首页 ir2111

ir2111

举报
开通vip

ir2111 Features • Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune • Gate drive supply range from 10 to 20V • Undervoltage lockout for both channels • CMOS Schmitt-triggered inputs wit...

ir2111
Features • Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune • Gate drive supply range from 10 to 20V • Undervoltage lockout for both channels • CMOS Schmitt-triggered inputs with pull-down • Matched propagation delay for both channels • Internally set deadtime • High side output in phase with input • Also available LEAD-FREE Typical Connection Data Sheet No. PD60028-M HALF-BRIDGE DRIVER Product Summary VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 750 & 150 ns Deadtime (typ.) 650 ns www.irf.com 1 IR2111(S) & (PbF) VCC VB VS HO LO IN COM IN up to 600V TO LOAD VCC (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. Description The IR2111(S) is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for half- bridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Packages 8-Lead PDIP 8-Lead SOIC IR2111(S) & (PbF) 2 www.irf.com Symbol Definition Min. Max. Units VB High side floating supply voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage -0.3 VCC + 0.3 dVs/dt Allowable offset supply voltage transient (figure 2) — 50 V/ns PD Package power dissipation @ TA ≤ +25°C (8 Lead PDIP) — 1.0 (8 lead SOIC) — 0.625 RthJA Thermal resistance, junction to ambient (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param- eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in figures 7 through 10. V W °C/W °C Symbol Definition Min. Max. Units VB High side floating supply absolute voltage VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. °C V IR2111(S) & (PbF) www.irf.com 3 Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage for HO & logic “0” for LO 6.4 — — VCC = 10V 9.5 — — VCC = 15V 12.6 — — VCC = 20V VIL Logic “0” input voltage for HO & logic “1” for LO — — 3.8 VCC = 10V — — 6.0 VCC = 15V — — 8.3 VCC = 20V VOH High level output voltage, VBIAS - VO — — 100 IO = 0A VOL Low level output voltage, VO — — 100 IO = 0A ILK Offset supply leakage current — — 50 VB = VS = 600V IQBS Quiescent VBS supply current — 50 100 VIN = 0V or VCC IQCC Quiescent VCC supply current — 70 180 VIN = 0V or VCC IIN+ Logic “1” input bias current — 30 50 VIN = VCC IIN- Logic “0” input bias current — — 1.0 VIN = 0V VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2 VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2 IO+ Output high short circuit pulsed current 200 250 — VO = 0V, VIN = VCC PW ≤ 10 µs IO- Output low short circuit pulsed current 420 500 — VO = 15V, VIN = 0V PW ≤ 10 µs Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. mV mA V V µA Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 550 750 950 VS = 0V toff Turn-off propagation delay — 150 180 VS = 600V tr Turn-on rise time — 80 130 tf Turn-off fall time — 40 65 DT Deadtime, LS turn-off to HS turn-on & 480 650 820 HS turn-off to LS turn-on MT Delay matching, HS & LS turn-on/off — 30 — Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in figure 3. ns IR2111(S) & (PbF) 4 www.irf.com Symbol Description IN Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Functional Block Diagram 8 Lead DIP 8 Lead SOIC IR2111 IR2111S Part Number Lead Assignments Lead Definitions PULSE GEN IN UV DETECT COM HO VS VCC LO VB Q S R RPULSE FILTER HV LEVEL SHIFTDEAD TIME DEAD TIME UV DETECT IR2111(S) & (PbF) www.irf.com 5 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition Figure 5. Deadtime Waveform Definitions Figure 6. Delay Matching Waveform Definitions HO IN LO IN(HO) trton tftoff LO HO 50% 50% 90% 90% 10% 10% IN(LO) IN HO 50% 50% 90% 10% LO 90% 10% DT HO 50% 50% 10% LO 90% MT HOLO MT IN(LO) IN (HO) IR2111(S) & (PbF) 6 www.irf.com 0 50 100 150 200 250 300 350 400 -50 -25 0 25 50 75 100 125 Tu rn -O ff D el ay T im e (n s) Temperature (°C) 0 50 100 150 200 250 300 350 400 10 12 14 16 18 20 Tu rn -O ff D el ay T im e (n s) VBIAS Supply Voltage (V) 0 50 100 150 200 250 300 350 400 -50 -25 0 25 50 75 100 125 Tu rn -O n ris e Ti m e (n s) Temperature (°C) 0 50 100 150 200 250 300 350 400 10 12 14 16 18 20 Tu rn -O n R is e T im e (n s) VBIAS Supply Voltage (V) Figure 11B Turn-On Time vs Voltage Figure 12A Turn-Off Time vs Temperature Figure 11A Turn-On Time vs Temperature Figure 12B Turn-Off Time vs Voltage Figure 13A Turn-On RiseTime vs Temperature Figure 13B Turn-On RiseTime vs Voltage Max Typ Max Typ Max Typ Max Typ 0 250 500 750 1000 1250 1500 -50 -25 0 25 50 75 100 125 Temperature (oC) Tu rn -O n D el ay T im e (n s) Typ. M ax. M in. 0 250 500 750 1000 1250 1500 10 12 14 16 18 20 VBIAS Supply Voltage (V) Tu rn -O n D el ay T im e (n s) Typ. Max. Min. IR2111(S) & (PbF) www.irf.com 7 0 50 100 150 200 -50 -25 0 25 50 75 100 125 Tu rn -O ff Fa ll Ti m e (n s) Temperature (°C) Figure 14A Turn-Off Fall Time vs Temperature 0 50 100 150 200 10 12 14 16 18 20 Tu rn -O ff Fa ll Ti m e (n s) VBIAS Supply Voltage (V) 0 3 6 9 12 15 -50 -25 0 25 50 75 100 125 Lo gi c "1 " I np ut T hr es ho ld (V ) Temperature (°C) 0 3 6 9 12 15 10 12 14 16 18 20 Lo gi c " 1 " In pu t T re sh ol d (V ) Min Figure 14B Turn-Off Fall Time vs Voltage Figure 15A Dead Time vs Temperature Figure 15B Dead Time vs Voltage Figure 16A Logic “I” Input voltage for HO & Logic “0” for LO vs Temperature Figure 16B Logic “I” Input voltage for HO & Logic “0” for LO vs Voltage Max Typ Max Typ Min 0 250 500 750 1000 1250 -50 -25 0 25 50 75 100 125 Temperature (oC) D ea dt im e (n s) Typ. M ax. M in. 0 250 500 750 1000 1250 10 12 14 16 18 20 VBIAS Supply Voltage (V) D ea dt im e (n s) Typ. Max. Min. IR2111(S) & (PbF) 8 www.irf.com Figure 18B. High Level Output vs. Voltage 0 0.2 0.4 0.6 0.8 1 10 12 14 16 18 20 V B A IS S upply V otage (V ) H ig h Le ve l O u tp ut V ol ta ge (V ) M ax. Figure 19A. Low Level Output vs. Temperature 0 0.2 0.4 0.6 0.8 1 -50 -25 0 25 50 75 100 125 Hi gh Le ve l O ut pu t V olt ag e (V ) T e m perature M ax. Figure 18A. High Level Output vs. Temperature Figure 17A Logic “0” Input voltage for HO & Logic “I” for LO vs Temperature Figure 17B Logic “0” Input voltage for HO & Logic “I” for LO vs Voltage 0 3 6 9 12 15 -50 -25 0 25 50 75 100 125 Lo gi c "0 " I np ut T hr es ho ld (V ) Temperature (°C) Max 0 3 6 9 12 15 10 12 14 16 18 20 Lo gi c " 0 " In pu t T re sh ol d (V ) VCC Logic Supply Voltage (V) Max 0 0.2 0.4 0.6 0.8 1 -50 -25 0 25 50 75 100 125 Lo w L ev el O ut pu t V ol ta ge (V ) Temperature (°C) Max. 0 0.2 0.4 0.6 0.8 1 10 12 14 16 18 20 Lo w L ev el O ut pu t V ol ta ge (V ) Max. VBIAS Supply Votage (V) Figure 19B. Low Level Output vs. Voltage IR2111(S) & (PbF) www.irf.com 9 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 O ffs et S up pl y Le ak ag e C ur re nt (u A) Max. Temperature (°C) 0 100 200 300 400 500 0 100 200 300 400 500 600 O ffs et S up pl y Le ak ag e C ur re nt (u A) M ax . V B B oos t V oltage (v) Figure 20B Offset Supply Current vs Voltage Figure 20A Offset Supply Current vs Temperature 0 50 100 150 200 -50 -25 0 25 50 75 100 125 VB S Su pp ly C ur re nt (u A) Max. Typ. Temperature (°C) 0 50 100 150 200 10 12 14 16 18 20 VB S Su pp ly C ur re nt (u A) Max. Typ. VBS Floating Supply Voltage (V) 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 Vc c Su pp ly C ur re nt (u A) Typ. Max. Temperature (°C) Figure 21A VBS Supply Current vs Temperature Figure 21B VBS Supply Current vs Voltage Figure 22A VCC Supply Current vs Temperature Figure 22B VCC Supply Current vs Voltage 0 100 200 300 400 500 10 12 14 16 18 20 V c c S u pp ly C u rr e n t ( uA ) V cc F ixed S upply V oltage (V ) Max Typ IR2111(S) & (PbF) 10 www.irf.com Figure 23B Logic “1” Input Current vs VCC Voltage Figure 24A. Logic “0” Input Current vs. Temperature Figure 24B. Logic “0” Input Current vs. VCC Voltage Figure 23A Logic “1” Input Current vs Temperature 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125L og ic "0 " I np ut B ia s C ur re nt (u A) Temperature (°C) Max. 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 Lo gi c "1 " In pu t B ia s C ur re nt (u A) Temperature (°C) 0 20 40 60 80 100 120 10 12 14 16 18 20 VCC Supply Voltage (V) Lo gi c " 1" In pu t B ia s C ur re nt (u A ) Typ. Max. 0 1 2 3 4 5 10 12 14 16 18 20 Lo gi c "0 " I np ut C ur re nt (u A) Max. VCC Supply Voltage (V) 6 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 V B S U V LO Th re s ho ld - (V ) Tem perature (°C ) M in. Typ. M ax. Figure 25 VBS Undervoltage Threshold (+) vsTemperature Figure 26 VBS Undervoltage Threshold (-) vsTemperature 6 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 VB S U VL O T hr es ho ld + (V ) Temperature (°C) Min. Typ. Max. IR2111(S) & (PbF) www.irf.com 11 Figure 27 VCC Undervoltage (-) vs Temperature 6 7 8 9 10 11 -50 -25 0 25 50 75 100 125V cc U nd er vo lta ge L oc ko ut + (V ) Temperature (°C) Max. Typ. Min. Figure 28 VCC Undervoltage (-) vs Temperature 6 7 8 9 10 11 -50 -25 0 25 50 75 100 125 VC C U nd er vo lta ge L oc ko ut - (V ) Temperature (°C) Max. Typ. Min. Figure 29A Output Source Current vs Temperature Figure 29B Output Source Current vs Voltage Figure 30B Output Sink Current vs Voltage 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 O ut pu t s ou rc e C ur re nt (m A) Temperature (°C) Typ. Min. 0 100 200 300 400 500 10 12 14 16 18 20 O ut pu t s ou rc e C ur re nt (m A) VBIAS Supply Voltage (V) Typ. Min. Figure 30A Output Sink Current vs Temperature 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 O ut pu t S in k C ur re nt (m A) Temperature (°C) Typ. Min. 0 150 300 450 600 750 10 12 14 16 18 20 VBIAS Supply Voltage (V) O ut pu t S in k C ur re nt (m A) Typ. Min. IR2111(S) & (PbF) 12 www.irf.com Frequency (Hz) Figure33. IR2111 TJ vs. Frequency (IRFBC40) RGATE = 15ΩΩΩΩΩ, VCC = 15V Frequency (Hz) Figure 34. IR2111 TJ vs. Frequency (IRFPC50) RGATE = 10ΩΩΩΩΩ, VCC = 15V Frequency (Hz) Figure 31. IR2111 TJ vs. Frequency (IRFBC20) RGATE = 33ΩΩΩΩΩ, VCC = 15V Frequency (Hz) Figure 32. IR2111 TJ vs. Frequency (IRFBC30) RGATE = 22ΩΩΩΩΩ, VCC = 15V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n T em pe ra tu re (° C ) 320 160 30V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n T em pe ra tu re (°C ) 320V 160V 30V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n T em pe ra tu re (° C) 320V 160V 30V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n T em pe ra tu re (°C ) 320V 160V 30V IR2111(S) & (PbF) www.irf.com 13 Frequency (Hz) Figure 37. IR2111S TJ vs. Frequency (IRFBC40) RGATE = 15ΩΩΩΩΩ, VCC = 15V Frequency (Hz) Figure 38. IR2111S TJ vs. Frequency (IRFPC50) RGATE = 10ΩΩΩΩΩ, VCC = 15V Frequency (Hz) Figure 35. IR2111S TJ vs. Frequency (IRFBC20) RGATE = 33ΩΩΩΩΩ, VCC = 15V Frequency (Hz) Figure 36. IR2111S TJ vs. Frequency (IRFBC30) RGATE = 22ΩΩΩΩΩ, VCC = 15V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n Te m pe ra tu re (° C) 320V 160 30V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n T em pe ra tu re (° C) 320V 140V 30V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n Te m pe ra tu re (° C) 320V 140V 30V 0 25 50 75 100 125 150 1E+2 1E+3 1E+4 1E+5 1E+6 Ju n ct io n T em pe ra tu re (°C ) 320V 140V 30V IR2111(S) & (PbF) 14 www.irf.com 01-6014 01-3003 01 (MS-001AB)8-Lead PDIP Case outlines 01-6027 01-0021 11 (MS-012AA)8-Lead SOIC 8 7 5 6 5 D B E A e6X H 0.25 [.010] A 6 431 2 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 7 K x 45° 8X L 8X c y FOOTPRINT 8X 0.72 [.028] 6.46 [.255] 3X 1.27 [.050] 8X 1.78 [.070] 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 0.25 [.010] C A B e1 A A18X b C 0.10 [.004] e 1 D E y b A A1 H K L .189 .1497 0° .013 .050 BASIC .0532 .0040 .2284 .0099 .016 .1968 .1574 8° .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0° 1.27 BASIC 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 MIN MAX MILLIMETERSINCHES MIN MAX DIM 8° e c .0075 .0098 0.19 0.25 .025 BASIC 0.635 BASIC IR2111(S) & (PbF) www.irf.com 15 LEADFREE PART MARKING INFORMATION ORDER INFORMATION Lead Free Released Non-Lead Free Released Part number Date code IRxxxxxx YWW? ?XXXXPin 1 Identifier IR logo Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 P ? MARKING CODE Basic Part (Non-Lead Free) 8-Lead PDIP IR2111 order IR2111 8-Lead SOIC IR2111S order IR2111S Leadfree Part 8-Lead PDIP IR2111 order IR2111PbF 8-Lead SOIC IR2111S order IR2111SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/12/2004
本文档为【ir2111】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_619113
暂无简介~
格式:pdf
大小:154KB
软件:PDF阅读器
页数:15
分类:
上传时间:2013-04-20
浏览量:27