加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 实变函数论讲义【王昆阳】

实变函数论讲义【王昆阳】

实变函数论讲义【王昆阳】

数魂
2008-12-19 0人阅读 举报 0 0 暂无简介

简介:本文档为《实变函数论讲义【王昆阳】pdf》,可适用于其他资料领域

r�<#�Sb�Y�R�)C�NqW>�,,h�,,hDY�J�'�rd�“§ab”,,uaZHT�bZrT��r>FdeC�g*X“eCab”HXzn��#��ICzB��*f�ntB��*f�"s(")tB��*f�I��dz�l�(l)q#�T*�I�n�(#��IC)dz�Nq#�T*�*fd*�o�HX�(,uWX“cd”,aacZrT�dZ�T^h�Had“"”,Zh�Hh�rdh��"�h~Han�(J#�,JIC)Zh�Hh�rdh��n�(J#��JIC)�d*IS�℄�:�C�`�DYJ�'�A�(=(dW“:=”“=:”�sa:=bb=:ap�“a”�(“b”nd������r<d�(�redW��ndW{x:x:xdFe}���N��Nd(uLx(^x��F(duLJ)��<>Fdwnxd)�����M�N���,)�ddtD!(�(�hqdH(,�WN:RQ,NZQ,NQ:,�,("",rationalnumber)NR:�,N��YEuclid�`(O`�),�Wo(S:�)C:�,N��F(S:�)Pd�zH(d,�W�card(A):NAdK,�Rn:nYEuclid�`��E⊂Rn,E|E|�EdLebesgues��E�N�EχEZEd�P,�PχE(x)={,x∈E,,x∈Eae“�SNN(almosteverywhere)”J“S�(almostevery)”i�!M`Q�:�>§�,d�z�eC§K,d�XeC§�,�,Nd�z�`eC§nYEuclid�`Rn§Euclid�`§x℄�d�X§Rnad�Nds"eC!,`Rn���'§PseC§seC§BorelN��NeC§H�N�A�NeC§���N!�`u�G$§�,dnK!�`eC§�,ds"i�,,hM�eC!(`T§nOK!�`eC§S�,OaLeC§ULK!n�eC§LhrMneC!<`Vj���G$§K!�XeC§l,eC§�x�,eC§K,eC*�Sii"NaR��§���n�Bsda��!a��,d�X�UJa~VQ#�dBX��VQd,��Da(),A�M��Xh��*lB�e�hQk∈N,ak∈{,,···,},j,NzX�pVBk>N�ak<p∈ZAWα:=paaa······()X�$αn=pa···an=pn∑k=akkn∈NA,�,{αn}∞n=()XZ�$α*��k��{f(n)}∞n=���q�E�xed�,W}f˜�,dtDW}R�t()ad�,αd)dB�B�xedq()�n��,�,{an}∞n=AUa�,RQ,kzX�pJ`pdRQ,N=N(k),��m,n>N,�,|am−an|<k−,O=�{an}∞n=�Q��,RQ,kzX�pJ`pdRQ,N=N(k),��n>N,�,|an|<k−,O=�{an}∞n=#���{an}∞n={bn}∞n=�(�,�,{an−bn}∞n="`��{an}∞n={bn}∞n=`~{���,�,dK!�VBW���qVebf={f(n)}∞n=�K!�,�,f(n){B�z(D)y,�f(n)=pnanaan···,aapn∈Z,ank∈{,,···,}k∈Nkx�{pn}∞n=���Q,zBd,u,��'VB��Q,p,BS,aKl`nT��pn=pdsf(n)TrK�"B,{f(n)}∞n=�fds�j,y,�f(n)=pbnbnbn···bn∈{,,···,},�VBq∈{,,···,},B,{bn}∞n=aKl`nT�S,a�bn=qdsTrK�"B,{f(n)}∞n=�fds�j,y,�f(n)=mqcncn···�,,hh�HK!�X�e`ngf�M�h�`�O,fk={fk(n)}∞n=,k∈Naaf�fds�f�fds�fk�fkds(k∈N),jfkdhn��{Bh~od�zy,fk(n)=pq···qkhnkhnk···u(n)=pq···qn,n∈NO=fn(n)−u(n)−nU|,u:={u(n)}∞n=�fedK!^qqq···�XDr��u�q�qqq···�XDr�E,(e�S���,dqktX,M�An,v(n)=p,n∈N�e�Sdl���VBN∈N,�qN<|^k>N�=,qk=BMel�h�nhk={qk^k<N�,qN^k=N�,^k>N�nv(n)=ph···hnO=�B{:l�h�v={v(n)}∞n=p�q�j|u(n)−v(n)|<−nU|�vueU|vfekx�pId(�q��Sed�~{�q{f(n)}∞n=,{g(n)}∞n=O=(a){f(n)g(n)}∞n=,{f(n)g(n)}∞n={−f(n)}∞n=p�K!(b)VBN∈N�^n>N��f(n)=,O={f(nN)}∞n=��K!bs(a)�GkdA�Ss(b)f(n)=paaa···an,aa�p∈Z,aaa···��XDrdy,f(N)=�f(N)>E^n>N��f(n)>f(N)>h�HK!�X�e�,,h�f(N)<E',p<jf(n)−a···aniaktX,�aℓ<O=^n>ℓ��f(n)f(ℓ)−ℓ−−ℓU|�|f(n)|>−ℓwV�B{:l�h�pVBR,δ∈Q�Oℓ∈N,�^n>ℓ�|f(n)|>δO=�^µ,ν>ℓN�|f(µ)−f(ν)|δ−|f(µ)−f(ν)|S��s(b)B#�Q(�,dE)f,gp�q�{f(n)g(n)}∞n=edqW}fg�{f(n)g(n)}∞n=edqW}fgn�,f˜�,g˜dCLhf˜g˜=f˜gf˜g˜=f˜g�{−f(n)}∞n=edqW}−f,O=q−fxed�,X−˜f�−f˜dCLnX−f˜=−˜f�f˜(−g˜)m}f˜g˜d�W}f˜−g˜VBN∈N�^n>N��f(n)=,O=�{f(nN)}∞n=edqW}fnf˜=(˜f)Q(�,dXy)�n�,r=paaa···,aap∈Zp>|p�Oiant��EArXR,�W}r>p�Oiant��EArX�W}r=p<,EArX�,�W}r<��,a,b:xa−b>,EaXbW}a>b,JbyaW}b<a��X�W}����y�W}�>�Q(�,d�xX)rX�,|r|={r,�r>,−r,�r<�,,hh�HK!�X�eA|r|Xrdq*d��,α=aaa···,β=bbb···VB��,k∈N,�ak<bk,|^j<k�aj=bjO=α<βbγn=b···bn−a···an,γ={γn}∞n=��n��,β−αeK!γedqxed�,',Km>k�am,�^n>m��γn>b···bn−a···an···am>−mUn�dSG��`���K!dhns�^n>m�py−m,O=edqdhns�^n>m��py−mU|xed�,XPα<β����",�,α=n�︷︸︸︷···anan···O=α<−nQ(�,d"){an}∞n=����,�a����,x{�dε>,wJ`N∈N,��n>N(n∈N),�,|an−a|<ε,O=�,{an}∞n="`a,W}limn→∞an=aB�,�VR�~Xn���,"��m}��dhn��f�d~{f(n)}∞n=���(,�,d)qO=�,f˜�M�,dMn�Pf˜=limn→∞f(n)bf(n)=pa···ann∈Nh�HK!�X�e�,,hiG��fFdn�,�,f(n)=f˜(n)Wδn=f˜−f(n)��n,^n>�f˜−f(n)=···anan······���",δn−n�Awnlimn→∞δn=���limn→∞f(n)=f˜�~�SG�Dy,�,�,�Dy,�,�,m}`�,j,�,(rationalnumber)�AX��$,`�,(irrationalnumber)�AX�$x��qf={f(n)}∞n=,,h$V�∀n∈Nf(n)f˜f(n)naa∀�“x�i”��M�e��Ax`ny,Qt��v,ny,(P�XDrd`ny,)O�zE"A��o#K√π=(···)(···)=···,−π=···,−π=−···~R�Q�d����RadK!�n"bf={f(n)}∞n=�RadK!��,f(n){B�zy,f(n)=mnananan···,mn∈Z,ank∈{,···,},k∈N,�,g(n)=mnananan···ann,n∈N�nn,f(n)−g(n)<−n�,,hh�HK!�X�e��,�,g={g(n)}∞n=,fe�gedqW}h={h(n)}∞n=,�hxed�,WXh˜��n�limn→∞h(n)=h˜U|�hed�,f"`h˜∈R���n�,��,"dG'�Fe��K!M��B�,a,"dCauchyqEAlB�e�h�Q,�d�X{an}∞n=���,A�W�∞∑k=an(S)m~$sn=a···an=n∑k=n∈NAsnXQ,(S)dhn(Pfnsd)limn→∞sn=s,�asJX�,�JX∞JX−∞,A�{∞∑k=an=saa�^s∈R��Q,(S)"��,"dCauchyqE�Q,(S)"dG'�Fe��d,{sn}∞n=�K!�����∀ε>∃N∈N�^m>n>N�∣∣∣m∑k=nan∣∣∣<εaa∃Z“VBpd”~X"Q,d{ad"s�"d�xX(X)yde"Q,�P^<|x|<�∞∑k=xk=−xh�HK!�X�e�,,hX*��An�,x��X�'|Xx=O=�Fde�xx=�B#Q(�,dQ,�)�,rX�zy,paaa···O=��n�,limn→∞pa···an=rWr=p∞∑k=ak−km}rd�zQ,�An���,{f(n)}∞n=�,�ud�Yd�VB��,a,�x�n∈Np,f(n)<a��,{f(n)}∞n=�,hud�Yd�VB��,b,�x�n∈Np,f(n)>b��,f,u�Yd�X,�u,hukx�MnX∞d,`�u�|MnX−∞d,`hu"d,�,ud(eC,C)�SGhIC¬�f�K!�Edse­�fg"`ab,O=limn→∞(cf(n)dg(n))=cadb,limn→∞(f(n)g(n))=abEUb=,O=limn→∞f(n)g(n)=abtn=n∑k=k(k):=····n·(n)plimn→∞tna∈Q,a>,k∈Nplimn→∞nkan,{xn}∞n={yn}∞n="`xypSlimn→∞max(xn,yn)=max(x,y)l��max(·,·)�(·,·)ad,V{XL�max�maximumd{�,,hh�HK!�X�eSGK!�n�,udf,gp�,Mnd,�x�n∈Np,f(n)g(n),O=limn→∞f(n)limn→∞g(n)A�)>XdR�~dxjod>sW~√,X,jd�emSG�,�,h�HK!�X�e�,,h§S�<��>A(∅Z�N�,�dN���dN�,nz�zB�A�S,Kd,MA�F�ki��Nd,MdQ�^�A�,�,M�k�,z�z�{ad������nd��"U|`jUf`>�����g,�=m“����g,”O��,*h���nr,h~��x>h��h��S�NgZ�hs�W`�zp,`�|j�z,`�T��,Q*{>,`dO�,���A�dz,"�{>,`,A�UaMk�,�zM�kikadz,dDd,�!`��=���BM�kadzdN`M�RQ,BdNV`f#��xdD�A�Nd�,h�`d��sNAm}�fsN��a∈A,E{:yadRQ,�)A,O=���$(sh)$(shÆ)�$L�go!d�M>YMZN�M>�lY�MM*U��N��N�,d�,nz��A�m}`nNNN��`nNXz,zUyd,�dBk(,�UN}`d)p�U,(sh),(shÆ)��d��z�H�ZgU����K,Qtx,nnr,tx,n(^x�I��|�`“n"nz”),�|X��,*|,zA��ZZp�S�,dtx,,Q�℄��TK��tx,��"(),A�SU��,(sh),BK���,`M�,�Me�d,�}�BrK��A�NOa{:sN����N�m}u$Y��Aki,nNd~��(�NdV`�f#��x(P�Ud�),A�:A,d,��z�Mz=�B�B,��X�}KhnQ(�NV`VB����x�EAX�xed�|X�,I�zd�AX�,I�dQ$(cardinality)�NAdK,W~card(A)A⊂B,Ecard(A)card(B)NA=∅�ANd��sNxe�EAAX�,N“�,”,Yd�“d,M,k”�N�m�,N�d,(K,)XNd�,(P“K,”),W~ℵ,r“��–”�,,hh�HK!�X�e�tDRdZ,BdN{n:n∈N}tDRdb,BdN{n−:n∈N}�Otx,NN,I�z�ℵ)�JA�,Nd,X“�,�”�>`“ℵ��b”,Yd�d�bdtDBdNNNxe���NA�,�ENd��fsNxe�Aa,kxdW~akO=NAd�K�A={a,a,···}(`K�samdZ�S�card(A)=m),J(`dZ�S�card(A)=ℵ)�����,N�m}�Nkx���,����(Rd�I�e����r�*~=���r�S:~=�*�<Gk�(��U|,nz��,NdN��,N��,NdsN��,NAz�SGhFdn�~ℵ��,NdN��,NbAk��,N�k∈N`�|X�Akpℵ��Ak={akj:j∈N}O=�∞⋃k=Akd���hEB�a,a,a,a,a,a,···,am,a(m−),a(m−),···,am,···U|��,N�~,�,NQ��,N�aK,XℵbM�eCCdsNKAM�{KSGm∈N,rmk=km,k=,···mna=r=^j∈N(m−)m<jm(m),p=j−(m−)m��naj=rmpnA={aj:j∈N}B={−aj:j∈N}C={}kx�A,B,Cp��,Nn�,A∪B∪C=Q��,Nx|Q�,nN��Nxe�dK,�ℵ�h�HK!�X�e�,,hlBA��R,z��������,,z���RdK,WXℵ~R��,N���ℵ<ℵb(�S�^nR��,NA�q`,NeIO=�RdsNI:=,'��,NA�IdB��W~{ak:k∈N}�IeX�q`,,,,,A^a�,���WVXI,a�IeX�q`�A^a�,���WVXI,ia`ngZ�M�h��q`{Ik:=αk,βk:k∈N},�h�`()∀k∈N,Ikd>sXβk−αk=−k,Ik⊂Ik⊂I()∀k∈N,ak∈Ik��x{�dm,n∈N,m>n,,<αm−αn<βn−αn=−n�,{αn}∞n=�K!��n�,VBc∈R,:xc=limn→∞αnkx�c∈IO=���I={ak:k∈N}M�^��n,��tx,m,�c=am�����iIkd�`�c∈Im℄^n>m��',In⊂Im,U|∀n>m,αn∈ImO=�c=limn→∞an��)Im�Am�yd�g�M��n*I��,Nd^U|ℵ<ℵ���n�,tD`�,BdN��,NO=�`�,d,M��gX,�,d,Mm~XeCSG`�,,ℵ��SG,(,),I�dK,SG(,)R,I�dK,SG`�,�,��z(P,ℵ�)�,,hh�HK!�X�e§���Z�OFIhhFd�XMn,Cid$fQA⊂R,A=∅�,α:x∀x∈A,αx�A,hu�α�Adhu��,β:x∀x∈A,xβ�A,�u�β�Ad�uX,�u,hudNm~,uN�N�m,uN�α�Adhu�j{:"αXd,p�Adhu(F�V�α�Ad{Xhu),EAαXAdA�j,W~α=infA�β�Ad�u�j{:"βyd,p�Ad�u(F�V�β�Ad{y�u),EAβXAd��j,W~β=supA“inf”“sup”Y“infimum”“supremum”KU*�dÆ�ninf∅=∞,sup∅=−∞n�supA=∞infB=−∞�A`�uB`hu~,�udN',�wu�,hudN',hwubA⊂R,A=∅b�Ad�u{ra∈AWc=abBa,cc,bM(xia��,�x�WVXa,b,:xa∈A,b�Ad�u,a−a(b−a),b−b(b−a),b−a=(b−a)h�HK!�X�e�,,hWc=abBa,cc,bM(xia��,�x�WVXa,b,:xa∈A,b�Ad�u,a−a(b−a),b−b(b−a),b−a=(b−a)`ngf��h��ixan,bn,n∈N,:xan∈A,bn�Ad�u,an−an(bn−an),bn−bn(bn−an),bn−an=(bn−an)��{an}∞n={bn}∞n=�(�edK!�U|,!IdMn�WVXβA�S�β�Ad�wu��F∀a∈A,∀n∈Nabn,n→∞,Uβ�Ad�u��F�>b<β,E^nGX��b<an,U|b�Ad�u�β=supAQt�g��SG�,hudN',hwu���,�>�sw"f�sy��m}�lGd�>�sw"f�sX��m}�lbdlGdlbd,JAXl,n�Wn`hN,udl,"�{���,a={ak}∞k=�,ud�A���"DKh(�l,�x={xk}∞k=,y={yk}∞k=,aaxk=sup{aj:j>k}k∈N,yk=inf{aj:j>k}k∈NO=,x�lbd|,y�lGd^xA}�,ud�A�,,hh�HK!�X�ep"limk→∞xk=αlimk→∞yk=βkxβαA�αm},ad�WD,W}α=limsupk→∞ak�βm},adAWDW}β=liminfk→∞ak^,`�u�An∞Xd�Mn�^,`hu�An−∞XdhMnM����{:,pX,�Mn,hMnA�SGhIC~,a={ak}∞k=,MnγdG'�Fe�limsupk→∞ak=liminfk→∞ak=γM��γ����,����∞J−∞bilimk→∞ak=γA��,�:xA<γO=�VBN∈N,^k>N�ak>A��^k>N��xk:=sup{aj:j>k}>A,yk:=inf{aj:j>k}>A�limsupk→∞ak>Aliminfk→∞ak>AI��x{�d,B,�B>γ,�',limsupk→∞akBliminfk→∞akBSwnlimsupk→∞ak=liminfk→∞ak=γ���limsupk→∞ak=liminfk→∞ak=γh�HK!�X�e�,,hA��,�:xA<γO=�VBN∈N,^k>N�xk:=sup{aj:j>k}>A,yk:=inf{aj:j>k}>A��^k>N�ak>AI��x{�d,B,�B>γ,�',KN′∈N,�^k>N′�akBSwnlimk→∞ak=γS�{:,('")'VB��hMn���vkn�,��hMnSXN�Mn^CB��hFdIC�Gkd�S�hsG���m}XeC'e�h~�n,a={ak}∞k=,b={bk}∞k=O=)liminfk→∞aklimsupk→∞ak)liminfk→∞(−ak)=−limsupk→∞ak)�∀k∈NakbkEliminfk→∞akliminfk→∞bk,limsupk→∞aklimsupk→∞bk)limsupk→∞(akbk)limsupk→∞aklimsupk→∞bk,liminfk→∞(akbk)liminfk→∞akliminfk→∞bk)�∀k∈Nak>bk>E(liminfk→∞ak)(liminfk→∞bk)liminfk→∞(akbk),(limsupk→∞ak)(limsupk→∞bk)>limsupk→∞(akbk))�limk→∞ak=a∈R,Elimsupk→∞(akbk)=alimsupk→∞bk,liminfk→∞(akbk)=aliminfk→∞bk)�limk→∞ak=a∈(,∞),Elimsupk→∞(akbk)=alimsupk→∞bk,liminfk→∞(akbk)=aliminfk→∞bk�,,hh�HK!�X�e)�∀k∈Nak>jliminfk→∞ak∈(,∞),Elimsupk→∞ak=(liminfk→∞ak)−�{>���n��dSG~eC~,u,',"ds�{K�℄an�dNdSGS�hsG�n�ds��m|N�KSG{�d,{a(k)}∞k=p,s{a(nk)}∞k=,:xlimk→∞a(nk)=limsupk→∞a(k){a(k)}∞k=���,�P∀k∈Na(k)>SG{a(k)}∞k="`dG'�Fe�d�MnX,R,�{a(k)}∞k=SGliminfk→∞a(k)a(k)liminfk→∞k√a(k),limsupk→∞k√a(k)limsupk→∞a(k)a(k)limk→∞xk=limk→∞yk=,∀k∈Nyk>yk>SG�limk→∞xk−xkyk−yk=ℓ∈(R⋃{−∞,∞})Elimk→∞xkyk=ℓSIC�Stolz(∼)dHuIHSGn�h�HK!�X�e�,,h§nEuclidzbRn§EuclidyanNRn={x=(x,···,xn):xk∈R,k=,···,n},n∈NA�Rndm}i^n=��R��R,�dP)d:�kxix=(x,···,xn)∈RnA�xkm}dhk(OZi�PO=(,···,)$iBRnan$�(enix=(x,···,xn)∈Rniy=(y,···,yn)∈RndXxy=(xy,···,xnyn)nix{��,αdCLXαx:=(αx,···,αxn)M(e:x�zGkdiF�s�p�rM(eZ,�RnBX���o��`�nix=(x,···,xn)∈Rniy=(y,···,yn)∈RndÆT(n=���CL)Xxy=n∑k=xkyknixd$(n=�m�xX)X|x|=√xx=(n∑k=xk)RLGkg:xh∀x,y∈Rnxy=yxiF∀x,y,z∈Rn(xy)z=xzyz�x,y∈RnO=|xy||x||y|�,,hh�HK!�X�eb(P�n=�ICkxB#^n=��|xy|=|xyxy|=xyxyxxyyxxyyxyxy,�|xy|xyxyxyxy=|x||y|U||xy||x||y|k>jICxnkB#�A�SICxn=kB#(T�(P^�,|k∑i=xiyi|(k∑i=xi)(k∑i=yi)|xkyk|(k∑i=xixk)(k∑i=yiyk)=|x||y|�A�ix∈RnUiO�`ixddu)−→OxeI^|x||y|>����IC,xy|x||y|∈−,n<x,y>=arccosxy|x||y|,AVXxyd^e�xy=|x||y|cos<x,y>nixiydp}Xd(x,y):=|x−y|=(n∑k=(xk−yk))n(�dNABd��Xd(A,B)=inf{d(a,b):a∈A,b∈B}�(�j~e�)x,y,z∈RnO=d(x,y)d(x,z)d(z,y)h�HK!�X�e�,,hbWa=x−y,b=y−z�,dn�|ab|=(ab)(ab)=|a|ab|b|��IC,ab|a||b|�|ab||a||a||b||b|=(|a||b|)SNKICds��BRa�L={(x,x):x∈R}E={(x,y):(x−)y}pNLEd��iE����iP:=(,)X:|d:�L�h���vnRdo��(LV��XiP`Ld��bs:Ed��|P`Ld�����P`LdPxQd���M���e√�LEV`d��X√−��BRa�L={(x,tanx):<x<π}E={(π,y):y∈R}pNLEd��ix{�

用户评价(1)

  • wjlwyk 太狠了,要那么多钱

    2010-12-08 20:25:43

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/24

实变函数论讲义【王昆阳】

仅供在线阅读

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利