下载

1下载券

加入VIP
  • 专属下载券
  • 上传内容扩展
  • 资料优先审核
  • 免费资料无限下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 2009年天津新课标高考(文,理科)数学考试大纲天津精通高考复读学校么世涛老师整理

2009年天津新课标高考(文,理科)数学考试大纲天津精通高考复读学校么世涛老师整理

2009年天津新课标高考(文,理科)数学考试大纲天津精通高考复…

中草药9987
2009-01-19 0人阅读 举报 0 0 0 暂无简介

简介:本文档为《2009年天津新课标高考(文,理科)数学考试大纲天津精通高考复读学校么世涛老师整理doc》,可适用于求职/职场领域

年天津新课标高考考试大纲精通高考复读学校么世涛老师编辑整理内部资料严禁商用年普通高等学校招生全国统一考试天津卷数学(文科理科)考试大纲天津精通高考复读学校高考数学科研组组长么世涛资料说明:本套资料系精通学院内部学生参考资料只限天津精通高考复读学校届在校生使用如有任何疑问可打电话咨询么老师:本套资料包含精通学院教研成果某些知识点完全是么老师对考纲的分析只限校内拷贝参考交流。不作为公开发行使用。一、年天津高考命题的指导思想年的天津高考是天津历史上第一次命新课标高考以“教育要面向现代化面向世界面向未来”和“三个代表”的重要思想为指导实现“有助于高校科学公正地选拔人才有助于实施素质教育有助于高校依法行使办学自主权的原则切实体现普通高中新课程的改革精神反映各学科课程标准的整体要求”的目的体现普通高中新课程的理念以能力立意将知识、能力和素质融为一体全面检测考生的数学素养发挥数学作为主要基础学科的作用考查考生对中学数学的基础知识、基本技能的掌握程度考查考生对数学思想方法和数学本质的理解水平以及进入高等学校继续学习的潜能结合天津高考的具体情况二、考试内容与要求一、考核目标与要求对知识的要求依次是了解、理解、掌握三个层次()了解:要求对所列知识的含义有初步的、感性的认识知道这一知识内容是什么按照一定的程序和步骤照样模仿并能(或会)在有关的问题中识别和认识它这一层次所涉及的主要行为动词有:了解知道、识别模仿会求、会解等()理解:要求对所列知识内容有较深刻的理性认识知道知识间的逻辑关系能够对所列知识作正确的描述说明用数学语言表达利用所学的知识内容对有关问题作比较、判别、讨论有利用所学知识解决简单问题的能力这一层次所涉及的主要行为动词有:描述说明表达推测、想像比较、判别初步应用等()掌握:要求对所列的知识内容能够推导证明利用所学知识对问题能够进行分析、研究、讨论并且加以解决这一层次所涉及的主要行为动词有:掌握、导出、分析推导、证明研究、讨论、运用、解决问题等能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识()空间想像能力:能根据条件作出正确的图形根据图形想像出直观形象能正确地分析出图形中基本元素及其相互关系能对图形进行分解、组合会运用图形与图表等手段形象地揭示问题的本质空间想像能力是对空间形式的观察、分析、抽象的能力主要表现为识图、画图和对图形的想像能力识图是指观察研究所给图形中几何元素之间的相互关系画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换对图形的想像主要包括有图想图和无图想图两种是空间想像能力高层次的标志()抽象概括能力:抽象是指舍弃事物非本质的属性揭示其本质的属性概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程抽象和概括是相互联系的没有抽象就不可能有概括而概括必须在抽象的基础上得出某一观点或作出某项结论抽象概括能力就是从具体的、生动的实例在抽象概括的过程中发现研究对象的本质从给定的大量信息材料中概括出一些结论并能应用于解决问题或作出新的判断()推理论证能力:推理是思维的基本形式之一它由前提和结论两部分组成论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程推理既包括演绎推理也包括合情推理论证方法既包括按形式划分的演绎法和归纳法也包括按思考方法划分的直接证法和间接证法一般运用合情推理进行猜想再运用演绎推理进行证明中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性初步的推理能力()运算求解能力:会根据法则、公式进行正确运算、变形和数据处理能根据问题的条件寻找与设计合理、简捷的运算途径能根据要求对数据进行估计和近似计算运算求解能力是思维能力和运算技能的结合运算包括对数字的计算、估值和近似计算对式子的组合变形与分解变形对几何图形各几何量的计算求解等运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力也包括在实施运算过程中遇到障碍而调整运算的能力()数据处理能力:会收集数据、整理数据、分析数据能从大量数据中抽取对研究问题有用的信息并作出判断数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析并解决给定的实际问题()应用意识:应用指能综合运用所学数学知识、思想和方法解决问题包括解决在相关学科、生产、生活中简单的数学问题能理解对问题陈述的材料并对所提供的信息资料进行归纳、整理和分类将实际问题抽象为数学问题建立数学模型应用相关的数学方法解决问题并加以验证并能用数学语言正确地表达和说明主要过程是依据现实的生活背景提炼相关的数量关系构造数学模型将现实问题转化为数学问题并加以解决()创新意识:能发现问题、提出问题综合与灵活地应用所学的数学知识、思想方法选择有效的方法和手段分析信息进行独立的思考、探索和研究提出解决问题的思路创造性地解决问题创新意识是理性思维的高层次表现对数学问题的“观察、猜测、抽象、概括、证明”是发现问题和解决问题的重要途径对数学知识的迁移、组合、融会的程度越高显示出的创新意识也就越强个性品质要求个性品质是指考生个体的情感、态度和价值观具有一定的数学视野认识数学的科学价值和人文价值崇尚数学的理性精神形成审慎的思维习惯体会数学的美学意义要求考生克服紧张情绪以平和的心态参加考试合理支配考试时间以实事求是的科学态度解答试题树立战胜困难的信心体现锲而不舍的精神考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系包括各部分知识在各自的发展过程中的纵向联系和横向联系要善于从本质上抓住这些联系进而通过分类、梳理、综合构建数学试卷的结构框架()对数学基础知识的考查既要全面又要突出重点对于支撑学科知识体系的重点内容要占有较大的比例构成数学试卷的主体注重学科的内在联系和知识的综合性不刻意追求知识的覆盖面从学科的整体高度和思维价值的高度考虑问题在知识网络交汇点设计试题使对数学基础知识的考查达到必要的深度()对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查考查时必须要与数学知识相结合通过数学知识的考查反映考生对数学思想方法的掌握程度()对数学能力的考查强调“以能力立意”就是以数学知识为载体从问题入手把握学科的整体意义用统一的数学观点组织材料侧重体现对知识的理解和应用尤其是综合和灵活的应用以此来检测考生将知识迁移到不同情境中去的能力从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能对能力的考查要全面考查能力强调综合性、应用性并要切合学生实际对推理论证能力和抽象概括能力的考查贯穿于全卷是考查的重点强调其科学性、严谨性、抽象性对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化对运算求解能力的考查主要是算法和推理的考查考查以代数运算为主数据处理能力的考查主要是运用概率统计的基本方法和思想解决实际问题的能力()对应用意识的考查主要采用解决应用问题的形式命题时要坚持“贴近生活背景公平控制难度”的原则试题设计要切合中学数学教学的实际考虑学生的年龄特点和实践经验使数学应用问题的难度符合考生的水平()对创新意识的考查是对高层次理性思维的考查在考试中创设新颖的问题情境构造有一定深度和广度的数学问题要注重问题的多样化体现思维的发散性精心设计考查数学主体内容体现数学素质的试题反映数、形运动变化的试题研究型、探索型、开放型的试题数学科的命题在考查基础知识的基础上注重对数学思想方法的考查注重对数学能力的考查展现数学的科学价值和人文价值同时兼顾试题的基础性、综合性和现实性重视试题间的层次性合理调控综合程度坚持多角度、多层次的考查努力实现全面考查综合数学素养的要求二、考试范围与要求(一)必考内容与要求  .集合  ()集合的含义与表示  ①了解集合的含义、元素与集合的“属于”关系  ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题  ()集合间的基本关系  ①理解集合之间包含与相等的含义能识别给定集合的子集  ②在具体情境中了解全集与空集的含义  ()集合的基本运算  ①理解两个集合的并集与交集的含义会求两个简单集合的并集与交集  ②理解在给定集合中一个子集的补集的含义会求给定子集的补集③能使用韦恩图(Venn)表达集合的关系及运算  .函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)  ()函数  ①了解构成函数的要素会求一些简单函数的定义域和值域了解映射的概念  ②在实际情境中会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数  ③了解简单的分段函数并能简单应用  ④理解函数的单调性、最大(小)值及其几何意义结合具体函数了解函数奇偶性的含义  ⑤会运用函数图像理解和研究函数的性质  ()指数函数  ①了解指数函数模型的实际背景  ②理解有理指数幂的含义了解实数指数幂的意义掌握幂的运算  ③理解指数函数的概念并理解指数函数的单调性与函数图像通过的特殊点  ④知道指数函数是一类重要的函数模型  ()对数函数  ①理解对数的概念及其运算性质知道用换底公式能将一般对数转化成自然对数或常用对数了解对数在简化运算中的作用  ②理解对数函数的概念理解对数函数的单调性掌握函数图像通过的特殊点③知道对数函数是一类重要的函数模型④了解指数函数与对数函数互为反函数()  ()幂函数①了解幂函数的概念②结合函数的图像了解它们的变化情况  ()函数与方程  ①结合二次函数的图像了解函数的零点与方程根的联系判断一元二次方程根的存在性及根的个数  ②根据具体函数的图像能够用二分法求相应方程的近似解  ()函数模型及其应用  ①了解指数函数、对数函数以及幂函数的增长特征知道直线上升、指数增长、对数增长等不同函数类型增长的含义②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用  .立体几何初步  ()空间几何体  ①认识柱、锥、台、球及其简单组合体的结构特征并能运用这些特征描述现实生活中简单物体的结构  ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图能识别上述的三视图所表示的立体模型会用斜二测法画出它们的直观图  ③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图了解空间图形的不同表示形式  ④会画某些建筑物的视图与直观图(在不影响图形特征的基础上尺寸、线条等不作严格要求)  ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)  ()点、直线、平面之间的位置关系  ①理解空间直线、平面位置关系的定义并了解如下可以作为推理依据的公理和定理  ◆公理:如果一条直线上的两点在一个平面内那么这条直线上所有的点在此平面内  ◆公理:过不在同一条直线上的三点有且只有一个平面  ◆公理:如果两个不重合的平面有一个公共点那么它们有且只有一条过该点的公共直线  ◆公理:平行于同一条直线的两条直线互相平行  ◆定理:空间中如果一个角的两边与另一个角的两边分别平行那么这两个角相等或互补  ②以立体几何的上述定义、公理和定理为出发点认识和理解空间中线面平行、垂直的有关性质与判定  理解以下判定定理  ◆如果平面外一条直线与此平面内的一条直线平行那么该直线与此平面平行  ◆如果一个平面内的两条相交直线与另一个平面都平行那么这两个平面平行  ◆如果一条直线与一个平面内的两条相交直线都垂直那么该直线与此平面垂直  ◆如果一个平面经过另一个平面的垂线那么这两个平面互相垂直  理解以下性质定理并能够证明  ◆如果一条直线与一个平面平行经过该直线的任一个平面与此平面相交那么这条直线就和交线平行  ◆如果两个平行平面同时和第三个平面相交那么它们的交线相互平行  ◆垂直于同一个平面的两条直线平行  ◆如果两个平面垂直那么一个平面内垂直于它们交线的直线与另一个平面垂直③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题  .平面解析几何初步  ()直线与方程  ①在平面直角坐标系中结合具体图形确定直线位置的几何要素  ②理解直线的倾斜角和斜率的概念掌握过两点的直线斜率的计算公式  ③能根据两条直线的斜率判定这两条直线平行或垂直  ④掌握确定直线位置的几何要素掌握直线方程的几种形式(点斜式、两点式及一般式)了解斜截式与一次函数的关系  ⑤能用解方程组的方法求两直线的交点坐标  ⑥掌握两点间的距离公式、点到直线的距离公式会求两条平行直线间的距离  ()圆与方程  ①掌握确定圆的几何要素掌握圆的标准方程与一般方程  ②能根据给定直线、圆的方程判断直线与圆的位置关系能根据给定两个圆的方程判断两圆的位置关系③能用直线和圆的方程解决一些简单的问题④初步了解用代数方法处理几何问题的思想  ()空间直角坐标系  ①了解空间直角坐标系会用空间直角坐标表示点的位置  ②会推导空间两点间的距离公式  .算法初步  ()算法的含义、程序框图  ①了解算法的含义了解算法的思想  ②理解程序框图的三种基本逻辑结构:顺序、条件分支、循环  ()基本算法语句理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义  .统计  ()随机抽样  ①理解随机抽样的必要性和重要性  ②会用简单随机抽样方法从总体中抽取样本了解分层抽样和系统抽样方法  ()总体估计  ①了解分布的意义和作用会列频率分布表会画频率分布直方图、频率折线图、茎叶图理解它们各自的特点  ②理解样本数据标准差的意义和作用会计算数据标准差  ③能从样本数据中提取基本的数字特征(如平均数、标准差)并作出合理的解释  ④会用样本的频率分布估计总体分布会用样本的基本数字特征估计总体的基本数字特征理解用样本估计总体的思想  ⑤会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题  ()变量的相关性  ①会作两个有关联变量数据的散点图会利用散点图认识变量间的相关关系②了解最小二乘法的思想能根据给出的线性回归方程系数公式建立线性回归方程.概率()事件与概率  ①了解随机事件发生的不确定性和频率的稳定性了解概率的意义了解频率与概率的区别②了解两个互斥事件的概率加法公式()古典概型理解古典概型及其概率计算公式会计算一些随机事件所含的基本事件数及事件发生的概率  ()随机数与几何概型了解随机数的意义能运用模拟方法估计概率了解几何概型的意义  .基本初等函数Ⅱ(三角函数)  ()任意角的概念、弧度制①了解任意角的概念②了解弧度制概念能进行弧度与角度的互化  ()三角函数  ①理解任意角三角函数(正弦、余弦、正切)的定义  ②能利用单位圆中的三角函数线推导出EMBEDEquationDSMTπ±的正弦、余弦、正切的诱导公式能画出的图像了解三角函数的周期性  ③理解正弦函数、余弦函数在区间π的性质(如单调性、最大和最小值与轴交点等)理解正切函数在区间()的单调性④理解同角三角函数的基本关系式:  ⑤了解函数的物理意义能画出的图像了解参数对函数图像变化的影响⑥了解三角函数是描述周期变化现象的重要函数模型会用三角函数解决一些简单实际问题  .平面向量  ()平面向量的实际背景及基本概念了解向量的实际背景理解平面向量的概念及向量相等的含义理解向量的几何表示  ()向量的线性运算  ①掌握向量加法、减法的运算并理解其几何意义②掌握向量数乘的运算及其意义理解两个向量共线的含义③了解向量线性运算的性质及其几何意义  ()平面向量的基本定理及坐标表示  ①了解平面向量的基本定理及其意义  ②掌握平面向量的正交分解及其坐标表示③会用坐标表示平面向量的加法、减法与数乘运算④理解用坐标表示的平面向量共线的条件()平面向量的数量积①理解平面向量数量积的含义及其物理意义②了解平面向量的数量积与向量投影的关系③掌握数量积的坐标表达式会进行平面向量数量积的运算④能运用数量积表示两个向量的夹角会用数量积判断两个平面向量的垂直关系()向量的应用会用向量方法解决某些简单的平面几何问题会用向量方法解决简单的力学问题与其他一些实际问题.三角恒等变换()和与差的三角函数公式  ①会用向量的数量积推导出两角差的余弦公式②能利用两角差的余弦公式导出两角差的正弦、正切公式③能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式了解它们的内在联系()简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式但对这三组公式不要求记忆)  .解三角形()正弦定理和余弦定理掌握正弦定理、余弦定理并能解决一些简单的三角形度量问题()应用  能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题  .数列  ()数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图像、通项公式)了解数列是自变量为正整数的一类函数  ()等差数列、等比数列  ①理解等差数列、等比数列的概念  ②掌握等差数列、等比数列的通项公式与前n项和公式  ③能在具体的问题情境中识别数列的等差关系或等比关系并能用有关知识解决相应的问题④了解等差数列与一次函数、等比数列与指数函数的关系.不等式()不等关系了解现实世界和日常生活中的不等关系了解不等式(组)的实际背景  ()一元二次不等式  ①会从实际情境中抽象出一元二次不等式模型  ②通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系  ③会解一元二次不等式对给定的一元二次不等式会设计求解的程序框图  ()二元一次不等式组与简单线性规划问题  ①会从实际情境中抽象出二元一次不等式组  ②了解二元一次不等式的几何意义能用平面区域表示二元一次不等式组  ③会从实际情境中抽象出一些简单的二元线性规划问题并能加以解决  ()基本不等式:  ①了解基本不等式的证明过程  ②会用基本不等式解决简单的最大(小)值问题下面进入到选修部分  .常用逻辑用语  ()命题及其关系  ①了解命题及其逆命题、否命题与逆否命题  ②理解必要条件、充分条件与充要条件的意义会分析四种命题的相互关系  ()简单的逻辑联结词  了解逻辑联结词“或”、“且”、“非”的含义  ()全称量词与存在量词  ①理解全称量词与存在量词的意义②能正确地对含有一个量词的命题进行否定  .圆锥曲线与方程()圆锥曲线①了解圆锥曲线的实际背景了解圆锥曲线在刻画现实世界和解决实际问题中的作用  ②掌握椭圆、的定义、几何图形、标准方程及简单几何性质了解双曲线、的定义、几何图形和标准方程知道它们的简单几何性质(大家要特别注意文科对抛物线的要求是了解而理科是理解江苏和山东都考过抛物线的大题大家一定不要掉以轻心天津有可能出抛物线)  ④理解数形结合的思想⑤了解圆锥曲线的简单应用【理科同学要加考一部分就是:()曲线与方程了解方程的曲线与曲线的方程的对应关系年考过一次就是圆相减球公共弦所在方程的那个题在课上我都讲过大家可以翻阅我们的红皮书】  【理科同学要考:.空间向量与立体几何  ()空间向量及其运算  ①了解空间向量的概念了解空间向量的基本定理及其意义掌握空间向量的正交分解及其坐标表示  ②掌握空间向量的线性运算及其坐标表示  ③掌握空间向量的数量积及其坐标表示能运用向量的数量积判断向量的共线与垂直  ()空间向量的应用  ①理解直线的方向向量与平面的法向量  ②能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系  ③能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)④能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题了解向量方法在研究几何问题中的作用明年的题第二三问很可能是空间向量发做比较简单】  .导数及其应用  ()导数概念及其几何意义  ①了解导数概念的实际背景  ②理解导数的几何意义  ()导数的运算(文科的复读同学一定要注意:导数的要求和旧课标有区别大家要引起重视)  ①能根据导数定义求函数【文:理:】的导数  ②能利用表给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数【理:能求简单的复合函数(仅限于形如f(axb))的导数】表:常见基本初等函数的导数公式和常用导数运算公式:(C为常数),n∈N法则 法则法则  ()导数在研究函数中的应用  ①了解函数单调性和导数的关系能利用导数研究函数的单调性会求函数的单调区间对多项式函数一般不超过三次②了解函数在某点取得极值的必要条件和充分条件会用导数求函数的极大值、极小值对多项式函数一般不超过三次会求闭区间上函数的最大值、最小值对多项式函数一般不超过三次  ()生活中的优化问题  会利用导数解决某些实际问题  【理科同学还要考:()定积分与微积分基本定理  ①了解定积分的实际背景了解定积分的基本思想了解定积分的概念②了解微积分基本定理的含义】  .推理与证明  ()合情推理与演绎推理  ①了解合情推理的含义能利用归纳和类比等进行简单的推理了解合情推理在数学发现中的作用  ②了解演绎推理的重要性掌握演绎推理的基本模式并能运用它们进行一些简单推理  ③了解合情推理和演绎推理之间的联系和差异  ()直接证明与间接证明  ①了解直接证明的两种基本方法:分析法和综合法了解分析法和综合法的思考过程、特点  ②了解间接证明的一种基本方法──反证法了解反证法的思考过程、特点  ()数学归纳法了解数学归纳法的原理能用数学归纳法证明一些简单的数学命题  .数系的扩充与复数的引入()复数的概念理解复数的基本概念理解复数相等的充要条件  ③了解复数的代数表示法及其几何意义()复数的四则运算会进行复数代数形式的四则运算了解复数代数形式的加、减运算的几何意义  【理:.计数原理  ()分类加法计数原理、分步乘法计数原理理解分类加法计数原理和分类乘法计数原理②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题  ()排列与组合理解排列、组合的概念能利用计数原理推导排列数公式、组合数公式能解决简单的实际问题  ()二项式定理能用计数原理证明二项式定理会用二项式定理解决与二项展开式有关的简单问题  .概率与统计  ()概率  ①理解取有限个值的离散型随机变量及其分布列的概念了解分布列对于刻画随机现象的重要性  ②理解超几何分布及其导出过程并能进行简单的应用  ③了解条件概率和两个事件相互独立的概念理解n次独立重复试验的模型及二项分布并能解决一些简单的实际问题  ④理解取有限个值的离散型随机变量均值、方差的概念能计算简单离散型随机变量的均值、方差并能解决一些实际问题  ⑤利用实际问题的直方图了解正态分布曲线的特点及曲线所表示的意义】  ()统计案例了解下列一些常见的统计方法并能应用这些方法解决一些实际问题()独立检验了解独立性检验(只要求×列联表)的基本思想、方法及其简单应用()假设检验了解假设检验的基本思想、方法及其简单应用  ()聚类分析了解聚类分析的基本思想、方法及其简单应用()回归分析了解回归的基本思想、方法及其简单应用(二)选考内容与要求(天津年文科只考:几何证明选讲)  ()了解平行线截割定理会证直角三角形射影定理 ()会证圆周角定理、圆的切线的判定定理及性质定理  ()会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理  ()了解平行投影的含义通过圆柱与平面的位置关系了解平行投影会证平面与圆柱面的截线是椭圆(特殊情形是圆)   年天津理科还要加考:坐标系与参数方程  ()坐标系  ①理解坐标系的作用  ②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况  ③能在极坐标系中用极坐标表示点的位置理解在极坐标系和平面直角坐标系中表示点的位置的区别能进行极坐标和直角坐标的互化  ④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程通过比较这些图形在极坐标系和平面直角坐标系中的方程理解用方程表示平面图形时选择适当坐标系的意义  ⑤了解柱坐标系、球坐标系中表示空间中点的位置的方法并与空间直角坐标系中表示点的位置的方法相比较了解它们的区别  ()参数方程  ①了解参数方程了解参数的意义  ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程  ③了解平摆线、渐开线的生成过程并能推导出它们的参数方程④了解其他摆线的生成过程了解摆线在实际中的应用了解摆线在表示行星运动轨道中的作用三、考试形式考试采用闭卷、笔试形式考试时间为分钟全卷满分为分考试不使用计算器四、试卷结构(一)题型和赋分全试卷共小题包括选择题、填空题、解答题三种题型选择题是四选一型的单项选择题填空题只要求直接填写结果不必写出计算过程或推证过程解答题包括计算题、证明题和应用题等解答必须写出文字说明、演算步骤或推证过程各题型赋分和比例如下:选择题共小题每小题分共分填空题共小题每小题分共分解答题共小题共分五、难度比例试题按其难度分容易题、中等题、难题试卷包括容易题、中等题和难题以中等题为主大家要特别注意考试院官方公布的比例:必修占选修占从现在各方面的消息来看年天津高考的数学试卷难度要大于或等于年今年高考复习大家绝对不可以掉以轻心。子曰:学而时习之不亦说乎?有朋自远方来不亦乐乎?人不知而不愠不亦君子乎?同学有疑问可打么老师:子曰:温故而知新可以为师矣。精通学员咨询电话子曰:知之者不如好之者好之者不如乐之者。精通学员咨询电话子曰:由!诲女知之乎!知之为知之不知为不知是知也。么老师咨询电话PAGE年天津新课标高考考试大纲精通高考复读学校么世涛老师编辑整理内部资料严禁商用unknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknown

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

评分:

/10

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利