首页 南大物化03章统计热力学基础课件

南大物化03章统计热力学基础课件

举报
开通vip

南大物化03章统计热力学基础课件物理化学电子教案—第三章第三章统计热力学基础3.1概论3.5配分函数对热力学函数的贡献3.3配分函数3.4各配分函数的计算3.2Boltzmann统计3.6单原子理想气体热力学函数的计算3.7双原子理想气体热力学函数的计算3.1概论统计热力学的研究方法统计热力学的基本任务定位体系和非定位体系独立粒子体系和相依粒子体系统计体系的分类统计热力学的基本假定统计热力学的研究方法物质的宏观性质本质上是微观粒子不停地运动的客观反应。虽然每个粒子都遵守力学定律,但是无法用力学中的微分方程去描述整个体系的运动状态,所以必须用统计学...

南大物化03章统计热力学基础课件
物理化学电子教案—第三章第三章统计热力学基础3.1概论3.5配分函数对热力学函数的贡献3.3配分函数3.4各配分函数的计算3.2Boltzmann统计3.6单原子理想气体热力学函数的计算3.7双原子理想气体热力学函数的计算3.1概论统计热力学的研究方法统计热力学的基本任务定位体系和非定位体系独立粒子体系和相依粒子体系统计体系的分类统计热力学的基本假定统计热力学的研究方法物质的宏观性质本质上是微观粒子不停地运动的客观反应。虽然每个粒子都遵守力学定律,但是无法用力学中的微分方程去描述整个体系的运动状态,所以必须用统计学的方法。根据统计单位的力学性质(例如速度、动量、位置、振动、转动等),经过统计平均推求体系的热力学性质,将体系的微观性质与宏观性质联系起来,这就是统计热力学的研究方法。统计热力学的基本任务该方法的局限性:计算时必须假定结构的模型,而人们对物质结构的认识也在不断深化,这势必引入一定的近似性。另外,对大的复杂分子以及凝聚体系,计算尚有困难。该方法的优点:将体系的微观性质与宏观性质联系起来,对于简单分子计算结果常是令人满意的。不需要进行复杂的低温量热实验,就能求得相当准确的熵值。定位体系和非定位体系定位体系(localizedsystem)定位体系又称为定域子体系,这种体系中的粒子彼此可以分辨。例如,在晶体中,粒子在固定的晶格位置上作振动,每个位置可以想象给予编号而加以区分,所以定位体系的微观态数是很大的。独立粒子体系和相依粒子体系独立粒子体系(assemblyofindependentparticles)独立粒子体系是本章主要的研究对象粒子之间的相互作用非常微弱,因此可以忽略不计,所以独立粒子体系严格讲应称为近独立粒子体系。这种体系的总能量应等于各个粒子能量之和,即:独立粒子体系和相依粒子体系相依粒子体系(assemblyofinteractingparticles)相依粒子体系又称为非独立粒子体系,体系中粒子之间的相互作用不能忽略,体系的总能量除了包括各个粒子的能量之和外,还包括粒子之间的相互作用的位能,即:统计体系的分类目前,统计主要有三种:一种是Maxwell-Boltzmann统计,通常称为Boltzmann统计。1900年Plonck提出了量子论,引入了能量量子化的概念,发展成为初期的量子统计。在这时期中,Boltzmann有很多贡献,开始是用经典的统计方法,而后来又有发展,加以改进,形成了目前的Boltzmann统计。统计体系的分类1924年以后有了量子力学,使统计力学中力学的基础发生改变,随之统计的方法也有改进,从而形成了Bose-Einstein统计和Fermi-Dirac统计,分别适用于不同体系。但这两种统计在一定条件下通过适当的近似,可与Boltzmann统计得到相同结果。统计热力学的基本假定概率(probability)指某一件事或某一种状态出现的机会大小。热力学概率体系在一定的宏观状态下,可能出现的微观总数,通常用 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示。统计热力学的基本假定等概率假定例如,某宏观体系的总微态数为,则每一种微观状态P出现的数学概率都相等,即:对于U,V和N确定的某一宏观体系,任何一个可能出现的微观状态,都有相同的数学概率,所以这假定又称为等概率原理。定位体系的微态数一个由N个可区分的独立粒子组成的宏观体系,在量子化的能级上可以有多种不同的分配方式。设其中的一种分配方式为:定位体系的微态数这种分配的微态数为:分配方式有很多,总的微态数为:无论哪种分配都必须满足如下两个条件:定位体系最概然分布首先用Stiring公式将阶乘展开,再用Lagrange乘因子法,求得最概然的分布为:式中和是Lagrange乘因子法中引进的待定因子。用数学方法可求得:所以最概然分布公式为:简并度(degeneration)能量是量子化的,但每一个能级上可能有若干个不同的量子状态存在,反映在光谱上就是代表某一能级的谱线常常是由好几条非常接近的精细谱线所构成。量子力学中把能级可能有的微观状态数称为该能级的简并度,用符号表示。简并度亦称为退化度或统计权重。简并度(degeneration)例如,气体分子平动能的公式为:式中分别是在轴方向的平动量子数,当则只有一种可能的状态,则,是非简并的。简并度(degeneration)这时,在相同的情况下,有三种不同的微观状态,则。有简并度时定位体系的微态数设有N个粒子的某定位体系的一种分布为:有简并度时定位体系的微态数先从N个分子中选出N1个粒子放在能极上,有种取法;但能极上有个不同状态,每个分子在能极上都有种放法,所以共有种放法;这样将N1个粒子放在能极上,共有种微态数。依次类推,这种分配方式的微态数为:有简并度时定位体系的微态数由于分配方式很多,所以在U、V、N一定的条件下,所有的总微态数为:求和的限制条件仍为:有简并度时定位体系的微态数与不考虑简并度时的最概然分布公式相比,只多了项。再采用最概然分布概念,,用Stiring公式和Lagrange乘因子法求条件极值,得到微态数为极大值时的分布方式为:非定位体系的最概然分布同样采用最概然分布的概念,用Stiring公式和Lagrange乘因子法求条件极值,得到微态数为极大值时的分布方式(非定位)为:由此可见,定位体系与非定位体系,最概然的分布公式是相同的。Boltzmann公式的其它形式(1)将i能级和j能级上粒子数进行比较,用最概然分布公式相比,消去相同项,得:Boltzmann公式的其它形式(2)在经典力学中不考虑简并度,则上式成为设最低能级为,在能级上的粒子数为,略去标号,则上式可写作:这公式使用方便,例如讨论压力在重力场中的分布,设各个高度温度相同,即得:熵和亥氏自由能的表达式根据揭示熵本质的Boltzmann公式(1)对于定位体系,非简并状态熵和亥氏自由能的表达式用Stiring公式展开:熵和亥氏自由能的表达式熵和亥氏自由能的表达式(2)对于定位体系,简并度为推导方法与前类似,得到的结果中,只比(1)的结果多了项。熵和亥氏自由能的表达式(3)对于非定位体系由于粒子不能区分,需要进行等同性的修正,在相应的定位体系的公式上除以,即:3.3配分函数配分函数的定义配分函数的分离非定位体系配分函数与热力学函数的关系定位体系配分函数与热力学函数的关系3.3配分函数配分函数的定义根据Boltzmann最概然分布公式(略去标号)令分母的求和项为:q称为分子配分函数,或配分函数(partitionfunction),其单位为1。求和项中称为Boltzmann因子。配分函数q是对体系中一个粒子的所有可能状态的Boltzmann因子求和,因此q又称为状态和。3.3配分函数将q代入最概然分布公式,得:q中的任何一项与q之比,等于分配在该能级上粒子的分数,q中任两项之比等于这两个能级上最概然分布的粒子数之比,这正是q被称为配分函数的由来。配分函数的分离一个分子的能量可以认为是由分子的整体运动能量即平动能,以及分子内部运动的能量之和。分子内部的能量包括转动能()、振动能()、电子的能量()和核运动能量(),各能量可看作独立无关。这几个能级的大小次序是:配分函数的分离平动能的数量级约为,分子的总能量等于各种能量之和,即:各不同的能量有相应的简并度,当总能量为时,总简并度等于各种能量简并度的乘积,即:则更高。配分函数的分离根据配分函数的定义,将和的表达式代入,得:从数学上可以 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 ,几个独立变数乘积之和等于各自求和的乘积,于是上式可写作:配分函数的分离和分别称为平动、转动、振动、电子和原子核配分函数。非定位体系配分函数与热力学函数的关系设总的粒子数为N(1)Helmholz自由能A非定位体系配分函数与热力学函数的关系(2)熵S或根据以前得到的熵的表达式直接得到下式:非定位体系配分函数与热力学函数的关系(3)热力学能U或从两个表达式一比较就可得上式。非定位体系配分函数与热力学函数的关系(4)Gibbs自由能G非定位体系配分函数与热力学函数的关系(5)焓H(6)定容热容CV根据以上各个表达式,只要知道配分函数,就能求出热力学函数值。定位体系配分函数与热力学函数的关系根据非定位体系求配分函数与热力学函数关系相同的方法,得:定位体系配分函数与热力学函数的关系定位体系配分函数与热力学函数的关系由上列公式可见,U,H和CV的表达式在定位和非定位体系中是一样的;而A,S和G的表达式中,定位体系少了与有关的常数项,而这些在计算函数的变化值时是可以互相消去的。本章主要讨论非定位体系。3.4各配分函数的计算原子核配分函数电子配分函数平动配分函数转动配分函数振动配分函数原子核配分函数式中分别代表原子核在基态和第一激发态的能量,分别代表相应能级的简并度。原子核配分函数由于化学反应中,核总是处于基态,另外基态与第一激发态之间的能级间隔很大,所以一般把方括号中第二项及以后的所有项都忽略不计,则:如将核基态能级能量选为零,则上式可简化为:即原子核的配分函数等于基态的简并度,它来源于核的自旋作用。式中sn是核的自旋量子数。电子配分函数电子能级间隔也很大,除F,Cl少数元素外,方括号中第二项也可略去。虽然温度很高时,电子也可能被激发,但往往电子尚未激发,分子就分解了。所以通常电子总是处于基态,则:电子配分函数若将视为零,则式中j是电子总的角动量量子数。电子绕核运动总动量矩也是量子化的,沿某一选定轴上的分量可能有2j+1个取向。某些自由原子和稳定离子的是非简并的。如有一个未配对电子,可能有两种不同的自旋,如它的平动配分函数设质量为m的粒子在体积为的立方体内运动,根据波动方程解得平动能表示式为:式中h是普朗克常数,分别是轴上的平动量子数,其数值为的正整数。平动配分函数将代入:因为对所有量子数从求和,包括了所有状态,所以公式中不出现项。在三个轴上的平动配分函数是类似的,只解其中一个,其余类推。平动配分函数因为是一个很小的数值,所以求和号用积分号代替,得:平动配分函数引用积分公式:则上式得:和有相同的表示式,只是把a换成b或c,所以:转动配分函数单原子分子的转动配分函数等于零,异核双原子分子、同核双原子分子和线性多原子分子的有类似的形式,而非线性多原子分子的表示式较为复杂。(1)异核双原子分子的,设其为刚性转子绕质心转动,能级公式为:式中J是转动能级量子数,I是转动惯量,设双原子质量分别为,r为核间距,则:转动配分函数转动角动量在空间取向也是量子化的,所以能级简并度为:称为转动特征温度,因等式右边项具有温度的量纲。将代入表达式,得:从转动惯量I求得。除H2外,大多数分子的很小,,因此用积分号代替求和号,并令,代入后得:转动配分函数转动配分函数(2)同核双原子和线性多原子分子的(是对称数,旋转微观态重复的次数)(3)非线性多原子分子的分别为三个轴上的转动惯量。振动配分函数(1)双原子分子的设分子作只有一种频率的简谐振动,振动是非简并的,,其振动能为:式中v为振动量子数,当v=0时,称为零点振动能振动配分函数令称为振动特征温度,也具有温度量纲,则:振动配分函数振动特征温度是物质的重要性质之一,越高,处于激发态的百分数越小,表示式中第二项及其以后项可略去不计。也有的分子较低,如碘的,则的项就不能忽略。在低温时,,则,引用数学近似公式:振动配分函数则的表示式为:将零点振动能视为零,即则:振动配分函数多原子分子振动自由度为:(2)多原子分子的为平动自由度,为转动自由度,n为原子总数。因此,线性多原子分子的为:非线性多原子分子的只要将(3n-5)变为(3n-6)即可。3.5配分函数对热力学函数的贡献原子核配分函数的贡献电子配分函数的贡献平动配分函数的贡献转动和振动配分函数的贡献原子核配分函数的贡献在通常的化学变化中,核总是处于基态,如果将基态能量选作零,则:是核自旋量子数,与体系的温度、体积无关。原子核配分函数的贡献对热力学能、焓和定容热容没有贡献,即:原子核配分函数的贡献在计算热力学函数的差值时,这一项会消去,所以一般不考虑的贡献。只有在精确计算规定熵值时,才会考虑的贡献。电子配分函数的贡献通常电子处于基态,并将基态能量选作零,则:由于电子总的角动量量子数j与温度、体积无关,所以qe对热力学能、焓和等容热容没有贡献,即:电子配分函数的贡献除外,和的值在计算变化差值时,这项一般也可以消去。如果电子第一激发态不能忽略,如果基态能量不等于零,则应该代入的完整表达式进行计算。平动配分函数的贡献由于平动能的能级间隔很小,所以平动配分函数对熵等热力学函数贡献很大。对具有N个粒子的非定位体系,分别求对各热力学函数的贡献。已知平动配分函数的贡献(1)平动Helmholtz自由能平动配分函数的贡献这称为Sackur-Tetrode公式(2)平动熵因为平动配分函数的贡献Sackur-Tetrode公式用来计算理想气体的平动熵。对于1mol理想气体,因为Nk=R,所以计算公式为:平动配分函数的贡献(3)平动热力学能(4)平动等容热容平动配分函数的贡献(5)平动焓和平动Gibbs自由能代入相应的表示式即得。转动和振动配分函数的贡献分子的转动和振动常常是相互影响的,作为一个转子有非刚性的问题,作为一个振子,又有非谐性的问题。我们只考虑最简单的理想双原子分子,分子内部能量严格遵守下式:转动和振动配分函数的贡献式中第一项只与振动量子数v有关,第二项只与转动量子数j有关,分子内部能量可以看成是振动和转动两个独立项的加和,则热力学函数也可看成是他们单独贡献的加和。对于定位和非定位体系,只有平动贡献有一点差异,而内部的转动和振动的贡献是相同的。转动和振动配分函数的贡献(1)Helmholtz自由能(2)转动熵和振动熵转动和振动配分函数的贡献(3)热力学能(4)定容热容因为转动和振动配分函数的贡献如某双原子分子的转动、振动配分函数可用下式表示时:转动和振动配分函数的贡献利用热力学函数之间的关系,可求出对H和G的贡献。3.6单原子理想气体热力学函数的计算(1)Helmholtz自由能A(2)熵(3)热力学能(4)定容热容(5)化学势(6)理想气体状态方程3.6单原子理想气体热力学函数的计算由于单原子分子内部运动没有转动和振动,所以只有原子核、电子和外部的平动对热力学函数有贡献。理想气体是非定位体系,所以它的一系列热力学函数用配分函数的计算式分别分列如下:(1)Helmholtz自由能A(1)Helmholtz自由能A第1、2项在计算时,都可以消去。(2)熵这公式也称为Sachur-Tetrode公式。(3)热力学能因为对热力学能没有贡献,只有平动能有贡献,所以:(4)定容热容这个结论与经典的能量均分原理的结果是一致的,单原子分子只有三个平动自由度,每个自由度贡献,则N个粒子共有。(5)化学势对于理想气体,,代入A的表示式,得:(5)化学势对1mol气体分子而言,各项均乘以阿伏伽德罗常数,,则1mol气体化学势为:(5)化学势当处于 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 态时,,则:从该式可看出,一定时,只是T的函数。两式相减得:(6)理想气体的状态方程将A的表示式代入,由于其它项均与体积无关,只有平动项中有一项与V有关,代入即得理想气体状态方程。用统计热力学的方法可以导出理想气体状态方程,这是经典热力学无法办到的。3.7双原子理想气体热力学函数的计算双原子分子的全配分函数计算氧分子的双原子分子的全配分函数根据配分函数的定义及可分离的性质,分子的全配分函数应该由5个部分组成,即:对于双原子分子,将各个配分函数的具体表示式代入,就得到:双原子分子的全配分函数对于多原子分子,前三项相同,而的形式因原子的结构不同而有所不同。由于多原子分子的计算十分复杂,今只以分子为例子,从配分函数计算双原子分子的一些热力学函数。计算氧分子的在298.15K和标准压力下,将1molO2(g)放在体积为V的容器中,已知电子基态的,基态能量,忽略电子激发态项的贡献。O2的核间距。忽略和的贡献。计算氧分子的?计算氧分子的解:这时,O2的全配分函数只有,和三项,分别计算如下,可以看出它们贡献的大小。计算氧分子的将k、h等常数代入,O2的对称数,得:计算氧分子的计算氧分子的计算氧分子的利用Sackur-Tetrode公式计算,因为Nk=R,所以:计算氧分子的计算氧分子的所以显然,平动熵的贡献最大。JAMESCLERKMAXWELLJAMESCLERKMAXWELL(1831-1879)Britishphysicist,presentedhisfirstscientificpapertotheRoyalSocietyofEdihburghattheageof15.InchemistryheisbestknownforhisMaxwelldistributionandhiscontributionstothekinetictheoryofgases.InphysicshisnameismostoftenassociatedwithhisMaxwellequationsforelectromagneticfields.LUDWIGBOLTZMANNLUDWIGBOLTZMANN(1844-1906)Austrianscientist,isbestknownforhisworkinthekinetictheoryofgasesandinthermodynamicsandstatisticalmechanics.Hissuicidein1906isattributedbysometoastateofdepressionresultingfromtheintensescientificwarbetweentheatomistsandtheenergistsattheturnofthecentury.OnhistombstoneistheinscriptionS=klnW.ALBERTEINSTEINALBERTEINSTEIN(1879-1955)wasborninGermanyandeducatedinSwitzerland;andhediedintheUnitedStates.HewasrefusedapositionasassistantinthephysicsdepartmentintheZurichPolytechnicalinstituteonhisgraduation,andhesettledforpositionasanexaminerintheSwissPatentOfficein1900.ALBERTEINSTEINInafewshortyearsheproducedthreetheories,eachofwhichwasfundamentallyimportantindifferentbranchesofphysicsandchemistry:thetheoryofthephotoelectriceffect,thetheoryofBrownianmotion,andthetheoryofrelativity.Einsteinwasoneofthefewscientiststoachieveworldwidestatureinnonscientificcirclesforhisscientificwork.ALBERTEINSTEINThenameEinsteinisahouseholdword,andhasbeenintroducedasawordintheEnglishlanguage.Theexpression“He’saregularEinstein”isoftenappliedtobrightchildren.WhenIwasaschoolboy,itwasacceptedfactamongmyassociatesthatEinsteinwasthesmartestmanwhoeverlived,andthathistheoryofrelativitywassocomplicatedthatonlythreepeopleunderstoodit,oneofwhomwasEinsteinhimself.ALBERTEINSTEINEinsteinwasforcedoutofNaziGermanyintheearly1930salongwithFritzHaberandothers,andcametotheUnitedStates,wherehespenttherestofhislifeattheInstituteforAdvancedStudyatPrinceton.EinsteinreceivedtheNobelPrizeinphysicsin1921forhisworkonthephotoelectriceffect.ENRICOFERMIENRICOFERMI(1901-1954)Italianphysicist,wasactivelyengagedinmanybranchesofphysicsduringhiscareer.HistriptoSwedentoaccepttheNobelPrizeinphysicsin1938wasusedasacovertofleeItaly,andhisintentionnottoreturnwasknownonlytoafewofhismostintimatefriends.HecametotheUnitedStates,whereheacceptedapositiononthefacultyofcolumbiaUniversity.LaterdevelopmentsintheAxisnationsrenderedthisdecisionaveryfortunateone,especiallysincehiswifewasJewish.ENRICOFERMIItwasalsoluckyfortheUnitedStates,sinceEnricoFermidirectedtheresearchthatledtothefirstsuccessfulchainreactionattheUniversityofChicagoin1942andpointedtothefeasibilityoftheatomicbomb.HisNobelPrizewasfor“thediscoveryofnewradioactiveelementsproducedbyneutronirradiation,andforthediscoveryofnuclearreactionsbroughtaboutbyslowelectrons.”Fermihaddevotedtheyearsbefore1938tostudyingradioactivityinducedbyneutronbombardment.ENRICOFERMIHethoughtthathehadproducedtransuranicelementsbybombardinguranium,andallworkersinthefieldatthattimeacceptedthisexplanation.ItremainedforHahnandStrassmantoshowthatthemeasuredradioactivitywasproducedbecauseofisotopesofmuchlightereldments,andthatFermihadactuallyproducednuclearfissioninsteadofnucleartransmutation.ItwasacaseoftherightmangettingtheNobelPrize,butforthewrongreason.PAULADRIENMAURICEDIRACPAULADRIENMAURICEDIRAC(born1902)Britishphysicist,beganhisstudiesintheoreticalphysicsafterfailingtogetworkasanelectricalengineer,thefieldinwhichhehadtakenhisundergraduatedegree.DiracintroducedEinstein’stheoryofrelativityintoquantummechanicsandwasoneoftheoriginatorsofrelativisticquantummechanicsandalsoofthequantumtheoryofradiation.PAULADRIENMAURICEDIRACOneanomalousresultofhisrelativisticquantummechanicswasthatcertainaspectsofthetheorycouldbeexplainedonlybythatoftheelectron.Shortlythereafter,CarlAndersondiscoveredthepositron,andDirac’stheorywasturnedintoatriumph.Diracsharedthe1933NobelPrizewithErwinSchrodinger,andhewasappointedLucasianprofessorofmathematicsatCambridgeUniversityin1932.ThatwasthechairSirIsaacNewtononceheld.
本文档为【南大物化03章统计热力学基础课件】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
个人认证用户
wwlaoba
暂无简介~
格式:ppt
大小:1MB
软件:PowerPoint
页数:120
分类:医药卫生
上传时间:2022-09-23
浏览量:0