首页 HCPL-3020

HCPL-3020

举报
开通vip

HCPL-3020 HCPL-3020/HCPL-0302 0.4 Amp Output Current IGBT Gate Drive Optocoupler Data Sheet Description The HCPL-3020 and HCPL-0302 consist of a GaAsP LED optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited fo...

HCPL-3020
HCPL-3020/HCPL-0302 0.4 Amp Output Current IGBT Gate Drive Optocoupler Data Sheet Description The HCPL-3020 and HCPL-0302 consist of a GaAsP LED optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate-controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driv- ing small or medium power IGBTs. For IGBTs with higher ratings, the HCPL-0314/3140 (0.6 A), HCPL-3150 (0.6 A) or HCPL-3120 (2.5 A) gate drive opto-couplers can be used. Features • 0.4 A maximum peak output current • 0.2 A minimum peak output current • High speed response: 0.7 µs maximum propagation delay over temperature range • Ultra high CMR: minimum 10 kV/µs at VCM = 1000 V • Bootstrappable supply current: maximum 3 mA • Wide operating temperature range: –40°C to 100°C • Wide VCC operating range: 10 V to 30 V over tempera- ture range • Available in DIP 8 and SO-8 packages • Safety approvals: UL approval, 3750 VRMS for 1 minute • CSA approval • IEC/EN/DIN EN 60747-5-2 approval VIORM = 630 VPEAK (HCPL-3020), VIORM = 566 VPEAK (HCPL-0302) Applications • Isolated IGBT/power MOSFET gate drive • AC and brushless DC motor drives • Industrial inverters • Air conditioner • Washing machine • Induction heater for cooker • Switching power supplies (SPS) Truth Table LED VO OFF LOW ON HIGH Note: A 0.1 uF bypass capacitor must be connected between pins VCC and VEE. CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to pre- vent damage and /or degradation which may be induced by ESD. Functional Diagram 1 3 SHIELD 2 4 8 6 7 5 N/C CATHODE ANODE N/C VCC VO N/C VEE 2 Ordering Information Specify part number followed by option number (if desired). Example: HCPL-3020-XXXX No option = Standard DIP package, 50 per tube 300 = Gull Wing Surface Mount Option, 50 per tube 500 = Tape and Reel Packaging Option 060 = IEC/EN/DIN EN 60747-5-2, VIORM = 630 VPEAK XXXE = Lead Free Option HCPL-0302-XXXX No option = Standard SO-8 package, 100 per tube 500 = Tape and Reel Packaging Option 060 = IEC/EN/DIN EN 60747-5-2, VIORM = 566 VPEAK XXXE = Lead Free Option Package Outline Drawings HCPL-3020 Standard DIP Package 9.65 ± 0.25 (0.380 ± 0.010) 1.78 (0.070) MAX. 1.19 (0.047) MAX. A XXXXZ YYWW DATE CODE 1.080 ± 0.320 (0.043 ± 0.013) 2.54 ± 0.25 (0.100 ± 0.010) 0.51 (0.020) MIN. 0.65 (0.025) MAX. 4.70 (0.185) MAX. 2.92 (0.115) MIN. 5678 4321 5 TYP. OPTION CODE* 0.254 + 0.076 - 0.051 (0.010 + 0.003) - 0.002) 7.62 ± 0.25 (0.300 ± 0.010) 6.35 ± 0.25 (0.250 ± 0.010) TYPE NUMBER DIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED. NOTE: FLOATING LEAD PROTUSION IS 0.25 mm (10 mils) MAX. 3.56 ± 0.13 (0.140 ± 0.005) 3 HCPL-3020 Gull Wing Surface Mount Option 300 HCPL-0302 Small Outline SO-8 Package 0.635 ± 0.25 (0.025 ± 0.010) 12 NOM. 0.20 (0.008) 0.33 (0.013) 9.65 ± 0.25 (0.380 ± 0.010) 0.635 ± 0.130 (0.025 ± 0.005) 7.62 ± 0.25 (0.300 ± 0.010) 5678 4321 9.65 ± 0.25 (0.380 ± 0.010) 6.350 ± 0.25 (0.250 ± 0.010) 1.016 (0.040) 10.9 (0.430) 2.0 (0.080) Land Pattern Recommendation 1.080 ± 0.320 (0.043 ± 0.013) 3.56 ± 0.13 (0.140 ± 0.005) 1.780 (0.070) MAX.1.19 (0.047) MAX. 2.54 (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES). 1.27 (0.050) NOTE: FLOATING LEAD PROTUSION IS 0.25 mm (10 mils) MAX. XXX YWW 8 7 6 5 4321 5.994 ± 0.203 (0.236 ± 0.008) 3.937 ± 0.127 (0.155 ± 0.005) 0.406 ± 0.076 (0.016 ± 0.003) 1.270 (0.050) BSC 5.080 ± 0.127 (0.200 ± 0.005) 3.175 ± 0.127 (0.125 ± 0.005) 1.524 (0.060) 45 X 0.432 (0.017) 0.228 ± 0.025 (0.009 ± 0.001) TYPE NUMBER (LAST 3 DIGITS) DATE CODE 0.305 (0.012) MIN. TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) 5.207 ± 0.254 (0.205 ± 0.010) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX. 0.203 ± 0.102 (0.008 ± 0.004) 7 PIN ONE 0 ~ 7 * * 7.49 (0.295) 1.9 (0.075) 0.64 (0.025) Land Pattern Recommendation NOTE: FLOATING LEAD PROTUSION IS 0.15 mm (6 mils) MAX. 4 Solder Reflow Temperature Profile Recommended Solder Reflow Temperature Profile (Lead free) 217 ˚C RAMP-DOWN 6 ˚C/SEC. MAX. RAMP-UP 3 ˚C/SEC. MAX. 150 - 200 ˚C 260 +0/-5 ˚C t 25 ˚C to PEAK 60 to 150 SEC. 20-40 SEC. TIME WITHIN 5 ˚C of ACTUAL PEAK TEMPERATURE tp ts PREHEAT 60 to 180 SEC. tL TL Tsmax Tsmin 25 Tp TIME (SECONDS) TE M PE R A TU R E (˚ C) NOTES: THE TIME FROM 25 ˚C to PEAK TEMPERATURE = 8 MINUTES MAX. Tsmax = 200 ˚C, Tsmin = 150 ˚C 0 TIME (SECONDS) TE M PE RA TU RE (˚ C) 200 100 50 150100 200 250 300 0 30 SEC. 50 SEC. 30 SEC. 160˚C 140˚C 150˚C PEAK TEMP. 245˚C PEAK TEMP. 240˚C PEAK TEMP. 230˚C SOLDERING TIME 200˚C PREHEATING TIME 150˚C, 90 + 30 SEC. 2.5˚C ± 0.5˚C/SEC. 3˚C + 1˚C/–0.5˚C TIGHT TYPICAL LOOSE ROOM TEMPERATURE PREHEATING RATE 3˚C + 1˚C/–0.5˚C/SEC. REFLOW HEATING RATE 2.5˚C ± 0.5˚C/SEC. Note: Use of non-chlorine-activated fluxes is highly recommended Note: Use of non-chlorine-activated fluxes is highly recommended 5 IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (HCPL-3020 and HCPL-0302 Option 060) Description Symbol HCPL-3020 HCPL-0302 Unit Installation Classification per DIN VDE 0110/1.89, Table 1 for Rated Mains Voltage 150 Vrms I – IV I – IV for Rated Mains Voltage 300 Vrms I – III I – III for Rated Mains Voltage 600 Vrms I – II Climatic Classification 55/100/21 55/100/21 Pollution Degree (DIN VDE 0110/1.89) 2 2 Maximum Working Insulation Voltage VIORM 630 566 Vpeak Input to Output Test Voltage, Method b [1] VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC VPR 1181 1050 Vpeak Input to Output Test Voltage, Method a [1] VIORM x 1.5 = VPR, Type and Sample Test, tm = 60 sec, Partial Discharge < 5 pC VPR 945 840 Vpeak Highest Allowable Overvoltage (Transient Overvoltage tini = 10 sec) VIOTM 6000 4000 Vpeak Safety-Limiting Values – Maximum Values Allowed in the Event of a Failure. Case Temperature TS 175 150 °C Input Current [2] IS, INPUT 230 150 mA Output Power [2] PS, OUTPUT 600 600 mW Insulation Resistance at TS, VIO = 500 V RS >109 >109 Ω 1. Refer to the optocoupler section of the Isolation and Control Compo- nents Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2), for a detailed description of Method a and Method b partial discharge test profiles. 2. Refer to the following figure for dependence of PS and IS on ambient temperature. Regulatory Information The HCPL-0302/3020 has been approved by the following organizations: IEC/EN/DIN EN 60747-5-2 Approved under: IEC 60747-5-2:1997 + A1:2002 EN 60747-5-2:2001 + A1:2002 DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01. (Option 060 only) UL Approval under UL 1577, component recognition pro- gram up to VISO = 3750 VRMS. File E55361. CSA Approval under CSA Component Acceptance Notice #5, File CA 88324. O U TP U T PO W ER – P S, IN PU T CU R R EN T – I S 0 0 TS – CASE TEMPERATURE – C 200 600 400 25 800 50 75 100 200 150 175 PS (mW) 125 100 300 500 700 IS (mA) 6 Absolute Maximum Ratings Parameter Symbol Min. Max. Units Note Storage Temperature TS –55 125 °C Operating Temperature TA –40 100 °C Average Input Current IF(AVG) 20 mA 1 Peak Transient Input Current (<1 µs pulse width, 300 pps) IF(TRAN) 1.0 A Reverse Input Voltage VR 5 V “High” Peak Output Current IOH(PEAK) 0.4 A 2 “Low” Peak Output Current IOL(PEAK) 0.4 A 2 Supply Voltage VCC – VEE –0.5 35 V Output Voltage VO(PEAK) –0.5 VCC V Output Power Dissipation PO 250 mW 3 Input Power Dissipation PI 45 mW 4 Lead Solder Temperature 260°C for 10 sec., 1.6 mm below seating plane Solder Reflow Temperature Profile See Package Outline Drawings section Recommended Operating Conditions Parameter Symbol Min. Max. Units Note Power Supply VCC - VEE 10 30 V Input Current (ON) IF(ON) 7 12 mA Input Voltage (OFF) VF(OFF) –3.0 0.8 V Operating Temperature TA –40 100 °C Insulation and Safety Related Specifications Parameter Symbol HCPL-3020 HCPL-0302 Units Conditions Minimum External Air Gap L(101) 7.1 4.9 mm Measured from input terminals to output (Clearance) terminals, shortest distance through air. Minimum External Tracking L(102) 7.4 4.8 mm Measured from input terminals to output (Creepage) terminals, shortest distance path along body. Minimum Internal Plastic Gap 0.08 0.08 mm Through insulation distance conductor to (Internal Clearance) conductor, usually the straight line distance thickness between the emitter and detector. Tracking Resistance CTI >175 >175 V DIN IEC 112/VDE 0303 Part 1 (Comparative Tracking Index) Isolation Group IIIa IIIa Material Group (DIN VDE 0110, 1/89, Table 1) 7 Switching Specifications (AC) Over recommended operating conditions unless otherwise specified. Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note Propagation Delay Time to High tPLH 0.1 0.2 0.7 µs Rg=75Ω, Cg = 1.5 nF, 8, 9 14 Output Level f = 10 kHz, Duty Cycle = 50%, 10, 11 IF = 7 mA, VCC = 30 V 12, 15 Propagation Delay Time to Low tPHL 0.1 0.2 0.7 µs Output Level Propagation Delay Difference PDD –0.5 0.5 µs 10 Between Any Two Parts or Channels Rise Time tR 50 ns Fall Time tF 50 ns Output High Level Common Mode |CMH| 10 kV/µs TA = 25°C, VCM = 1000 V 16 11 Transient Immunity Output Low Level Common Mode |CML| 10 kV/µs 16 12 Transient Immunity Electrical Specifications (DC) Over recommended operating conditions unless otherwise specified. Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note High Level Output Current IOH 0.15 A VO = VCC – 4 5 0.2 0.3 A VO = VCC – 10 2 2 Low Level Output Current IOL 0.15 A VO = VEE + 2.5 5 0.2 0.3 A VO = VEE + 10 4 2 High Level Output Voltage VOH VCC – 4 VCC – 1.8 V IO = –100 mA 1 6, 7 Low Level Output Voltage VOL 0.4 1 V IO = 100 mA 3 High Level Supply Current ICCH 0.7 3 mA IO = 0 mA 5, 6 14 Low Level Supply Current ICCL 1.2 3 mA IO = 0 mA Threshold Input Current Low to High IFLH 6 mA IO = 0 mA, 7, 13 VO > 5 V Threshold Input Voltage High to Low VFHL 0.8 V Input Forward Voltage VF 1.2 1.5 1.8 V IF = 10 mA 14 Temperature Coefficient of Input DVF/DTA –1.6 mV/°C Forward Voltage Input Reverse Breakdown Voltage BVR 5 V IR = 10 µA Input Capacitance CIN 60 pF f = 1 MHz, VF = 0 V 8 Package Characteristics Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note Input-Output Momentary VISO 3750 Vrms TA = 25°C, RH < 50% 8, 9 Withstand Voltage Input-Output Resistance RI-O 1012 Ω VI-O = 500 V 9 Input-Output Capacitance CI-O 0.6 pF Freq = 1 MHz Notes: 1. Derate linearly above 70°C free air temperature at a rate of 0.3 mA/°C. 2. Maximum pulse width = 10 µs, maximum duty cycle = 0.2%. This value is intended to allow for component tolerances for designs with IO peak minimum = 0.2 A. See Application section for additional details on limiting IOL peak. 3. Derate linearly above 85°C, free air temperature at the rate of 4.0 mW/°C. 4. Input power dissipation does not require derating. 5. Maximum pulse width = 50 µs, maximum duty cycle = 0.5%. 6. In this test, VOH is measured with a DC load current. When driving capacitive load VOH will approach VCC as IOH approaches zero amps. 7. Maximum pulse width = 1 ms, maximum duty cycle = 20%. 8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage >4500 Vrms for 1 second (leakage detec- tion current limit II-O < 5 µA). This test is performed before 100% production test for partial discharge (method B) shown in the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable. 9. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together. 10. PDD is the difference between tPHL and tPLH between any two parts or channels under the same test conditions. 11. Common mode transient immunity in the high state is the maximum tolerable |dVCM/dt| of the common mode pulse VCM to assure that the output will remain in the high state (i.e. VO > 6.0 V). 12. Common mode transient immunity in a low state is the maximum tolerable |dVCM/dt| of the common mode pulse, VCM, to assure that the output will remain in a low state (i.e. VO < 1.0 V). 13. This load condition approximates the gate load of a 1200 V/20 A IGBT. 14. The power supply current increases when operating frequency and Cg of the driven IGBT increases. Figure 1. VOH vs. temperature. Figure 2. VOH vs. IOH. Figure 3. VOL vs. temperature. (V O H -V CC ) – H IG H O U TP U T V O LT A G E D R O P – V -50 -2.5 TA – TEMPERATURE – C 125-25 0 0 25 75 10050 -2.0 -1.5 -1.0 -0.5 0 IOH – OUTPUT HIGH CURRENT – A 0 0.2 0.4 -4 -3 -1 (V O H -V CC ) – O U TP U T H IG H V O LT A G E D R O P – V -2 V O L – O U TP U T LO W V O LT A G E – V -50 0.39 TA – TEMPERATURE – C 125-25 0.44 0 25 75 10050 0.40 0.41 0.42 0.43 9 Figure 4. VOL vs. IOL. Figure 5. ICC vs. temperature. Figure 6. ICC vs. VCC. Figure 7. IFLH vs. temperature. Figure 8. Propagation delay vs. VCC. Figure 9. Propagation delay vs. IF. Figure 10. Propagation delay vs. tempera- Figure 11. Propagation delay vs. Rg. Figure 12. Propagation delay vs. Cg. V O L – O U TP U T LO W V O LT A G E D R O P – V 0 0 IOL – OUTPUT LOW CURRENT – A 0.4 5 0.2 1 4 0.1 0.3 3 2 I C C – SU PP LY C U R R EN T – m A -50 0 TA – TEMPERATURE – C 125-25 1.4 0 25 75 10050 0.4 0.6 0.8 1.2 0.2 1.0 ICCL ICCH I C C – SU PP LY C U R R EN T – m A 10 0 VCC – SUPPLY VOLTAGE – V 3015 1.2 20 25 0.4 0.8 0.2 0.6 1.0 ICCL ICCH I F LH – L O W T O H IG H C U R R EN T TH R ES H O LD – m A -50 1.5 TA – TEMPERATURE – C 125-25 3.5 0 25 75 10050 2.0 2.5 3.0 T P – P R O PA G A TI O N D EL A Y – ns 10 0 VCC – SUPPLY VOLTAGE – V 30 400 15 2520 100 200 300 TPLH TPHL T P – P R O PA G A TI O N D EL A Y – ns 6 0 IF – FORWARD LED CURRENT – mA 18 400 9 1512 100 200 300 -50 0 TA – TEMPERATURE – C 125-25 500 0 25 75 10050 100 200 300 400 T P – P R O PA G A TI O N D EL A Y – ns TPLH TPHL T P – P R O PA G A TI O N D EL A Y – ns 0 200 Rg – SERIES LOAD RESISTANCE – Ω 200 400 50 150100 250 300 350 TPLH TPHL T P – P R O PA G A TI O N D EL A Y – ns 0 0 Cg – LOAD CAPACITANCE – nF 100 400 20 8060 100 200 300 TPLH TPHL 40 10 Figure 13. Transfer characteristics. Figure 14. Input current vs. forward voltage. Figure 15. Propagation delay test circuits and waveforms. Figure 16. CMR test circuits and waveforms. 0.1 µF VCC = 15 to 30 V 75 Ω 1 3 IF = 7 to 16 mA VO + – + – 2 4 8 6 7 5 10 KHz 50% DUTY CYCLE 500 Ω 1.5 nF IF VOUT tPHLtPLH tftr 10% 50% 90% 0.1 µF VCC = 30 V 1 3 IF VO + – + – 2 4 8 6 7 5 A + – B VCM = 1000 V 5 V VCM ∆t 0 V VO SWITCH AT B: IF = 0 mA VO SWITCH AT A: IF = 10 mA VOL VOH ∆t VCMδV δt = I F – F O R W A R D C U R R EN T – m A 1.2 0 VF – FORWARD VOLTAGE – V 1.8 25 1.4 1.6 5 10 15 20 V O – O U TP U T V O LT A G E – V 0 -5 IF – FORWARD LED CURRENT – mA 6 25 15 1 35 2 3 4 5 5 0 10 20 30 11 Applications Information Eliminating Negative IGBT Gate Drive To keep the IGBT firmly off, the HCPL-3020 and HCPL- 0302 have a very low maximum VOL specification of 1.0 V. Minimizing Rg and the lead inductance from the HCPL-3020 or HCPL-0302 to the IGBT gate and emitter (possibly by mounting the HCPL-3020 or HCPL-0302 on a small PC board directly above the IGBT) can eliminate the need for negative IGBT gate drive in many applications as shown in Figure 17. Care should be taken with such a PC board design to avoid routing the IGBT collector or emit- ter traces close to the HCPL-3020 or HCPL-0302 input as this can result in unwanted coupling of transient signals into the input of HCPL-3020 or HCPL-0302 and degrade performance. (If the IGBT drain must be routed near the HCPL-3020 or HCPL-0302 input, then the LED should be reverse biased when in the off state, to prevent the transient signals coupled from the IGBT drain from turning on the HCPL-3020 or HCPL-0302. Figure 17. Recommended LED drive and application circuit for HCPL-3020 and HCPL-0302. + HVDC 3-PHASE AC - HVDC 0.1 µF VCC = 15 V 1 3 + – 2 4 8 6 7 5 HCPL-3020/0302 Rg Q1 Q2 270 Ω +5 V CONTROL INPUT 74XXX OPEN COLLECTOR 12 Selecting the Gate Resistor (Rg) for HCPL-3020 Step 1: Calculate Rg minimum from the IOL peak specification. The IGBT and Rg in Figure 17 can be analyzed as a simple RC circuit with a voltage supplied by the HCPL-3020. Rg ≤ VCC – VOL IOLPEAK = 24 - 1 0.4 = 57.5 Ω The VOL value of 1 V in the previous equation is the VOL at the peak current of 0.4 A. (See Figure 4). Step 2: Check the HCPL-3020 power dissipation and increase Rg if necessary. The HCPL-3020 total power dissipation (PT) is equal to the sum of the emitter power (PE) and the output power (PO). PT = PE + PO PE = IF • VF • Duty Cycle PO = PO(BIAS) + PO(SWITCHING) = ICC • VCC + ESW (Rg;Qg) • f = (ICCBIAS + KICC • Qg • f ) • VCC + ESW (Rg;Qg) • f where KICC • Qg • f is the increase in ICC due to switching and KICC is a constant of 0.001 mA/(nC*kHz). For the circuit in Figure 17 with IF (worst case) = 10 mA, Rg = 57.5 Ω, Max Duty Cycle = 80%, Qg = 100 nC, f = 20 kHz and TAMAX = 85°C: PE = 10 mA • 1.8 V • 0.8 = 14 mW PO = [3 mA + (0.001 mA/nC • kHz) • 20 kHz • 100 nC] • 24 V + 0.3mJ • 20 kHz = 126 mW < 250 mW (PO(MAX)) @ 85°C The value of 3 mA for ICC in the previous equation is the max. ICC over entire operating temperature range. Since PO for this case is less than PO(MAX), Rg = 57.5 Ω is alright for the power dissipation. Figure 18. Energy dissipated in the HCPL-3020 and HCPL-0302 and for each IGBT switching cycle. Es w – E N ER G Y PE R S W IT CH IN G C YC LE – µ J 0 0 Rg – GATE RESISTANCE – Ω 100 1.5 20 4.0 40 1.0 60 80 3.5 Qg = 50 nC Qg = 100 nC Qg = 200 nC Qg = 400 nC 3.0 2.0 0.5 2.5 13 LED Drive Circuit Considerations for Ultra High CMR Performance Without a detector shield, the dominant cause of optocou- pler CMR failure is capacitive coupling from the input side of the optocoupler, through the package, to the detector IC as shown in Figure 19. The HCPL-3020 and HCPL-0302 improve CMR performance by using a detector IC with an optically transparent Faraday shield, which diverts the capacitively coupled current away from the sensitive IC circuitry. However, this shield does not eliminate the ca- pacitive coupling between the LED and optocoupler pins 5-8 as shown in Figure
本文档为【HCPL-3020】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_587469
暂无简介~
格式:pdf
大小:162KB
软件:PDF阅读器
页数:15
分类:建筑/施工
上传时间:2013-05-06
浏览量:18