加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 Engineering Cybernetics [工程控制论] [英文原版]钱学森著

Engineering Cybernetics [工程控制论] [英文原版]钱学森著.pdf

Engineering Cybernetics [工程控制论]…

静待花开
2009-10-31 0人阅读 举报 0 0 暂无简介

简介:本文档为《Engineering Cybernetics [工程控制论] [英文原版]钱学森著pdf》,可适用于高等教育领域

KANSASCITY,MOPUBLICLIBRARY^ENGINEERINGCYBERNETICSENGINEERINGCYBERNETICSHSTSIENDanielandFlorenceGuggenheimJetPropulsionCenterCaliforniaInstituteofTechnologyPasadena,CaliforniaMcGRAWHILLBOOKCOMPANY,INCNewYorkTorontoLondonENGINEERINGCYBERNETICSCopyright,,bytheMcGrawHillBookCompany,IncPrintedintheUnitedStatesofAmericaAllrightsreservedThisbook,orpartsthereof,maynotbereproducedinanyformwithoutpermissionofthepublishersLibraryofCongressCatalogCardNumberTHEMAPLEPEBSSCOMPANY,YOKK,PAToTsiangYinPREFACEThecelebratedphysicistandmathematicianAMAmperecoinedthewordcyberne~tiquetomeanthescienceofcivilgovernment(PartIIof"Essaisurlaphilosophicdessciences',Paris)Ampere'sgrandioseschemeofpoliticalscienceshasnot,andperhapsneverwill,cometofruitionInthemeantime,conflictbetweengovernmentswiththeuseofforcegreatlyacceleratedthedevelopmentofanotherbranchofscience,thescienceofcontrolandguidanceofmechanicalandelectricalsystemsItisthusperhapsironicalthatAmpere'swordshouldbeborrowedbyNWienertonamethisnewscience,soimportanttomodernwarfareThe"cybernetics"ofWiener("Cybernetics,orControlandCommunicationintheAnimalandtheMachine,"JohnWileySons,Inc,NewYork,)isthescienceoforganizationofmechanicalandelectricalcomponentsforstabilityandpurposefulactionsAdistinguishingfeatureofthisnewscienceisthetotalabsenceofconsiderationsofenergy,heat,andefficiency,whicharesoimportantinothernaturalsciencesInfact,theprimaryconcernofcyberneticsisonthequalitativeaspectsoftheinterrelationsamongthevariouscomponentsofasystemandthesyntheticbehaviorofthecompletemechanismThepurposeof"EngineeringCybernetics"isthentostudythosepartsofthebroadscienceofcyberneticswhichhavedirectengineeringapplicationsindesigningcontrolledorguidedsystemsItcertainlyincludessuchtopicsusuallytreatedinbooksonservomechanismsButawiderrangeoftopicsisonlyonedifferencebetweenengineeringcyberneticsandservomechanismsengineeringAdeeperandthusmoreimportantdifferenceliesinthefactthatengineeringcyberneticsisanengineeringscience,whileservomechanismsengineeringisanengineeringpracticeAnengineeringscienceaimstoorganizethedesignprinciplesusedinengineeringpracticeintoadisciplineandthustoexhibitthesimilaritiesbetweendifferentareasofengineeringpracticeandtoemphasizethepoweroffundamentalconceptsInshort,anengineeringscienceispredominatedbytheoreticalanalysisandveryoftenusesthetoolofadvancedmathematicsAglanceatthecontentsofthisbookmakesthisquiteevidentThedetailedconstructionanddesignofthecomponentsofthesystemtheactualimplementationofthetheoryarealmostneverdiscussedNogadgetismentionedviiviiiPREFACEWhatisthejustificationofthisseparationofthetheoryfromthepracticeWithknowledgeoftheveryexistenceofvariousengineeringsciencesandtheirrecentrapiddevelopment,suchjustificationseemshardlynecessaryMoreover,aspecificexamplecouldbecited:Fluidmechanicsexistsasanengineeringscienceseparatefromthepracticeofaerodynamicsengineers,hydraulicengineers,meteorologists,andmanyotherswhousetheresultsofinvestigationsinfluidmechanicsintheirdailyworkInfact,withoutfluidmechanists,theunderstandingandtheutilizationofsupersonicflowswouldcertainlybegreatlydelayed,tosaytheleastTherefore,thejustificationofestablishingengineeringcyberneticsasanengineeringscienceliesinthepossibilitythatlookingatthingsinbroadoutlineandinanorganizedwayoftenleadstofruitfulnewavenuesofapproachtooldproblemsandgivesnew,unexpectedvistasAtthepresentstageofmultifariousdevelopmentsincontrolandguidanceengineering,thereisaveryrealadvantageintryingtograspthefullpotentialitiesofthisnewsciencebyacomprehensivesurveyofthewholefieldThereforeadiscussiononengineeringcyberneticsshouldcoverreasonablywellallaspectsofthescienceexpectedtohaveengineeringapplicationsand,inparticular,shouldnotavoidatopicforthemerereasonofmathematicaldifficultiesThisisallthemoretruewhenonerealizesthatthemathematicaldifficultiesofanysubjectareusuallyquiteartificialWithalittle^interpretation,themattercouldgenerallybebroughtdowntothelevelofaresearchengineerThemathematicallevelofthisbookisthenthatofastudentwhohashadacourseinelementsofmathematicalanalysisKnowledgeofcomplexintegration,variationalcalculus,andordinarydifferentialequationsformstheprerequisiteforthestudyOntheotherhand,norigorousandelegantmathematicalargumentisintroducedifaheuristicdiscussionsufficesHencetothepracticingelectronicsspecialist,thetreatmentheremustappeartobeexcessively"longhair'buttoamathematicianinterestedinthisfield,thetreatmentheremaywellappeartobeamateurishIfindeedthesearetheonlycriticisms,then,withallduerespecttothem,theauthorshallfeelthathehasnotfailedinwhatheaimedtodoDuringthecourseofwritingthesechapters,theauthorhadthebenefitofmanyconversationswithhiscolleaguesattheCaliforniaInstituteofTechnology,DrFrankEMarbleandDrCharlesRDePrima,whichoftenledtosuddenclarificationofanobscurepointThetaskofpreparingthemanuscriptwasgreatlylightenedbytheefficienthelprenderedbySedatSerdengectiandRuthL,WinkelToallofthem,theauthorwishestoextendhissincerethanksH,TSIENCONTENTSPREFACEviiCHAPTERINTRODUCTIONLinearSystemsofConstantCoefficientsLinearSystemsofVariableCoefficientsNonlinearSystemsEngineeringApproximationCHAPTERMETHODOFLAPLACETRANSFORMLaplaceTransformandInversionFormulaApplicationtoLinearEquationswithConstantCoefficients"Dictionary"ofLaplaceTransformsSinusoidalForcingFunctionResponsetoUnitImpulseCHAPTERINPUT,OUTPUT,ANDTRANSFERFUNCTIONFirstorderSystemsRepresentationsoftheTransferFunctionExamplesofFirstorderSystemsSecondorderSystemsDeterminationofFrequencyResponseCompositionofaSystemfromElementsTranscendentalTransferFunctionsCHAPTERFEEDBACKSERVOMECHANISMConceptofFeedbackDesignCriteriaofFeedbackServomechanismsMethodofNyquistMethodofEvansHydrodynamicAnalogyofRootLocusMethodofBodeDesigningtheTransferFunctionMultipleloopServomechanismsCHAPTERNONINTERACTINGCONTROLSControlofaSinglevariableSystemControlofaManyvariableSystemNoninteractionConditionsResponseEquationsTurbopropellerControlTurbojetEnginewithAfterburningixxCONTENTSCHAPTEEALTERNATINGCURRENTSERVOMECHANISMSANDOSCILLATINGCONTROLSEKVOMECHANISMSAlternatingcurrentSystemsTranslationoftheTransferFunctiontoaHigherFrequencyOscillatingControlServomechanisrnsFrequencyResponseofaRelayOscillatingControlServomechanisrnswithBuiltinOscillationGeneralOscillatingControlServomechanismCHAPTERSAMPLINGSERVOMECHANISMSOutputofaSamplingCircuitStibitzShannonTheoryNyquistCriterionforSamplingServomechanisrnsSteadystateErrorCalculationofft*()ComparisonofContinuouslyOperatingwithSamplingServomecha^nismsPoleofft()atOriginCHAPTERLINEARSYSTEMSWITHTIMELAGTimeLaginCombustionSatcheDiagramSystemDynamicsofaRocketMotorwithFeedbackServoInstabilitywithoutFeedbackServoCompleteStabilitywithFeedbackServoGeneralStabilityCriteriaforTimelagSystemsCHAPTERLINEARSYSTEMSWITHSTATIONARYRANDOMINPUTSIllStatisticalDescriptionofaRandomFunctionIllAverageValuesHPowerSpectrumExamplesofthePowerSpectrumDirectCalculationofthePowerSpectrumProbabilityofLargeDeviationsfromtheMeanFrequencyofExceedingaSpecifiedValueResponseofaLinearSystemtoStationaryRandomInputSecondorderSystemLiftonaTwodimensionalAirfoilinanIncompressibleTurbulentFlowIntermittentInputServoDesignforRandomInputCHAPTERRELAYSERVOMECHANISMSApproximateFrequencyResponseofaRelayMethodofKochenburgerOtherFrequencyinsensitiveNonlinearDevicesOptimumPerformanceofaRelayServomechanismPhasePlaneLinearSwitchingOptimumSwitchingFunctionCONTENTSxiOptimumSwitchingLineforLinearSecondorderSystemsMultiplemodeOperationCHAPTERNONLINEARSYSTEMSNonlinearFeedbackRelayServomechanismSystemswithSmallNonlinearityJumpPhenomenonFrequencyDemultiplicationEntrainmentofFrequencyAsynchronousExcitationandQuenchingParametricExcitationandDampingCHAPTERLINEARSYSTEMWITHVARIABLECOEFFICIENTSArtilleryRocketduringBurningLinearizedTrajectoryEquationsStabilityofanArtilleryRocketStabilityandControlofSystemswithVariableCoefficientsCHAPTERCONTROLDESIGNBYPERTURBATIONTHEORYEquationsofMotionofaRocketPerturbationEquationsAdjointFunctionsRangeCorrectionCutoffConditionGuidanceConditionGuidanceSystemControlComputersAppendix:CalculationofPerturbationCoefficientsCHAPTERCONTROLDESIGNWITHSPECIFIEDCRITERIAControlCriteriaStabilityProblemGeneralTheoryforFirstorderSystemsApplicationtoTurbojetControlsSpeedControlwithTemperaturelimitingCriteriaSecondorderSystemswithTwoDegreesofFreedomControlProblemwithDifferentialEquationasAuxiliaryConditionComparisonofConceptsofControlDesignCHAPTEROPTIMALIZINGCONTROLBasicConceptPrinciplesofOptimalizingControlConsiderationsonInterferenceEffectsPeakholdingOptimalizingControlDynamicEffectsDesignforStableOperationCHAPTERFILTERINGOFNOISEMeansquareErrorPhillips'OptimumFilterDesignWienerKolmogoroffTheoryxiiCONTENTSSimpleExamplesApplicationsofWienerKolmogoroffTheoryOptimumDetectingFilterOtherOptimumFiltersGeneralFilteringProblemCHAPTERULTRASTABILITYANDMULTISTABILITYUltrastableSystemAnExampleofanUltrastableSystemProbabilityofStabilityTerminalFieldsMultistageSystemCHAPTERCONTROLOFERRORReliabilitybyDuplicationBasicElementsMethodofMultiplexingErrorinExecutiveComponent^ErrorofMultiplexedSystemsExamplesINDEXENGINEERINGCYBERNETICSCHAPTERINTRODUCTIONConsiderasystemofonedegreeoffreedomsothatthephysicalstateofthesystemcanbespecifiedbyasinglevariableyThebehaviorofthesystemisthendescribedbytakingyasafunctionoftimetTodeterminethisbehaviorory(t),itisnecessarytoknowthestructureofthesystemandthepropertiesoftheindividualelementsofthesystemThisknowledgeaboutthesystem,togetherwithfundamentalphysicallaws,whentranslatedintomathematicallanguagegivesanequationforcalculatingthefunctiony(f)Thisequationcouldbeanintegralequationoranintegrodifferentialequation,butveryoftenitisadifferentialequationItisalsoanordinarydifferentialequation,becausethereisonlyoneindependentvariable,thetimetAdifferentialequationiscalledlinear,andthesystemdescribedbythedifferentialequation,alinearsystem,ifeachtermoftheequationcontainsatmostonlyfirstpowersofthedependentvariableyoritstimederivativesThetermsshouldnotcontainhigherpowersofyorcrossproductsofyanditsderivativesOtherwise,thedifferentialequationiscallednonlinear,andthesystemdescribedbythedifferentialequation,anonlinearsystemLinearsystemscanbefurthersubdividedintosystemswithconstantcoefficientsandsystemswithvariablecoefficientsConstantcoefficientsystemshaveconstantsindependentoftimetascoefficientsofthetermsinthedifferentialequationdescribingthesystemVariablecoefficientsystemshavecoefficientsthatarefunctionsoftThisconcernabouttheclassificationofthedifferentialequationhasitsjustificationinthatthecharacterofthesolutionoftheequationandhencethebehaviorofthesystemdependcloselyonthetype"ofthedifferentialequationwhichdescribesitEvenmorethanthis,thetypeofdifferentialequationspecifiesthekindofquestionsthatcanlogicallybeaskedaboutthesystemInotherwords,thetypeofdifferentialequationdeterminestheproperapproachtothesolutionoftheengineeringproblemofthesystemWeshallseethispresentlyLinearSystemsofConstantCoefficientsLetusconsiderthesimplestsystemafirstordersystemThatis,thedifferentialequationofthesystemisafirstorderlineardifferentialequationofconstantcoefficientsIfthesystemisassumedtobefreeandisnotsubjectedtoENGINEERINGCYBERNETICS"forcingfunctions,"thenthedifferentialequationcanbewrittenasf=()kmaybecalledthespringconstantandisrealWhenthereisnovariationofywithrespecttotime,dydtvanishes,andEq()requiresijThereforethestationary,orequilibrium,stateofthesystemcorrespondstoy=,ThesolutionofEq()isy=y^kt()whereyoistheinitialvalueofytoro()yQisthustheinitialdisturbanceofthesystemfromtheequilibriumstateThebehaviorofthesystemfort>isillustratedinFigforbothpositiveandnegativekItisseenthatfork>themagnitudeofydecreaseswithtimeThen,asthetimeincreasesindefinitely,y*QTherefore,fork>,thedisturbance^ofthesystemwilleventuallydisap*pearThesystemcanthenbesaidtoFlG'LbestableWhenk<,themotionofthesystemincreaseswithtime,andeventuallythedisturbancewillbecomeverylargenomatterhowsmalltheinitialdisplacementis:thesystemwillneverreturntotheequilibriumstateoncedisturbedSuchsystemsarethusunstableForsystemsofhigherorder,thedifferentialequationwillhavehigherderivativesThenthordersystemhasthedifferentialequationa^g*<>Foraphysicalsystem,thecoefficientsani,,aoarerealThenthesolutionofEq()canbewrittenasny=vV**sin(A*)(lfi)wherea,,ftarerealandarerelatedtothecoefficientsandthept'sarethephaseanglesThemotionofthesystemisthusstableonlyifallasarenegativeIfoneofthemispositive,thedisturbancewilleventuallydiverge,andthesystemisthusunstableINTRODUCTIONFromtheaboveexamplesitisseenthatthecrucialquestiontoaskaboutthebehaviorofalinearsystemofconstantcoefficientsisthequestionofstabilityNeedlesstosay,theusualaimofanengineeringdesignisstabilityThequestionofstabilitycanbeanswered,however,oncethecoefficientsofthedifferentialequationarespecifiedInthecaseofthesimplefirstordersystemspecifiedbyEq(),theonlyinformationthatmattersisthesignofthecoefficientkLinearSystemsofVariableCoefficientsIfthereisavariableparameterinthesystemunderstudy,thestationary,orequilibrium,stateofthesystemcanbechangedbychangingthisparameterItisnatural,then,toexpectthecoefficientsofthelineardifferentialequationdescribingthesystemtobealsofunctionsofthisparameterForinstance,theaerodynamicforcesactingonanaircraftarefunctionsofthespeedoftheaircraftIfthespeedoftheaircraftischangingowingtoaccelerationordeceleration,theaerodynamicforceswillchangeaccordinglywhiletheinertialpropertiesoftheaircraftremainpracticallythesameAsaresult,ifwewishtocalculatethedisturbedmotionoftheaircraftfrom,say,horizontalflight,thefundamentaldifferentialequationwillbeanequationwithvariablecoefficientsLetusreturntothesimpleexampleofafirstordersystem,describedbyEq()Ifthespringconstantkisafunctionofthespeedoftheaircraftandiftheaircrafthasaconstantaccelerationa,thenkisafunctionofthevelocityu=atThusthedifferentialequationcanbewrittenas^k(at)y=()Thesolutionofthisequationisir^f()wherey$istheinitialdisturbanceIfkisalwayspositivethenlogisalwaysnegative,andastimeincreaseslog(yyo)willbeincreasinglynegativeThereforeyisalwayslessthanyQandeventuallywillvanishThusthesystemisstableIfkisalwaysnegative,log(yyo)willbeincreasinglypositivewithtimeThenywilleventuallybecomeverylargeeveniftheinitialdisturbanceyQisverysmallThesystemisthusunstableThesecharacteristicsofthelinearsystemwithvariablecoefficientsthatremainpositiveornegativeareverysimilartothoseofsystemswithconstantcoefficientsTheinterestingcaseis,however,whenkhasbothpositiveandnegativevaluesLetusassumek(a)tobefirstpositive,thennegative,butfinallypositiveagainIfthefirstzeroofkisdenotedbyui=atiENGINEERINGCYBERNETICSandtheseeondzerodenotedbyu~at*,thenaccordingtoourpreviousconcepts,thesystemisunstableinthevelocityrangefromutou<i(Fig)LetmiubetheminimumvalueofyandiraaxbethemaximumvaluedyThenEq()givesando()()Ofprimaryengineeringinterestisthequestion:HowlargeistmaxIsitsolargethatthesystemcannotfunctionproperlyWenotethat'k(at)"Unstable"ZoneFIGtoanswerthisquestiontheknowledgeoftwothings,inadditiontothefunctionaldependenceofkuponu,isrequiredTheseare:HowlargeistheaccelerationaWhatisthemagnitudeoftheinitialdisturbanceoForanyfixeda,maxisproportionaltoyQButmoreimportant,foranyfixedinitialdisturbance,themaximumvalueofthedev

用户评价(2)

  • 172.16.205.13 很宝贵的资源,谢谢

    2011-01-21 01:04:53

  • 172.16.205.13 谢谢,对于我这个搞数学的能够阅读到钱老的著作

    2009-11-02 18:29:13

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/49

Engineering Cybernetics [工程控制论] [英文原版]钱学森著

仅供在线阅读

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利