关闭

关闭

封号提示

内容

首页 A-Barra风控模型说明书.docx

A-Barra风控模型说明书.docx

A-Barra风控模型说明书.docx

上传者: 燕倪1203 2017-07-08 评分 5 0 217 30 985 暂无简介 简介 举报

简介:本文档为《A-Barra风控模型说明书docx》,可适用于经济金融领域,主题内容包含关于Barra近年来特定回报投资管理行业不断地在调整以适应来自理论创新、技术进步和市场波动日新月异的变化。鉴于此金融机构和投资管理人需要最先进和最得符等。

关于Barra近年来特定回报投资管理行业不断地在调整以适应来自理论创新、技术进步和市场波动日新月异的变化。鉴于此金融机构和投资管理人需要最先进和最得力的分析工具。风险管理的先行者Barra作为全球投资决策支持工具和创新风险管理技术提供商,提供灵活,高效的量化产品和服务应对行业变化Barra产品集先进的技术和高效的分析,研究,建模以及数据为一体,为全球客户提供全方位的风险管理解决方案Barra使用精确的数据构建计量金融模型相应地,以这些模型为基石,Barra设计了覆盖收益预测,风险分析,组合构建,交易成本分析以及历史绩效归因等功能的软件产品以帮助用户改善组合绩效Barra拥有超过位分布在世界各地的研究员,产品覆盖全球大多数可交易证券Barra旗下的风险管理研究机构在世界范围内名列前茅引言Barra风控模型是全面而严苛的模型估计过程的集合产品本说明书讨论Barra对组合风险的建模方法产品相关章节AegisI,IIBarraOne所有BIMetextfilesI,II,IV,VCosmosI,III,IV,VEquitytextfilesI,IITotalRisk所有第I部分风险理论第章使用多因子模型来预测风险讨论了多因子模型在风险分析上的应用第II部分股票资产的风险第章预测股票资产风险回顾了股票资产风险模型的历史,同时描绘了Barra股票资产风险模型及其因子的概貌第章Barra股票资产风险模型详细介绍了构建和维护Barra股票资产风险模型的过程第III部分债券资产的风险第章预测债券资产的风险回顾了债券资产风险模型的历史,同时描绘了Barra债券资产风险模型及其因子的概貌第章利率风险模型描述了普通名义债券和通胀保护债券利率的期限结构计算过程第章利差风险模型解释了各种模型如何解释不同市场的利差风险,并讨论了其中三种的估计过程第章特殊风险模型描述了构建启发式特殊风险模型的过程,并详述了用来度量发行和发行人特殊风险的模型,该模型基于转移矩阵的应用第IV部分汇率风险第章汇率风险模型介绍了构建和维护Barra汇率风险模型的过程第V部分综合风险第章综合风险模型讨论了Barra综合模型(BIM),该模型面向多资产,可以用来预测全球股票,债券和货币的资产和组合配置层次上的风险,也细述了该模型背后的创新方法最后,术语表和索引可用于概念定义查询和专题搜索更多参考文献有大量的论文和其他资源在研究和介绍Barra模型和它们的应用要了解更多在本说明书中覆盖的论题,可以参考以下文献以及我们的对外出版书目,您可以从Barra公司和网站获得此类资源:http:wwwbarracom书籍AndrewRuddandHenryKClasing,ModernPortfolioTheory:ThePrinciplesofInvestmentManagement,Orinda,CA,AndrewRudd,RichardCGrinoldandRonaldNKahn,ActivePortfolioManagement:AQuantitativeApproachforProducingSuperiorReturnsandControllingRisk,SecondEdition,McGrawHillProfessionalPublishing,Columbus,OH,第I部分风险理论该部分解释风险预测理论背后的概念使用多因子模型来预测风险风险,定义为证券或者投资组合收益的总体分散或者波动程度,对风险的分析是超常投资回报的关键因素风险分析目标是合理度量获取相对收益而承担的风险而非最小化风险经年累月,风险分析的理论已经发展成为越来越精细的体系凭借更多风险和收益的高阶概念,投资组合理论业已展现其不断增长的复杂程度其中一项用于分析组合风险的有力的工具即是多因子模型(MFM)什么是多因子模型多因子模型描述组合内部各资产之间收益的相关性MFM的基本假设是相似的资产表现出较一致的收益特征这样的相似度体现在一些可量化的属性上,譬如市场信息(价格变化和交易量等),基本面数据(如行业和市值规模)或者是其他的风险曝露(如利率变化和流动性)MFM甄选共同因子,这些因子是不同证券共享的特征归类,在此基础上考察证券收益对这些因子的敏感系数证券市场的多因子模型大致分为三类:宏观经济模型,基本面模型以及统计模型宏观经济因子模型依据可观测的经济指标,例如通胀和利率的变化,来度量对宏观变量对证券收益的广泛影响基本面因子模型则考察与组合收益相关的可观测到的证券属性,诸如分红率,账面市值比以及行业类别统计因子模型则从证券收益协方差矩阵的因子分析中导出因子Barra股票模型使用基本面因子模型,因其解释能力超过宏观经济因子模型和统计因子模型footnoteRef:Barra固定收益模型则综合基本面与宏观经济因子模型优质债券的收益很大程度上可以由宏观经济因子如无风险或低风险利率(即国债利率或者互换曲线)的变化来解释而其他的债券类型则除宏观经济因子外还要考虑基于行业和信用评级的基本面因子:GregoryConnor,ldquoTheThreeTypesofFactorModels:AComparisonofTheirExplanatoryPower,rdquoFinancialAnalystsJournal,MayJune多因子模型如何发挥作用Barra从历史观测到的资产模式中得到MFM困难之处在于定位这些模式并以投资者能够理解的因子来识别之我们需要明确和计算资产对这些因子的依赖程度因此,横截面回归被引入来决定考察期内各个因子对资产收益的贡献而这些因子贡献的时间序列和方差协方差矩阵以及特定风险模型共同构成了共同因子风险模型投资者依赖风险预测来挑选标的和构建投资组合他们搜集来自MFM分析的信息,综合风险偏好和其他资产信息,最终做出投资决策多因子模型的优势使用做因子模型来分析证券和投资组合有诸多益处,包括:middotMFM提供更为详尽的风险归因,进而,相对单因子模型等方法更为完整的风险曝露分析middotMFM引入经济解释于其中,使得其结论不受限于纯粹的历史数据分析middotMFM适用于使用容忍数据异常值的方法来构建middotMFM自适应以反映不断变化的资产属性,这种变化可能来自于整体经济环境和个体特性的变迁middotMFM分离出各个因子的影响,从而为投资决策提供更为局部的分析middotMFM对投资者来说是仿真的,可驾驭以及易懂的当然,MFM有它的局限性,如它预测大部分而非全部的组合风险此外,它只预测风险,而不及收益,投资者必须自行挑选投资策略多因子模型的一个示例组合风险的精确描述依赖于组合内证券收益协方差矩阵的准确估计估计此协方差矩阵的一个相对简单的方法是利用组合内所有证券的收益率序列来计算两两之间的协方差但是,该方法有两大缺陷:middot计算,支标的的协方差矩阵需要观测至少,个时点,如果使用月度或者一周作为收益率计算周期,很可能没有这么多的历史数据可用middot易受估计误差的影响:在某一时间段内,两标的如Weyerhaeuser和Ford可能表现出非常高的相关性,甚至高过GM和Ford可是我们的直观告诉我们GM和Ford的相关性应该更高,因为他们的业务是重合的,而此时计算的协方差矩阵并不能体现这一直观然而该直观却引导我们采用另一种方法估计协方差矩阵我们之所以认为GM和Ford理应比Weyerhaeuser和Ford相关性更高是因为GM和Ford在同一个行业内由此出发,我们有理由认为拥有相似属性的证券,比如公司业务线重合,应该有更为一致的收益表现例如,Weyerhaeuser,Ford和GM公司拥有一个共同影响其证券价格走势的成分,他们都受到足以影响整个证券市场的新闻带来的冲击,这样的冲击效果可能在每一只股票的收益中以股票整体市场对其的贡献的形式体现footnoteRef:,也可能在每一只债券的收益中以利率曲线移动对它的影响的形式体现市场成分在这三只股票收益率中的重要程度取决于每一只股票对股票市场或者利率曲线变动的敏感度:这里的股票整体市场可以是所有美国股票的加权平均收益率此外,我们预计GM和Ford将受汽车行业的事件影响,而Weyerhaeuser则是林业和造纸行业这类消息对个股的影响则可以由汽车行业或者林业和造纸行业内股票平均收益来刻画同时,也存在只影响个股的事件,例如GM汽车刹车系统的瑕疵使得需要对汽车召回并更换刹车系统,这样的事件很有可能对GM的股票和债券带来负面冲击,但对Weyerhaeuser和Ford的证券价格则影响甚微换句话说,GM证券收益的波动性是多个因素所致其中GM股票价格的波动是整体股票市场的波动,汽车行业股票的波动以及GM公司特有的因素共同作用的结果类似地,GM发行的债券价格的波动则归因于利率曲线的移动,汽车行业变动,债券评级的升降以及任何GM公司特有的变化以上的讨论同样适用于Ford公司的证券,而市场和行业因素对二者的作用是一致的,因此我们有理由相信GM和Ford公司证券收益很大程度上会趋于一致另一方面,Weyerhaeuser和GM,或者Weyerhaeuser和Ford其证券收益趋于一致的可能性就小一些,因她们两两之间共享同一个证券市场而已然而,我们也不排除因为汽车行业与造纸行业某些千丝万缕的联系导致他们之间的相关性会暴涨上述对波动或者风险化整为零的分析方法启发我们将之用于分析更多品种的资产从存在驱动证券价格共同运动的因素这一朴素观念出发,我们在寻求估计证券收益协方差矩阵的道路上已经迈出了很大的一步现在我们需要的是影响证券收益这些共同因素的协方差矩阵,单只证券的特定方差以及对影响其波动性的共同因素的敏感度估计因为一般情况下共同的风险因素数量比证券数量少很多,所以我们只需要估计一个维数小得多的协方差矩阵,从而对历史数据的长度需求要大规模缩小再者,相似的证券倾向于在类似的风险共同因素上表现出更大的敏感度,因此他们比非相似的证券显示出更高的相关性:如此估计的相关性,GM和Ford将总大过Ford和Weyerhaeuser这种将证券收益分解成共同因子和特定因子的方法,本质上,即是多因子模型数学模型组合的风险和收益可以沿着两个维度进行分解:其一是在市场上普遍存在的因子,另一个则是组合中各个证券特定的属性多因子模型为揭示组合的风险和收益的来源提供了强有力的工具单因子模型在单因子模型中,我们用如下方程描述超额收益:EQ其中我们假设因子收益率和特定回报不相关,且组合内各标的之间的残差项互不相关多因子模型MFM在单因子模型的基础上引入并刻画了多个因子之间的相互关系,包含多个因子的方程如下:EQ共同因子回报特定回报资产的收益率被分解成由各个因子回报组成的共同因子回报部分以及该证券独有的与共同因子无关的特定回报部分此外,每一个因子对被分解收益率的贡献是该资产在此因子上的风险曝露或者称之为权重系数与该因子收益率的乘积多因子模型将资产的超额收益率总结为:EQ其中注意到当时,MFM公式又回到了单因子模型的情况footnoteRef::例如,在这个单因子模型中证券市场收益率是唯一的因子风险曝露经过长时间的模式观测,共同因子可以被识别从而诸证券在这些因子上的风险曝露得以计算出来这些因子通常来自证券市场或者基本面数据单只证券的模型框架将随时响应来自该证券发行公司的结构或者整体市场行为的任何变化Barra日频更新多数固定收益证券模型的证券风险曝露,月频更新多数权益类资产模型,计算时使用每月最后一个交易日的信息因子回报因子回报是剔除其他影响因素,单纯度量因子实际绩效的变量因为因子回报无法观测,我们只能估计它们回忆起资产在因子上的风险曝露是在月末计算,尔后在下个月使用此处介绍的多因子模型框架结合观测到的资产收益率,我们就可以估计下个月的因子回报估计的过程则是对各个资产的收益率和各个资产在这些因子上的风险曝露做横截面回归对资产组合对于单个证券构成的组合,公式EQ描述了它的超额收益率然而大多数投资组合包含多个证券,每一个在组合中占有一部分,我们称之为权重假设表示投资组合中个证券的权重,我们可以将给组合的超额收益率表达成:EQ其中这个公式包含了各个方面的收益率,为后期的MFM分析奠定了基础使用MFM预测风险多因子模型的核心部分是因子之间的协方差矩阵这个矩阵包含了这些共同因子的方差和两两协方差的信息要估计组合的风险,仅仅有证券乃至组合在这些因子上的风险曝露还不够,我们必须知道每一个因子的风险以及他们两两之间的协方差离了多因子模型的框架,估计所有资产和其他每一个资产之间的协方差很有可能导致伪相关举例来说,一个包含,只证券的总体需要计算,个协方差:EQ其中FigureIN=,个资产的协方差矩阵,包含,个方差和协方差需要计算多因子模型极大地简化了上述计算,不去考虑每一个证券的细枝末节,转而考虑用共同因子来定义的大类变量例如,美国股票多水平模型使用个因子来描述股票的风险特征,对应地方差协方差的计算量缩减为,个此外,更少的参数估计也有助于避免伪相关关系的出现EQ其中FigureIK=时的因子协方差矩阵,包含,个方差协方差待估计象限I是风险指标之间的协方差子矩阵,象限II和III彼此互为镜像,反映的是风险指标因子与行业因子之间的协方差而象限IV则是行业因子两两之间的协方差协方差矩阵Barra的风险模型使用历史数据搭建的框架可以用来预测单个资产或者组合的未来收益波动率逐月地,我们从每一个本地市场中挑选出证券代表组成一个集合,称之为估计总体,并对其资产收益归因到共同因子的贡献以及特定回报,或者叫残差项估计总体的月度收益可以代数表达成由个资产和个因子构成的矩阵方程矩阵的每一行代表着组合或者总体的一只证券在月末我们已知每一个证券月频收益率,也知道该月初时它在所有因子上的风险曝露藉由多元回归技术,寻找能够最好地解释该证券收益率的系数,即得到因子回报若干连续时点上因子回报构成的时间序列便可生成因子回报协方差矩阵的方差及协方差FigureI因子回报的计算使用MFM极大地简化了计算过程图为多因子模型的矩阵形式表达资产收益协方差矩阵的推导使用MFM,我们可以轻松地得到类似于FigureI的协方差矩阵之矩阵代数运算方程我们从MFM方程,开始在基本方程中我们用上式替换之,得到:EQEQEQ应用方差计算的矩阵代数公式,风险可以表达为:EQ其中风险计算最后一步计算投资组合的风险时我们需要综合上述协方差矩阵和组合内各资产的权重以及它们对因子的风险曝露以下方程是Barra风险计算公式的基本形式:EQ其中小结稳健的风险分析给所有投资者带来启发风险分析的目标在于合理度量获取相对收益而承担的风险而非最小化风险本书讨论Barra对组合风险的建模方法组合风险模型源于对广义范围的资产分析,包括股票,债券和其他的固定收益类证券,货币以及衍生品第II部分股票资产风险第II部分简要介绍了股票资产风险模型,着重展开讨论创建Barra股票资产模型的过程预测股票资产风险预测单只股票未来波动率的方法众说纷纭其中一种是检查其历史行为并推断它在未来将有类似的表现,这种技术的一个显而易见的问题是结果依赖于历史数据的所取长度和使用方式由于合并,收购,分拆或者其他一些公司行为的存在,股票的基本面可能几经变迁历史数据包含的信息可能不复存而无所用于当下然而这种方式仍然被广泛用于贝塔的计算(参考第页的rdquoBarra的贝塔预测rdquo)一个更具有效信息的方法是考察股票以及作为一个整体的证券市场,其各自的特征和行为以及相互作用通过股票或者组合相对整体市场的表现来估计其未来行为历史回顾上世纪年代以前,系统性或者市场范围的收益这一概念尚未出现资产价值上升为收益,下跌为风险投资者主要的投资工具是直觉和深入的财务分析投资组合的过程仅仅是把一组rdquo好rdquo的证券集合在一起而已年代初期,金融理论学家们逐渐采用自然科学和统计方法HarryMarkowitz首次量化风险(为标准差)和多样化他严谨地证明了组合风险总不大于其组成成分证券的风险年代后期,LeoBreiman和JohnLKellyJr从数学上推导出忽视风险带来的危机,他们证明了长期时间内,明确地将风险作为考察对象的策略由于其他的策略footnoteRef::例如,可以参考LeoBreiman,ldquoInvestmentPoliciesforExpandingBusinessesOptimalinaLongRunSense,rdquoNavalResearchLogisticsQuarterlyVolume,No,(December):ndash现在我们都知道分散投资如何降低组合风险分散投资平滑了要素风险(如股票的行业集中风险和债券的信用集中风险)并显著减少了单个证券对整体风险的影响然而,分散投资并不能消除所有的风险,多数资产倾向于和大势同涨同跌因此,非市场的风险,也称之为残差项风险藉由分散投资可是实现最小化,市场的或系统的风险则无法被消除FigureII分散投资和风险当投资经理增加组合中证券的数量时,残差项或称之为非系统风险被分散或者集中当我们向组合内添加与已有资产非完全正相关的任意资产时,组合的风险被分散了从而波动性更低系统风险是无法被分散的使用多因子模型的优势之一是可以更好地理解加仓或者减仓的结果FigureII展示了残差项风险与系统风险之间的平衡关系随着组合中不同资产数量的增加发生的变化情况当组合规模到达某一水平时,所有的残差项风险都被有效地消除了,只余下系统风险随着投资管理人知识量的增加,人们对明确风险,分散投资以及收益这些概念背后的基础的需求越来越强烈资本资产定价模型即是描述收益与市场风险之间均衡关系的一种方法CAPM的中心假设是平均而言,投资者不会从承担残差项风险的行为中获得补偿CAPM认为残差项回报的期望是零而系统收益的期望大于零且与该资产相对市场组合的贝塔值线性相关组合在系统风险上的曝露程度即为贝塔()是单个证券或者组合相对市场变动的波动性或者敏感度因此该证券或投资组合的收益率,乃至风险溢价均与,即它们对无法分散的系统风险的敞口,密切相关方程EQ表达了这种线性关系EQ其中更多关于Barra贝塔预测贝塔度量某个股票,债券或者投资组合对整体市场的期望反应程度举例来说,一个贝塔系数为的股票其期望超额回报是整体市场超额回报的倍如果市场收益比无风险利率高出,在其他因素保持不变的情况下,该投资组合的期望收益率将高出无风险利率个百分点贝塔是衡量组合风险的最为直观的方法之一历史贝塔vs预测贝塔历史贝塔通过对单只股票的超额收益和市场超额收益做回归分析得到(通常取个月的数据)这种简单的历史方法存在两个重大问题:middot它无法识别公司经营带来的的基本面变化例如,年RJRNabisco将它的烟草业务剥离出去时,其风险特征发生了明显变化,然而历史数据需要很长的时间来渐现这种变化middot它容易受到不可重复的特殊事件冲击举例而言,年发生在印度博帕尔的化学品泄漏事故人为地压低了UnionCarbide公司的历史贝塔,彼时印度市场正处于牛市预测贝塔,从Barra的风险模型中导出的贝塔,是对股票相对市场敏感度的预测值它也被称为基本面贝塔,因其是从基本面风险因子中衍生出在Barra模型中,风险因子涵盖属性,如规模,利润和波动性,以及行业风险曝露由于我们按月重新计算这些风险因子,预测贝塔能够及时地反映对公司基本的风险结构发生的变化Barra使用预测贝塔,而非历史贝塔,因为前者更好地预测了组合中资产对市场敏感度CAPM是一个收益模型,其背后的思想是均衡理论,并假设市场是有效率,从而市场组合是平均意义上所有投资者持有的组合CAPM不要求残差项彼此不相关,却启发了Sharpe引入了单因子风险模型,其中假设残差项互不相关,单因子模型其优势是简单明了,适合快速的粗略估计,然而它隐没了众多共同因子,诸如行业,市值以及利润及至上世纪年代,投资群体意识到拥有类似属性的资产其表现趋同,这一个思想在套利定价利率(APT)中得以体现APT理论认为证券和投资组合期望收益率与一系列数量未知的系统因子线性相关APT聚焦收益预测,StephenRoss以及其他一些人不依靠均衡理论,取而代之的是套利理论,他们相信特定回报的期望是零,而共同因子回报(包括市场因子以及其他一些因子)不必为零正如CAPM,APT启发了多因子模型的诞生在上世纪年代中期,BarrRosenberg基于同类资产表现趋同这一思想率先提出了一类新的风险模型多因子模型,多因子模型指出有诸多因素影响着资产的波动性,且这些因素共同影响着多个资产一个合理构建的MFM模型相对简单地计算的证券收益率协方差矩阵或者使用CAPM模型在风险分析的准确性和直观认识上均胜出一截Barra股票多因子模型Barra股票风险模型将资产收益分解成来自共同因子的贡献和特定回报模型囊括了诸多风险构成成分,最终输出资产风险曝露的多维度数量测度所在证券市场,所在行业和风险指标,再加上特定风险,全面地覆盖和分解了资产风险曝露FigureII股票风险分解共同因子属性相似的股票其价格行为趋同这些被共享的属性,也叫共同因子,是未来风险的风向标许多股票或者投资组合的共同因子在整体市场上普遍存在,其中行业分类(以及该行业的发展趋势)和风险指标不仅用于解释绩效,亦有助于预测未来波动性风险指标Barra综合基本面和行情数据,构建了风险指标用于衡量与资产一般特征相关的风险通常的风格特征维度,诸如成长,价值,小盘,大盘等均可用风险指标予以描述,任何Barra股票风险模型首先会预定义风险指标集合行业因子行业是同类的商业公司集合体所有Barra股票风险模型预定义了行业集合以及适应其所在市场的板块集合每一个证券依其主营业务被分入适当的行业,当然很多模型也支持大型企业的跨行业分类特定风险对特定风险的预测分三步曲,首先估计模型覆盖的所有资产的平均特定风险,然后估计每一个资产相对这个全集的特定风险,最后,组合平均和相对特定风险,并相应放缩以调整平均偏差最终得到对每一个证券特定风险的预测结果一般都是无偏的Barra股票风险模型综合的股票风险模型的构建是一个挑选描述资产收益的因子的全面而细致的工作归纳了模型中涉及的一系列精细负责的步骤FigureII建模数据流建模概览建模的第一步是获取并清洗数据,包括市场行情信息(例如价格,交易量,分红率或者市值)和基本面数据(诸如利润,营收,行业信息或者总资产)其中要特别留意资本重构和其他非常规事件以期跨期对比的连贯一致其次是描述变量的选取涉及选取并标准化能够最好地描述证券风险特征的变量为了决定哪个或哪些字段最有效和高效,我们通常使用统计检验好的描述变量通常其解释截面收益率的能力是显著的第四步是风险指标的构建和分配这一步中描述变量以最有意义的形式组合在一起有大量的技术可以用来评估不同组合的可能性例如,聚类分析就是一种可以用来合成描述变量为风险指标的统计工具紧跟着风险指标的出现,接下来则是确定每一只股票的行业分布在多数的Barra模型中,股票被分配到唯一的一个行业,然而少数模型中也将大型企业分布到不同的行业,这其中包络美国和日本模型下一步,利用截面回归,我们计算因子回报用于估计因子间协方差矩阵进而预测风险多数模型中使用指数加权后的历史数据来计算因子间协方差,对越近的数据赋予越大的权重以及时地捕捉风险的变化更进一步地,我们可以使用广义自回归条件异方差模型或者日频的指数幂加权指数波动率方法来提高协方差矩阵的时效性在因子回归过程中,特定回报被分离出来了并用于预测特定风险,后者是总体风险中至于特定的股票有关的部分,与共同因子秋毫无犯资产的特定风险越大意味着收益波动更多来自个体特定的而非共同的因子最后,模型还需要经过最终测试和改进测试时,我们会那该模型与备选模型做风险预测对比测试时我们对比事先预测结果与真实所见的贝塔,特定风险以及主动风险改进则是将来自公司基本面报告和市场数据的最新数据加入模型,对协方差矩阵重新计算数据提取建模的第一步是获取并标准化数据,Barra从家数据提供商超过个数据源收集市场行情数据和基本面数据,通过校验和编辑供所有的股票风险模型使用市场信息逐日收集,而公司的基本面数据与财报公布频率一致,按季度或者年度收集数据收集完成后,下一步要对数据的前后不一致做严格的检查,包括市值的跳跃,分红缺失以及今日数据与昨日数据无法解释的前后矛盾尤其要注意的是资本重构和其他一些非经常时间以确保不同时期数据的可比性接下来,对比不同数据源的信息,保证数据的准确性描述变量的选取与检验候选的描述变量来自四面八方有些描述变量是市场行情数据与基本面信息的综合体例如净利价格比,衡量的是公司市值与净利润之间的关系在严格的定量检测的指引下,描述变量的选取在很大程度上的是一种定性工作首先,我们对描述变量做初步筛选,好的候选描述变量本身即具意义,也就是说它们根植于被广泛接受和认识的资产属性甚至,它们本身就可以对市场分门别类,并完整刻画投资组合重要的风险特征Barra对全球范围内的股票筛选其重要的描述变量之历史已逾二十年这种经验在我们构建的每一个新的模型中均有体现被纳入模型的每一个描述变量均须由充分的理论支撑它们基于即时,精确和可得的数据,在风险预测能力上可圈可点换句话说,每一个描述变量都要给模型带来价值,如果检验结果显示该变量的引入并不能增加模型的解释能力,那么它将被排除在外标准化描述变量风险指标由描述变量合成用于捕捉公司相关的风险特征因此首先需要对描述变量做正态化,即基于估计总体的标准化该正态化过程涉及对随机变量做统一的伸缩变换先是将变量所有观测值减去一个常数(通常为平均值),然后都除以另一个常数(通常为标准差)以消除其方差的不一致以上正态化过程可以归结为:正态化之后的描述变量接着被用来组合成有意义的风险因子,即风险指标风险指标的计算完成正态化步骤之后,我们用资产收益对行业因子和描述变量做回归,每次只加入一个描述变量每个描述变量都需要做显著性检验基于这样的计算和检验,我们筛选出可用于模型的描述变量并将其分配给风险指标风险指标的计算是一个迭代过程当最显著的那些描述变量被添加到模型中后,剩下的需要通过更严格的测试才可在模型构建的每一个阶段,一个新的描述变量被接纳当且仅当该变量的加入能够提升模型的解释能力行业分布行业分布需要因地制宜,我们依据公司的主营业务划分其行业Barra或者采用某一数据提供商的行业分类体系或者自行构建更适合于该模型应用的市场的分类大多数的股票模型中,每个公司被划分入单一的行业但是,对于美国,墨西哥和日本市场,充足的数据保证可以将公司划入多个行业更多关于跨行业分布mdash美国和日本对于美国和日本,我们采用行业片断数据来划分行业归属对日本是营业额,美国则是营业利润,总资产和营业收入对于任意跨行业公司,其在所有行业分配的权重之和必须等于举例来说,WaltDisney公司分布在媒体行业,在娱乐行业跨行业分布能够提供更为精确地风险预测并更好地描述市场状况和公司行为Barra的跨行业模型能够根据披露给股东的最新商业行为捕捉到公司风险结构的细微变化而其他的模型则需要个月或者更长时间的数据从市场价格中发现这一变化因子回报的估计以上步骤界定了在估计窗口的时间起点上各个资产在因子上的风险曝露,因子在该时间段内的超额回报可以藉由将资产收益对他们相应的风险曝露回归分析得到:EQ其中计算所得的因子回报结果是稳健的,以下的建模过程中我们将用它来计算因子协方差矩阵协方差矩阵的计算计算因子协方差矩阵最简单的方法是计算已估计的因子回报序列的样本协方差该过程的一个隐含假设是我们处理的对象是平稳过程,也就是说,每一个时点包含同等的信息平稳过程假设对于一个充分分散且因子风险曝露稳定的投资组合而言,意味着其收益标准差稳定然而,大量证据显示因子回报间的相关性不断地变化有些市场的市场指数组合的波动率亦飘忽不定例如,紧接着剧烈波动历史通常是另一个剧烈波动时期,换言之,剧烈波动表现出集聚效应高水平的波动性最终将稳定到低水平因子回报之间时变的相关性和市场组合不定的波动率颠覆了简单协方差矩阵背后的稳定假设对特定的模型,我们有两种方法放松稳定性假设其一,在计算因子回报协方差是,我们赋予越近的观测量越大的权重其二,我们事先使用模型A来估计市场指数组合的波动率,例如美国市场的标普指数(SP)或者日本市场的东京证交所部指数(TSE),然后将它用来放缩因子协方差矩阵使得由其预测的市场组合波动率与模型A的估计无异指数加权假设我们认为发生在个月之前的观测值它的权重应该是当前观测值的一半,记为当前时刻,为过去的任意时点,令,如果我们赋予时刻的观察值以权重,那么发生在个月之前的观测值其权重即为当前观测值的一半,而发生在个月的观测值将获得当前观测值权重的四分之一也就是说此处的权重体系赋予往过去延伸的观测值以指数递减权重上例中的个月是随机选取的,更一般地,如果我们要赋予半周期前的观测值以当前观测值权重的一半,只需:EQ并赋予时刻的观测值以权重:EQ半周期的长度控制着因子协方差矩阵对因子间的关系最新变化的反应灵敏度所有观测值等权重的情况对应的是而过于短暂的半周期实际上舍弃了最初的数据如果我们观测到的随机过程是完全平稳的,则估计的精确度将大打折扣我们的测试显示各国适用于不同的半周期,因此对不同国家的模型,我们选用不同的半周期值放缩协方差矩阵:计算市场波动率在某些市场,市场波动率以一种可预测的方式变化如前所述,我们发现绝对值较大的收益率集聚在一段时间内,换言之,波动率有延续性此外,相对于低水平收益时期,超常收益之后往往是较低的波动率时期最后,真实的证券收益率分布表现出来的极端情况出现频率超过由定波动率的正态分布计算出来的概率日频的指数幂加权指数波动模型(DEWIV)和广义自相关条件异方差模型(GARCH)的变形更适应这些实证规律,它们允许波动率在一段高水平波动率或者低水平收益时期之后继续高涨,在一段低水平波动率或高水平收益时期之后继续下跌上述系统性风险放缩方法的各种变形被应用在Barra的本地模型中footnoteRef:参考rdquoBarraEquityRiskModelReferenceGuiderdquo获取适用市场对应的股票模型使用的何种放缩方法:有些市场,如新兴市场,并不做放缩处理事实上GARCH和DEWIV均不适用于个新兴市场在对任何模型应用DEWIV和GARCH做放缩之前,我们首先要测试验证其可行性如果市场代理组合的波动率足够适合DEWIV和GARCH,即可用这两个模型对因子协方差矩阵进行放缩使得该矩阵提供与DEWIV和GARCH模型一致的风险预测只有因子协方差矩阵的系统性风险部分需要放缩DEWIV模型我们因地制宜地应用DEWIV很多年该模型表达如下:EQ其中,DEWIV模型唯一的一个参数是权重系数,即半周期长度在对协方差矩阵放缩之前,我们先对日频的预测方差乘上近似的每月交易日数量(天),得到月度的DEWIV方差当然实施此计算的一个前提是我们能够获得日频的市场指数数据GARCH模型GARCH模型的变形footnoteRef:在Barra单个国家模型中应用许久了记在时刻市场收益为,我们将其分解为期望收益部分,,与超预期损益,,即::使用方差预测函数来区别不同的GARCH模型EQ观测到的波动率延续行为意味着时刻市场收益的方差可以如下建模:EQ其中这个方程,我们称之为GARCH(,)模型,表明当前市场波动率取决于最近的真实波动率和最近的波动率预测如果为正,那么本期的波动率与最近的真实和预测波动率正相关GARCH(,)模型适合诸多金融时间序列然而,它却无法解释超低收益时期之后紧跟着高水平的波动率我们可以轻易地拓展GARCH(,)模型以克服此弊端:EQ其中是对超预期损益的敏感度如果为负,则低水平波动率时期之后紧跟着收益率高于预期而高水平波动率之后则是收益率低于预期放缩对协方差矩阵的放缩包括获取市场指数的波动率预测值以及对动态的因子协方差矩阵减去此波动率预测值Barra的起始点是一个预先存在的正定因子协方差矩阵以及特定风险对角矩阵使用未放缩的模型对市场波动率的预测方程如下:EQ月频市场指数的月频特定风险定义为:EQ其中因子协方差矩阵使用上述市场波动率进行放缩假设证券数量为,因子数量为以及月频的市场指数组合的已放缩方差估计为,我们构造一个新的的因子协方差矩阵,那么EQ其中特定风险模型参考基础因子模型:EQ资产的特定风险定义为其特定回报的标准差计算特定风险矩阵最简单的方法是计算特定回报的历史方差然而,这同样存在假设特定回报方差是稳定的我们不使用历史数据估计方法,转而构建特定风险的预测模型,以便捕捉来自特定风险一般水平上以及特定风险与资产基本面特征之间关系的变化概念上来说,单个证券的特定风险可以看成是两个因子的乘积:给定月份的所有证券特定风险预测值的平均,该证券相对上述特定风险平均值的水平我们的研究表明特定风险平均值可以使用历史平均水平作为预测,偶尔,还需要加上滞后的市场收益此外,我们的研究显示资产的相对特定风险与其基本面密切相关因此,构建一个精确地特定风险模型需要一个估计所有证券平均特定风险水平的模型以及一个连接单个证券的相对特定风险和它的基本面特征的模型方法出于稳健的考虑,我们首先构建一个模型来预测单个资产的期望绝对特定回报这个预测可以用绝对特定收益平均水平的预测值与该资产的绝对特定收益相对水平的乘积得到然后计算期望绝对收益与伸缩因子的乘积作为特定风险(即特定收益的标准差)因此,特定风险由三部分组成:绝对特定收益的平均水平,绝对特定收益的相对水平以及伸缩因子EQ其中藉由时间序列分析估计得到,其中考察历史绝对特定收益的平均水平与它滞后的值,在某些模型中,还与滞后的市场收益率,之间的关系一般形式如下:EQ其中在多水平美国股票模型和墨西哥股票模型(MXE)中添加了一项滞后市场收益footnoteRef::需要更多细节请参考rdquoEqutiyRiskModelReferenceGuiderdquo或者网站http:supportbarracom上的相关模型数据表格要对绝对特定收益的相对水平建模,首先我们需要筛选出可能对资产特定风险横截面方差做出贡献的因子因子筛选出来之后,我们使用如下模型预测资产绝对特定回报的真实水平:EQ更新模型模型的更新过程中,最新的基本面数据和市场数据被用来计算个股在每个因子上的风险暴露,进而用来估计因子最新的月度回报,乃至协方差矩阵最新数据收集回来后需要进行清洗数据库内所有公司的描述变量的值,连同风险指标因子暴露以及行业分布均要重新计算下一步,使用上月的数据对资产收益做横截面回归,从而得到因子回报数据,后续即可更新协方差矩阵,特定回报,应用更新的特定回报又可以计算绝对特定回报的相对水平和均值,二者再加上伸缩因子即可预测特定风险最终,更新信息将分发到Barra软件的用户机器上基本面和行情数据描述变量风险指标描述变量计算公式风险指标计算公式因子负载按月横截面加权回归资产收益估计总体因子回报特定回报协方差矩阵特定风险预测行业分布阶段I:因子暴露阶段II:因子回报估计阶段III:分析

类似资料

编辑推荐

Handbook of Philosophical Logic, 2nd ed Vol.15.pdf

蔡仁厚:新儒家的精神方向.pdf

早期拓跋鲜卑遗存.pdf

文心凋龙注(上下).刘勰着.pdf

魏晋南北朝史札记.周一良.pdf

职业精品

精彩专题

上传我的资料

精选资料

热门资料排行换一换

  • 股票投资谋略.pdf

  • 股票筹码揭秘.pdf

  • 《章太炎说文解字授课笔记》.pdf

  • 穷查理宝典.pdf

  • 毛泽东选集.pdf

  • 圆运动的古中医学.pdf

  • [安娜·卡列尼娜].(俄)托尔斯…

  • 中国历史文选(上册) 周予同主编…

  • 米拉日巴尊者传 (张澄基译《米拉…

  • 资料评价:

    / 16
    所需积分:2 立即下载

    意见
    反馈

    返回
    顶部