关闭

关闭

封号提示

内容

首页 Variational Problems in Geometry.pdf

Variational Problems in Geometry.pdf

Variational Problems in Geometr…

上传者: leafsea 2013-04-12 评分 5 0 287 39 1304 暂无简介 简介 举报

简介:本文档为《Variational Problems in Geometrypdf》,可适用于高等教育领域,主题内容包含TranslationsofMATHEMATICALMONOGRAPHSVolumeVariationalProblemsinGeometrySe'符等。

TranslationsofMATHEMATICALMONOGRAPHSVolumeVariationalProblemsinGeometrySe''NishikawakAmericanMathematicalsocietyVariationalProblemsinGeometryTranslationsofMATHEMATICALMONOGRAPHSVolumeVariationalProblemsinGeometrySeikiNishikawaTranslatedbyKinetsuAbeAmerl=nMathematicalocistyProvidenceRhodeIslandEditorialBoardShoshichiKobayashi(Chair)MasamichiTakesakifol:FLM**KIKAGAKUTEKIHENBUNMONDAIbySeikiNishikawaOriginallypublishedinJapanesebyIwanamiShoten,Publishers,Tokyo,TanslatedfromtheJapanesebyKinetsuAbeMathematicsSubjectCiasaicationPrimary,C,C,E,JLibraryofCongressCatalogingInPublicationDataNishikawa,SeikiKikigakutekihenbunmondaiEnglishVariationalproblemsingeometrySeildNishikawatranslatedbyKinetsuAbepcm(Translationsofmathematicalmonographs,ISSNv)(Iwanamiseriesinmodemmathematics)IncludesbibliographicalreferencesandindexISBN(acidfreepaper)HarmonicmapsVariationalinequalities(Mathematics)RiemannianmanifoldsITitleItSeriesIIISeries:IwanamiseriesinmodernmathematicsQAN'dcbytheAmericanMathematicalSocietyAllrightsreservedTheAmericanMathematicalSocietyretainsallrightsexceptthosegrantedtotheUnitedStatesGovernmentPrintedintheUnitedStatesofAmericaThepaperusedinthisbookisacidfreeandfallswithintheguidelinesestablishedtoensurepermanenceanddurabilityInformationoncopyingandreprintingcanbefoundinthebackofthisvolumeVisittheAMShomepageatURL:http:vvvamsorgContentsPrefacetotheEnglishEditionPrefaceixOutlinesandObjectivesoftheTheoryChapterAreLengthofCurvesandGeodesicsArelengthandenergyofcurvesEuler'sequationConnectionsandcovariantdifferentiationGeodesicsMinimallengthpropertyofgeodesicsSummaryExercisesChapterFirstandSecondVariationFormulasThefirstvariationformulaCurvaturetensorThesecondvariationformulaExistenceofminimalgeodesicsApplicationstoRiemanniangeometrySummaryExercisesChapterEnergyofMapsandHarmonicMapsEnergyofmapsTensionfieldsThefirstvariationformulaHarmonicmapsThesecondvariationformulaSummaryExercisevviCONTENTSChapterExistenceofHarmonicMapsTheheatflowmethodExistenceoflocaltimedependentsolutionsExistenceofglobaltimedependentsolutionsExistenceanduniquenessofharmonicmapsApplicationstoRiemanniangeometrySummaryExercisesAppendixAFundamentalsoftheTheoryofManifoldsandFunctionalAnalysisAIFundamentalsofmanifoldsAFundamentalsoffunctionalanalysisProspectsforContemporaryMathematicsSolutionstoExerciseProblemsBibliographyIndexPrefacetotheEnglishEditionThisbook,publishedoriginallyinJapanese,isanoutgrowthoflecturesgivenatTohokuUniversityandattheSummerGraduateProgramoftheInstituteforMathematicsandItsApplications,UniversityofMinnesotaIntheselectures,throughadiscussiononvariationalproblemsofthelengthandenergyofcurvesandtheenergyofmaps,Iintendedtoguidetheaudiencetothethresholdofthefieldofgeometricvariationalproblems,thatis,thestudyofnonlinearproblemsarisingingeometryandtopologyfromthepointofviewofglobalanalysisItismypleasureandprivilegetoexpressmydeepestgratitudetoProfessorKinetsuAbewhogenerouslydevotedconsiderabletimeandefforttothetranslationIwouldalsoliketotakethisopportunitytoexpressmydeepappreciationtoProfessorPhillipeTondeurwhoinvitedmetojointheSummerGraduateProgram,andtomyfriendAndrejTreibergsformakinghisnotesavailabletotheorganizationofthelastchapterSeikiNishikawaAprilvHPrefaceItissaidthattechniquesforsurveyingweredevelopedfromtheneedtorestorelandsafterfrequentfloodsoftheNileRiverinancientEgyptGeometryistheareaofmathematicswhosenameoriginatesfromthismethodofsurveyingnamely,"tomeasurelands"(geo=lands,metry=measure)Assuch,itisanancientpracticetostudyfiguresfromtheviewofpracticalapplicationsItisalsosaidthattheancientGreeksalreadyknewofthemethodofindirectsurveyingusingthecongruenceconditionsoftrianglesAminimallengthcurvejoiningtwopointsinasurfaceiscalledageodesicOnemaytracetheoriginoftheproblemoffindinggeodesicsbacktothebirthofcalculusManycontemporarymathematicalproblems,asinthecaseofgeodesics,maybeformulatedasvariationlproblemsinsurfacesorinthemoregeneralizedformofmanifoldsOnemaycharacterizethegeometricvariationalproblemsasafieldofmathematicsthatstudiestheglobalaspectsofvariationalproblemsrelevantinthegeometryandtoplogyofmanifoldsForexample,theproblemoffindingasurfaceofminimalareaspanningagivenframeofwireoriginallyappearedasamathematicalmodelforsoapfilmsIthasalsobeenactivelyinvestigatedasageometricvariationalproblemWithrecentdevelopmentsincomputergraphics,totallynewaspectsofthestudyonthesubjecthavebeguntoemergeThisbookisintendedtobeanintroductiontosomeofthefundamentalquestionsandresultsingeometricvariationalproblems,studyingthevariationalproblemsonthelengthofcurvesandtheenergyofmapsThefirsttwochaptersapproachvariationalproblemsoflengthandenergyofcurvesinRiemannianmanifoldswithanindepthdiscussionoftheexistenceandpropertiesofgeodesicsviewedasthesolutiontovariationalproblemsInaddition,aspecialemphasisisixxPREFACEplacedonthefactthattheconceptsofconnectionandcovariantdifferentiationarenaturallyinducedfromthefirstvariationformulaofthisvariationalproblem,andthatthenotionofcurvatureisobtainedfromthesecondvariationalformulaThelasttwochapterstreatthevariationalproblemontheenergyofmapsbetweentwoRiemannianmanifoldsanditssolutions,namelyharmonicmapsTheconceptofharmonicmapsincludesgeodesicsandminimalsubmanifoldsasexamplesItsexistenceandpropertieshavesuccessfullybeenappliedtovariousproblemsingeometryandtopologyThisbooktakesuptheexistencetheoremofEellsSampson,whichisconsideredtobethemostfundamentalamongexistencetheoremsforharmonicmapsTheproofusestheinversefunctiontheoremforBanachspacesItispresentedtobeasselfcontainedaspossibleforeasyreadingEachchapterofthisbookmaybereadindependentlywithminimalpreparationforcovariantdifferentiationandcurvatureonmanifoldsThefirsttwochapters,throughthediscussionofconnectionsandcovariantdifferentiation,aredesignedtoprovidethereaderwithabasicknowledgeofRiemannianmanifoldsAsprerequisitesforreadingthisbook,theauthorassumesafewelementaryfactsinthetheoryofmanifoldsandfunctionalanalysisTheyareincludedintheformofappendicesattheendofthebookDetailsinfunctionalanalysismaybeskippedThereader,however,isencouragedtodotheexerciseproblemsattheendofeachchapterbyhimselforherselffirstThesolutionsmaybeconsultedifnecessary,sincemanyoftheexerciseproblemscomplementthecontentsofthebookThisbookisanoutgrowthoflecturesdeliveredatTohokuUniversityandtheSummerGraduateProgramsheldatTheInstituteforMathematicsandItsApplications,UniversityofMinnesotaThefirsthalfofthebookaimsatajuniorandseniorlevel,andthelasthalfatafirstandsecondyeargraduatelevelEachhalfroughlyconsistsoftheamountoftopicsthatmaybecoveredinonesemesterIntheactuallectures,theauthoralsodiscussestheharmonicmapsbetweenRiemannsurfacesThisportionisnotincludedinthisbookduetothelimitedspaceThereaderwhoisinterestedinthestudyofharmonicmapsisadvisedtofirststudytheharmonicmapsbetweenRiemannsurfacesItwouldbethisauthor'swishaswellaspleasureifthisbookcouldinterestmanyreadersinvariationalproblemsingeometryPREFACExiLastbutnotleast,theauthorexpresseshissinceregratitudetotheeditorialstaffofIwanarniShotenfortheirvaluablehelpinthepublicationofthisbookSeikiNishikawaDecemberOutlinesandObjectivesoftheTheoryAmonggeometricvariationalproblems,theextremevalueproblemregardingthelengthofcurvesisasoldasthoseincalculusChapterofthisbookisdevotedtodiscussionsofvariationalproblemsofcurvesinmanifoldsAsiswellknown,thelengthofacurvejoiningtwopointsinaplaneisgivenbyintegratingthemagnitudeoftangentvectorsSimilarly,onecandefinethelengthandenergyforcurvesinmoregeneralRiemannianmanifoldsbymeasuringthemagnitudeofthetangentvectorsusingRiemannianmetricsInChapter,Euler'sequationiscalculatedItcharacterizesthecriticalpointsofthelengthandenergyofcurveswhentheyareconsideredasfunctionalsdefinedinthespaceofcurvesConsequently,theequationofgeodesicsisobtainedTheconceptsofconnectionsandcovariantdifferentiationarenaturallyinducedfromtheequationofgeodesicsinamanifoldCovariantdifferentiation,anessentialtoolforstudyingvariationalproblemsinmanifolds,isanoperationthatdefinesthederivativeofavectorfieldbyavectorfieldinamanifoldThemostfundamentalconnection,calledtheLeviCivitaconnection,isuniquelydeterminedinamanifoldequippedwithaRiemannianmetric,ie,aRiemannianmanifoldThenotionofparalleltransportisinducedfromthisconnectionThediscoveryofthenotionofparalleltransportinRiemannianmanifolds()andEinstein'suseofgeometrybasedonafourdimensionalindefinitemetricforhisgeneralrelativity()greatlyadvancedthestudyofRiemanniangeometryGeodesicsinRiemannianmanifoldscorrespondtostraightlinesintheplaneandtheyarelocallycharacterizedasthecurvesofminimallengthbetweenpointsOnecanconstructaspeciallocalcoordinatesystem,calledanormalcoordinatesystem,usingtheseminimalgeodesicsabouteachpointinaRiemannianmanifoldParalleltransportandnormalcoordinatesystemsarethemostbasictoolsinXiixivOUTLINESANDOBJECTIVESOFTHETHEORYcomparingthegeometryofaRiemannianmanifoldwiththegeometryofamodelspace(forexample,Euclideanspace)InChapter,usingcovariantdifferentiation,thefirstvariationformula(Euler'sequation)forthevariationalproblemregardingtheenergyofcurvesinRiemannianmanifoldsiscomputedinthegeneralcasewheretheimageofacurveisnotalwayscontainedinalocalcoordinateneighborhoodThesecondvariationformulaissubsequentlycomputedJustasthenotionofconnectionsisderivedfromthefirstvariationformula,itisseenthatthesecondvariationformulapossessesanintimaterelationshiptothenotionofcurvatureinRiemannianmanifoldsInotherwords,thenotionsofcurvaturetensorandthecurvatureofaRiemannianmanifoldarenaturallyinducedfromthesecondvariationformulafortheenergyofcurvesGiventwopointsinaRiemannianmanifold,thedistancebetweenthesetwopointsisgivenbytheleastupperboundofthelengthsofpiecewisesmoothcurvesconnectingthemWhetheraRiemannianmanifoldbecomesacompletemetricspacewithrespecttothisdistanceisanimportantquestionItwasrelativelyrecently()thatHopfRinowgavenecessaryandsufficientconditionsforthequestionTheresultsbyHopfandRinowaresignificantnotonlyinmakingthenotionofcompletenesssuccinct,butalsoinshowingthatthiscompletenessistheconditionthatguaranteestheexistenceofaminimalgeodesicjoiningtwogivenpointsAsstatedabove,thesecondvariationformulafortheenergyofcurvesiscloselyrelatedtothecurvatureofRiemannianmanifoldsUsingthis,onecanstudytheeffectsofthecurvatureofaRiemannianmanifoldonitstopologicalstructureMyers'theoremandSynge'stheoremarediscussedastypicalexamplesofsuchapplicationsTheformerstatesthatthefundamentalgroupofacompactandconnected,Riemannianmanifoldofpositivecurvatureisafinitegroup,andthelatterstatesthatanevendimensionalcompact,connectedandorientableRiemannianmanifoldofpositivecurvatureissimplyconnectedResearchonRiemannianmanifoldsusingexistenceandpropertiesofgeodesicsisbeingactivelypursuedInChapter,harmonicmapsandtheenergyofmapsarediscussedTheygeneralizethevariationalproblemoftheenergyofcurvesinRiemannianmanifoldsNamely,afunctionalcalledtheenergyofmapsisdefinedinthemappingspaceconsistingofsmoothmapsbetweenRiemannianmanifolds,andharmonicmapsgivenasitsOUTLINESANDOBJECTIVESOFTHETHEORYxvcriticalpointsareinvestigatedTheenergyofmapsisanaturalgeneralizationoftheenergyofcurvesExamplesofharmonicmapsappearinvariousaspectsofdifferentialgeometryHarmonicfunctions,geodesics,minimalsubmanifolds,isometricmaps,andholomorphicmapsareafewtypicalexamplesThefirstvariationformula,whichcharacterizesthecriticalpointsoftheenergyfunctional,canbeobtainedbyessentiallythesameapproachasinthecaseofgeodesicsHowever,thecomputationsbecomeunnecessarilycomplicatedandonlyyieldresultsofalocalnaturewithoutuseofthecovariantdifferentiationthatisnaturallyinducedfromtheLeviCivitaconnectionofRiemannianmanifoldsToalleviatethesedifficulties,itisdesignedinthischaptertoderive,throughdiscoveriesintheprocess,thecomputationalrulesforthecovariantdifferentiationthatisinducedfromtheLeviCivitaconnectionintangentbundlesandtheirtensorproductsoverRiemannianmanifoldsThisroutemaynotbethemostdirectone,buttheauthorbelievesthatitismoreeffectiveinfamiliarizingthereaderwiththedefinitionandtherulesofcomputationsforcovariantdifferentiationthantheaxiomaticapproachAtfirst,thereadermayfeeluneasy,especiallyabouttheportionoftheinducedconnectionsNonetheless,actualcomputationshelppromoteunderstandingofthenotionThefastestwaytograsptherulesofcomputationinvolvingcovariantdifferentiationisactuallytoengageinthecomputationsThecomputationsofthefirstvariationformulafortheenergyfunctionalofmapsyieldavectorfieldcalledthetensionfieldItisgivenasthetraceofthesecondfundamentalformofthemapsAharmonicmapisthencharacterizedasamapwhosetensionfieldisidenticallyChapterisdevotedtotheexistenceproblemofharmonicmapsbetweencompactRiemannianmanifoldsWhetherornotagivenmapishomotopicallydeformabletoaharmonicmapisoneofthemostfundamentalquestionsamonggeometricvariationalproblemsItmayberegardedasageneralizationoftheexistenceproblemofclosedgeodesicsTothisend,the"heatflowmethod"isfirstintroducedThisisaneffectivetechniquefordeformingagivenmaptoaharmonicmapThen,usingthistechnique,itisprovedthatanymapfromacompactRiemannianmanifoldMintoacompactRiemannianmanifoldNofnonpositivecurvatureisfreehomotopicallydeformabletoaharmonicmapThistheoremwasfirstprovedbyEellsSampsoninxviOUTLINESANDOBJECTIVESOFTHETHEORYTheproofofthistheoremusingtheheatflowmethodfirstrequirestheexistenceofatimedependentsolutiontoaninitialvalueproblemwithanyinitialmapoftheparabolicequationforharmonicmapsTheoriginalproofusessuccessiveapproximationstoconstructasolutionafterconvertingtheproblemtoaproblemofintegralequationsviathefundamentalsolutionoftheheatequationInthisbook,thesolutionisconstructedthroughuseoftheinversefunctiontheoreminBanachspacesinanefforttominimizetheamountofpreparationTheexistenceoftimedependentlocalsolutionsisalwaysguaranteed,buttheexistenceofglobaltimedependentsolutionsisnotselfevident,sincetheparabolicequationforharmonicmapsisnonlinearInfact,provingtheexistenceofglobaltimedependentsolutionsentailssomeestimatesofthegrowthrateofsolutionsintimeThecurvatureoftheRieinannianmanifoldNplaysacrucialroleinestimatingtheinfluenceofnonlineartermsAnestimationformulathatguaranteestheexistenceandconvergenceoftimedependentglobalsolutionsisobtainedusingtheWeitzenbockformulafortheheatoperatorundertheconditionthatNisofnonpositivecurvatureTheWeizenbockformula,ingeneral,givestherelationshipbetweensecondorderpartialdifferentialoperatorsnaturallyactingontensorfieldsonRiemannianmanifoldsandtheLaplaceorheatoperatoractingonfunctionsItisrevealedthattheRiemanncurvatureanditsRicciidentityplayessentialrolesforexistenceofsolutionstothosedifferentialoperatorsInthischapter,anaprioriestimateregardingthegrowthrateofsolutionsisobtainedusingtheWeizenbockformulafortheenergydensityofsolutionstotheparabolicequationforharmonicmapsandtheheatoperatorThisideaisoriginallyduetoBochnerIthasbecomeaneffectiveandfundamentaltechniquefortheproofsoftheoremssuchastheKodairavanishingtheoremandmorerecentlyingaugetheoryAsinthecaseofgeodesics,onecanalsoinvestigatethestructuresofRiemannianmanifoldsusingtheexistenceandpropertiesofharmonicmapsThetheoremofPreissman,oneofthetypicalapplicationsofharmonicmaps,isdiscussedThetheoremstatesthatanontrivial,AbeliansubgroupofthefundamentalgroupofacompactmanifoldofnegativecurvatureisinfinitelycyclicTheresearchofRiemannianmanifoldsusingtheexistenceandpropertiesofbarmonicmapsseemstopossessapromisingfutureForexample,newproofsfromamoreanalyticalpointofviewforthetopologicalspheretheoremandtheFrankelconjecturewererecentlygivenbyexploitingOUTLINESANDOBJECTIVESOFTHETHEORYxviitheexistencetheoremofharmonicspheresduetoSacksandUhlenbeckAstrongrigiditytheoremregardingcomplexstructuresinKahlermanifoldsofnegativecurvaturewasalsoobtainedusingtheexistencetheoremofEellsandSampsonCHAPTERArcLengthofCurvesandGeodesics"Giventwopointsinasurface,findacurvejoiningthemoftheminimumarclength"AsolutiontothisquestioniscalledageodesicFindinggeodesicsisatypicalprobleminthecalculusofvariationItsorigincouldbetracedbacktothebirthofcalculusInthischapter,thevariationalproblemofarclengthandtheenergyofcurvesinRiemannianmanifoldsisdiscussedasanintroductiontogeometricvariationalproblemsThecriticalpointsinthisvariationalproblemsatisfyadifferentialequationcalledtheEulerequationTheconceptofcovariantdifferentiationisnaturallyinducedfromthisequationThefirstvariationalformulaoftheenergyofcurvesisobtainedGeodesicsarecharacterizedasthecriticalpointsofthisvariationalproblemArelengthandenergyofcurvesThereader,whohasalreadylearnedthetheoryofsurfaces,k

类似资料

该用户的其他资料

The Random-Cluster Model, Geoffrey Grimmett, 2009.pdf

Equilibrium Statistical Physics - Phases of Matter and Phase Transitions, Marc Baus, Carlos F. Tejero, Springer - 2008.pdf

Fundamentals of Matrix-Analytic Methods, Qi-Ming He, 2013.pdf

Advanced Topics in Linear Algebra, 2011.pdf

有限群的表示与调和分析, 2014.pdf

职业精品

精彩专题

用户评论

0/200
    暂无评论
上传我的资料

精选资料

热门资料排行换一换

  • [民法解释学].梁慧星.扫描版.…

  • 股票作手回忆录 作者:爱德温 李…

  • [梅仲协]民法要义.pdf

  • [刘俊臣] - 合同成立基本问题…

  • [梁慧星] - 民法总论.pdf

  • 选股细节(3).pdf

  • 选股细节(2).pdf

  • 选股细节(1).pdf

  • 打败大盘(上).pdf

  • 资料评价:

    / 229
    所需积分:0 立即下载

    意见
    反馈

    返回
    顶部