$�%�$>&$ )�����)� $>0$�%�$>'3 875C 3-Wire DC Plastic Face/Threaded Nickel-Plated Brass Barrel �$$�� $>��� #$%&'(�!� �"( �#$�� �#$G �"$G 1������� �� 1������� �� 1������� �� 1������� �� �/�� �����8��� ��� ����� �������� ���� �/-��#�����&��0��#�� ����1�02H���������� ��� � ��� ���� � ��I "��� ������� � �������� ����(� *�����!�������� I &���������� ���������� D����I��� �� J���� I�6� �� %"3°�� ��K23°��+%#�°9� ��K#02°9, �$$�� $>#�� #$%&'(�!� �"( �$$�� $>#�� #$%&'(�!� �"( ( �"������ � (��)��������� � ������� ��� ����� � �������� � ����� �� � ������ *�����������+ ,+�������� ��� ��� ��- ������ ����� *� ������ �����+��� ����� �% ��� �������� �� ����� � ��� �"� �� ����� ���� �� # �� ���� � ���� � (#�� ������� ������������� ./�� .��� 01�� Capacitive Proximity Sensors 4–11 Product Selection ������ - �� �� �� �� � ����� �� ������ �6���%� � ����� ��-����� ������ ���2�3��+�� - �� ��� �� �� �� ����� �� ��� 4� 5 �%���"�" ������ � �������� �6���%� � ���7�� �+� 4,85 ��������+�� !��� �9����+�� ��� �9����+�� #"�� =��� ��� ">3�+$>$4, ��� � ��:!/-�./:�/ L L �>6> ��� � ��:!�-�.�:�/ L � ��:!�-�.�:�0 #'�� # +$ $&, � 3 +$ "$, ��� � ��:!�--.�:�/ L � ��:!�--.�:�0 #'�� =��� ��� #�+$>$&,� ��3�+$>"$, � � ��� � ��:!���.�:�/ L � ��:!���.�:�0 J �>�> ��� #$$ � ��:!��-.�:�/ L � ��:!��-.�:�0 � 6 ��� � ��:!.1-�01:�/ � ��:!.1-�01:�; L �$�� " +$ $', � #$ +$ �4, �>6> ��� � ��:!.1--01:�/ � ��:!.1--01:�; L �$�� =��� ��� "�+$>$',� ��#$�+$>�4, � � ��� � ��:!.1��01:�/ � ��:!.1��01:�; L �>�> ��� � ��:!.1�-01:�/ � ��:!.1�-01:�; L 7�����������5 �� ���*!������� �+%"�?�"��+0>38 ,, ��<�:�;��:/ ��<�:�0��:/ QD Cordsets and Accessories ��������� �����-����� -��� ������ ��� � "%#'0
本文档为【Capacitive proximity sensors】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_562075
暂无简介~
格式:pdf
大小:335KB
软件:PDF阅读器
页数:22
分类:工学
上传时间:2013-09-03
浏览量:10