首页 第八章离子在固体中的射程理论

第八章离子在固体中的射程理论

举报
开通vip

第八章离子在固体中的射程理论第八章离子在固体中的射程理论 第五章 载能离子在固体中的射程和射程分布 前面几章我们讨论了带电粒子在固体中的碰撞过程、核阻止本领及电子阻止本领,它 们是研究带电粒子与固体相互作用过程的基础。本章我们将讨论载能离子在固体中的射程 和射程分布。 5.1 射程的概念 由前面几章的讨论可以知道,对于具有一定初始能量的入射离子,当它在固体中穿行 时,将不断地同固体中的原子进行一系列的弹性和非弹性碰撞,并逐渐地损失其能量,最 终将停止在固体内部。由于离子在同靶原子碰撞时不断地改变其飞行方向,所以它在固体 中的轨迹不是一...

第八章离子在固体中的射程理论
第八章离子在固体中的射程理论 第五章 载能离子在固体中的射程和射程分布 前面几章我们讨论了带电粒子在固体中的碰撞过程、核阻止本领及电子阻止本领,它 们是研究带电粒子与固体相互作用过程的基础。本章我们将讨论载能离子在固体中的射程 和射程分布。 5.1 射程的概念 由前面几章的讨论可以知道,对于具有一定初始能量的入射离子,当它在固体中穿行 时,将不断地同固体中的原子进行一系列的弹性和非弹性碰撞,并逐渐地损失其能量,最 终将停止在固体内部。由于离子在同靶原子碰撞时不断地改变其飞行方向,所以它在固体 中的轨迹不是一条直线,而是一条折线,如图5.1所示。离子在固体中实际穿行的路程称 为总射程,用 表示。然而,在实验中不是一个可以直接测量的物理量。通常,人们RR 引入投影射程RR这个可测的物理量来描述离子在固体中的穿行深度。的定义为离子pp 的总射程R在其入射速度方向的投影,见下图。除了总射程和投影射程,在理论研RRp 222究中,有时人们还引入横向射程RRR这个概念,其定义为=+。 Rttp 表面 R 离子 x R p 图5.1 离子在固体中的射程示意图。 很显然,投影射程的大小与离子在很显然,投影射程的大小与离子在固体中的能量损失 状况有关,即与核阻止本领和电子阻止本领有关。我们知道:离子同固体中的原子碰撞时 过程随机的,因此离子在每次碰撞中它飞行速度的偏转方向及能量损失均是随机的。这样, 即使对同一入射能量的不同离子它们在固体中的穿行深度是不同的。一般地,离子在固体 中的终止位置(即穿行深度)在其入射方向上是有一定空间分布R的。投影射程即f(x)p 为分布函数f(x)的最大值。分布函数f(x)的形状取决于它的矩。它的一阶矩 , (5.1-1) R,xf(x)dxp,0 即为投影射程,而它的二阶矩定义为 ,22 (5.1-2) ,,(x,R)f(x)dxp||,0 2有时称,R,,为射程偏离。 p|| 在1963年,J. Lindhard,M. Scharff 和 H. Schiott采用了一种统计的 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 来描述离子在 固体中的传输过程,并给出了一个积分-微分形式的离子射程方程,一般简称LSS射程理论。不过本章我们不是按照LSS的原始方法来建立射程方程,而是从Boltzmann输运方程出发,较为严格地推导出离子的射程方程。另外,Biersack和Ziegler (1982)采用投影射程代数法建立了一个微分形式的射程方程,称其为BZ射程理论。除了上述两种理论外, 人们还可以采用计算机模拟方法,如蒙特卡罗方法,来研究离子在固体中的射程分布。首 先我们介绍一种计算射程的简单方法。 5.2射程的简单估算 我们知道一初始能量为 E的离子在固体中运动时沿着它路径方向上的能量损失可以0 用电子阻止本领和核阻止本领来描述,即 dE ,,NS(E),NS(E),NS(E) (5.2-1) neds S(E)S(E)和分别是核阻止截面和电子阻止截面,是固体原子的密度。这样,Nne 离子在固体的总射程可以表示为 其中 EEdEdE00 ,,R (5.2-2) ,,00,,dE/dx)NS(E)这样,我们一旦知道了核阻止截面S(E)S(E)和电子阻止截面,即可以由上式计算出ne离子在固体中的总射程。核阻止截面可以由(3.4-6)或(3.-47)式给出,而电子阻止R 截面可以由LS公式[ 见(4.4-9)式] 如果入射离子的能量不是太高,例如约化能量 时,电子阻止本领的值较小,与,,1核阻止本领相比可以略去不计。这时总射程可以表示成为 EdE0 R, (5.2-3) ,0NS(E)n 作为一种简单的估算,我们采用幂级指数势给出的核阻止本领(见第三章) C1,m1,2mm S(E),,E (5.2-4) n1,m 来计算射程,其中C为常数 m m22m,,,2ZZe212 ,,, (5.2-5) C,aMM,,2mmTF12a2TF,,将(5.2-4) 式代入(5.2-3) 式,可以得到总射程为 ,m1,,m1,,2m (5.2-6) RE,,,0mNC2,,m 可见离子的射程Em随入射能量的增加而增加。对于,可以选择参数及R0.08,,,20 ,,,,0.327Ar的值为, 。作为一个例子,100 keV 的氩离子入射到中,m,1/2Almm 。 R,58.3nm 对于重离子入射(RM,M),散射角较小,这时投影射程与总射程的关系可R可以估算出总射程为p12 以近似地表示为 R (5.2-7) R,p1,(M/3M)21同样,射程偏离,R可以近似地写成 p MM12 (5.2-8) ,R,0.88RppM,M12对投影射程及射程偏离的严格计算将在如下几节详细地讨论。 5.3 LSS射程理论 一.输运方程的建立 为了便于讨论,我们做如下假设:(1)忽略固体的晶体结构效应对离子射程的影响,即靶是一种非晶靶。在一般的情况下,只要入射离子不是沿着某一晶轴或晶面进入固体, 这一假设是能够满足的;(2)在离子与靶原子碰撞过程中,认为靶原子在碰撞前后是近似 不动的,即静态靶;(3)离子同靶原子的相互作用可以分为同靶原子核的弹性碰撞过程和 同核外电子的相互作用过程,这两个过程是相互独立的,且前者可以用二体碰撞理论来描 述,而后者可以用电子阻止力来描述。 根据假设(1)和(3),我们可以采用Boltzmann输运方程来描述离子在固体中的传输过程。设,,,f(r,p,t)时刻在点发现离子的几率函数为,它在时空中的演化遵从如下rt Boltzmann方程 ,,,,,,,,,f(r,p,t)p,f(r,p,t),f(r,p,t),,,F,,,e,,,tmrp1 ( 5.3-1) ,,,,,,,,,,,,,dPd,,(,u)uf(r,p',t)F(r,P',t)f(r,p,t)F(r,P,t),,nc ,,,,,其中F(r,P,t) 是电子阻止力;分别是离子在碰撞前后的动量;是靶原子的分p,p'Fe ,,,,布函数,P,P'是靶原子在碰撞前后的动量;是离子同靶原子的相对u,p/m,P/m12 速度,d,(,,u),是入射离子同靶原子核碰撞时的微分散射截面,是质心系中的散射ncc角。根据假设(2),在碰撞前后靶原子的分布函数可以写成 ,,,,,, F(r,P,t),N,(P),F(r,P',t),N,(P') ( 5.3-2) 其中是靶原子的密度。利用( 5.3-2)式,方程可以简化成为 N ,,,,,,,,,f(r,p,t)p,f(r,p,t),f(r,p,t),,,F,,,e,tM,r,p1 ( 5.3-3) ,,,,,,Nd,,vvfrptfrpt,(,)(,',),(,,),nc ,,2阻止力可以写成S(E)E,mv/2,其中是电子阻止截面,是离子F,NS(E)v/ve1ee ,,的能量,所以有。为了进一步地简化问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 的讨论,我们可F,,f,p,NS(E)v,f,Eee 以假设固体为一无限大的平板,离子的初始速度方向沿着x轴方向。这样方程 ( 5.3-3)又可以简化成 ,,,,f(x,p,t),f(x,p,t),f(v,p,t),v,,NS(E)vxe,t,x,E ( 5.3-4) ,,,,,N,d,(,v)vf(x,p',t),f(x,p,t)nc, 这就是入射离子在固体中的输运方程。 二.矩方程及投影射程方程 我们可以看出:尽管在一维模型下,方程( 5.3-4)仍是一个关于时间、位置及动量的 积分-微分方程,它包含的信息太多,而实际上我们最感兴趣的是离子的射程随能量的变 ,化。为此,需要对方程 ( 5.3-4)做进一步地简化情况。 。将方程( 5.3-4)两边对时间积分,并利用条件,f(x,p,,,),0t 首先除去时间变量可以得到如下方程 ,,,,,,v(x,p)(x,p)x,NS(E)e,,vxE ( 5.3-5) ,,,,,,,,N,d,(,v)(x,p')(x,p)nc, ,,,其中v,vcos,,(x,p),dtvf(x,p,t) 为离子的通量。引入速度的偏转角,即, ,x,,, ,则变量可以用能量和偏转角来代替。这样方程( 5.3-5)可以变成 pE, ,,(x,,E,),,(x,,E,)cos,,NS(E)e,x,E ( 5.3-6) ,,,Nd,(T),(x,E,T,,'),,(x,E,,),n 其中为反冲原子得到的能量,,'是离子在碰撞后的速度偏转角。在方程( 5.3-6)中,我T 22们已经利用了关系式T,4MMEsin(,2)(M,M)将双变量的微分散射截面c1212 d,(T)d,(T)d,(E,,)用单一变量的微分散射截面来表示。的形式已在第四章中nnnc 给出。方程( 5.3-6)称为离子的通量输运方程。 其次,消去偏转角P(cos,),(x,E,,)。将通量函数按勒让德函数展开 ,l , ,(x,E,,),(2l,1),(x,E)P(cos,) (5.3-7) ,ll,l0 其中,(x,E)为展开系数。将( 5.3-7)式代入方程( 5.3-6),并利用勒让德函数的正交归l 一性条件,可以得到 ,,(x,E),,(x,E),,(x,E)1,,,,l1l1l(l,1),l,NS(E)e,,2l,1,x,x,E,, (5.3-8) Tmax,,Nd,(T)(x,ET)P(cos,)(x,E),,,,,,nllrl0 2其中T,4MME(M,M)为反冲原子得到的最大能量,,为实验坐标系中的散max1212r射角。根据(3.1-7)式,可以将散射角,用离子的能量及反冲原子的能量来表示 ETr 11/2,1/2 ( 5.3-9) cos,,(1,T/E),(1,M/M)(T/E)(1,T/E)r212 最后,将变量xx除去。引入的矩函数 ,nn ( 5.3-10) ,(E),x,(x,E)dx,ll,, 则方程( 5.3-8)可以写成 nTd,(E)maxnnl,,,,NS(E),Nd(T),(E),,(E,T)P(cos)enlllr,0dE ( 5.3-11) nn,1n,1,,,(l,1),(E),l,(E)l,1l,12l,1 这就是射程的矩方程。我们在引入矩函数时,已假定函数,(x,E)|x|随着增加而下降,l ,n且下降的速度要比|x|快。另外,根据函数,(x,E,,)的归一性,有 0 ,(E),1 ( 5.3-12) 0 在方程 ( 5.3-11)中,的取值范围为。 l0,l,n n 我们看到,通过求解方程 ( 5.3-11),可以得到任意阶的矩函数,(E)。但实际上我l们最感兴趣的是一些低阶矩函数,因为它们直接与离子在固体中的平均投影射程和纵向 射程偏离有关。所谓的投影射程就是离子在固体中穿行的路径在其入射速度方向上的投 影,即离子注入到固体内部的平均深度。借助于几率函数,(x,E,,),可以定义平均投 R(E)为 p ,影射程R(E),x,(x,E,0)dx,p,, ,1 (5.3-13) ,(2l,1),(E)P(1),ll,l0 1,3,(E)1 1其中利用了,(E),0R(E)[ 可以从方程(5.3-11)看出 ]。可以看到,平均投影射程仅0p 1与一阶矩函数R(E),(E)有关。根据矩方程 ( 5.3-11),可以得出所满足的方程为 p1 dR(E)pTmax,,NS(E),Nd,(T)R(E),R(E,T)cos,,1 (5.3-14) ,enppr0dE 这就是所谓的平均投影射程方程。如果假设散射角,为零,则方程(5.3-14) 即为总射程r R(E)所遵从的方程。 22 同样,射程偏离,R,,也可以用矩函数来表示。的定义为 ,(E)p|||| ,22,(),(,),(,,0)ExRxEdxp||,,, (5.3-15) 22,,,,,,xx 2221其中,x,,,(E),5,(E),。可见射程偏离仅与一阶矩,x,,R(E),3,(E)021p ˆ函数和二阶矩函数有关。引入积分-微分算子K nd(,E)nlˆ,,K(E)NS(E),,ledE (5.3-16) Tnnmax,,Nd,(T)(E)(ET)P(cos,),,,,,,nlllr0 22则由方程 ( 5.3-11),很容易得到,(E),,(E)所满足的方程分别为 02 1212ˆˆ (5.3-17) ,,,,2,,K,,4,,K5,,1012 2所满足的方程为 ,x, 2ˆ由此可以得到 (5.3-18) 2R,K[,x,]p 这样通过求解方程 (5.3-14) 和 (5.3-18),即可以得到纵向偏离的值。方程 (5.3-14) ,(E)|| 2和 (5.3-18) 分别是一阶矩,x,和二阶矩所满足的方程,它们都是非齐次的积分-,x, n微分方程。类似地还可以得到更高阶矩所满足的方程。 ,x, 三.投影射程方程的解 下面我们讨论平均投影射程方程 (5.3-14) 的求解方法。由于该方程是一个积分-微分 方程,直接进行数值求解很不方便。在一般的情况下,只要入射离子的质量M和靶原子1 的质量M不是太接近,则反冲原子得到的能量要小于入射离子的能量,即。这T/E,12 样我们可以将方程 (5.3-14) 左边的积分项中的R(E,T)做关于小量的展开 Tp kk,dR(E),(1)pk ,,, (5.3-19) R(ET)R(E)T,ppk,k1k!dE将其代入方程 (5.3-14), 可以得到 k,dR(E)dR(E)pp ,,, (5.3-20) A(E)B(E)R(E)1NC(E),pkk,k2dEdE其中 A(E),N,,S(E),C(E) (5.3-21) e1 Tmax (5.3-22) ,,B(E)N1cos,d,(T),,,rn0 k,(1)Tkmax C(E)Tcos,d,(E), (5.3-23) ,krn0k! 。 R(0),0P 方程(5.3-20)的边界条件为 可以采用逐级迭代的方法求解方程 (5.3-20)。把投影射程R(E)写成一阶近似项p ,()(1)m和高阶修正项之和,即 R(E)R(E),pp,2m ,(1)()m (5.3-24) R(E)R(E)R(E),,,ppp,2m (1)在一阶近似下,有,将其代入方程 (5.3-20),并略去二阶求导项,则R(E),R(E)pp (1)满足的方程为 R(E)p (1)dR(E)(1)p A(E),B(E)R(E),1 (5.3-25) pdE 这是一个简单的一阶微分方程,很容易得到其解为 EE(1) R(E),dE'exp[,dE"B(E")/A(E")]/A(E') (5.3-26) p,,0'E 很容易看出,当,,0时,上式退化为总射程的表示式 (5.2-2)。 Rr (1)(2) 考虑到二阶修正项,可以将投影射程写成,将其代入方程 R(E),R(E),R(E)ppp (2)(1)(5.3-20),并略去含有二阶导数(包含二阶)以上的项和含有三阶导数(包R(E)R(E)pp含三阶)以上的项,则得 (2)2(1)dR(E)dRpp(2) A(E),B(E)R(E),C(E) (5.3-27) p22dEdE由此可以得到 ,E(2) R(E),dE'Q(E')exp[,dE"B(E")/A(E")]/A(E') (5.3-28) 2p,,0'E 其中 2(1)dRpQ(E),C(E) (5.3-29) 222dE (3)(4)这样依此类推,可以求出三阶修正项,四阶修正项?。修正到多少项为R(E)R(E)pp 止取决于级数(5.3-19)的收敛速度。 5.4 BZ投影射程理论 前面我们已经看到,在LSS射程理论中,投影射程方程是一个积分微分方程,不仅该 方程的建立过程较为繁杂,而且其数值求解也不太方便,尤其是要输入核碰撞的微分散射 截面。核碰撞微分散射截面是一个微观量,只能通过理论计算得到,其精确度如何取决于 相互作用势的选取以及计算过程中所采用的近似,由它计算出的射程将会带来一定的误 差。而Biersack和Ziegler 等人采用投影射程代数法建立的投影射程理论,不仅在数学处 理上简单,而且该理论仅依赖于核阻止截面和电子阻止截面。因为核阻止截面和电子阻止 截面都是宏观量,可以通过实验测量而确定。因此,由这种射程理论给出的投影射程与实 验测量值符合得较好。 我们知道当入射离子在固体中运动时,由于它不断地同固体中的原子发生碰撞,其运 动方向也将不断地偏转。离子同靶原子的碰撞是随机的,其速度的偏转方向也是随机的。 因此离子在固体中的运动类似于布朗 (Brown) 运动。用 表示离子的速度偏转角,即速 , 表面 s,, 22r s 1 , 离子 , v1 x 5.2 离子在固体中速度偏转的示意图。 图 度方向与初始入射方向(,,,,,?x轴)的夹角,则每次碰撞后的偏转角是一系123列的随机量,如图5.2。令,则是区间[-1,1]中的随机量。我们知道随机量,,cos,, 的分布函数应服从角度空间的扩散方程 W(,,t) ,W(,,t)2 (5.4-1) ,D,W(,,t),t 2其中为扩散系数,为角度空间的拉普拉斯算符 ,D ,,,,11,,,22 (5.4-2) sin(1),,,,,,,,,,sin,,,,,,,,,,,,, 我们的目的不是求出分布函数W(,,t)的具体形式,而是要知道随机量的平均值。将,,方程 (5.4-1) 同乘以,并对进行积分,则得到 ,, 1,2, (5.4-3) ,(t),,W(,,,)d,,e,,1 其中,(0),1为新的扩散系数。在给出(5.4-3) 式时,我们已经利用了初始条件。 ,,Dt 下面我们确定扩散系数,与离子能量损失之间的关系。根据布朗运动中的Einstein 关系,应有 1122 ,,,(,,),(,,) (5.4-4) ,i44i 其中,,,,,,,,为相邻两次碰撞偏转角的差。由图5.2可以看出,即为第次碰iiii,1i (i)撞的实验系中的散射角,,因此可以将(5.4-4)式写成 r 21(i) ,,,,,, (5.4-5) ,ri4 ,,与质心系中的散射角有如下关系 cr根据第二章的讨论可以知道,实验系中的散射角,sinc , (5.4-6) tg,rMM,cos,12c 在小角散射近似下,有,,,,,1,MM。这样又可以将(5.4-5)式表示成为 rc12 2i(),,,1c ,,,,, (5.4-7) ,,,41MM,i12,, 另一方面,我们知道在每一次碰撞过程中,靶原子从入射离子中得到的能量为 24MMMME()2()()iii1212 ,,,,,, (5.4-8) T,Esin2,cc22(M,M)(M,M)1212结合(5.4-7)式和(5.4-8)式,又可以将表示成 ,, ()i,EM,T12n (5.4-9) ,,,,,,4ME4Ei1 i()其中,,MM,ET,,,是由于核碰撞而造成的能量损失。由前面几章的讨论,21ni 可以知道,入射离子的能量损失正比于阻止截面,即,E,E,S(E)S(E),其中,Ennt S(E),S(E),S(E)为总能量损失,为总阻止截面。我们最后得到 tne ,,S(E)En ,, (5.4-10) ,,4S(E)Et 其积分形式为 ''S(E),dEEn (5.4-11) ,,,(E,E),0E''04S(E)Et 这样我们就将扩散系数,同阻止截面联系起来了。我们应当注意到,在以上的讨论中已经 采用了小角散射近似。严格地说,这种近似对重离子注入轻原子靶比较有效。实际上,在 d,(T)就是在小角散射近似条件下得n前面的LSS射程理论中,所使用的微分散射截面到的。 由图5.2可以看出,在相邻两次碰撞之间离子的径迹sscos,x在轴上的投影为,则iii 平均投影射程应为 cos,, (5.4-12) R,,s,,ds,,piii 其中离子穿行的路径元ds,,dENS(E)与总阻止本领的关系为。利用(5.4-3)式,则dst平均投影射程又可以写成 1E0 (5.4-13) R(E),dEexp[,2,(E,E)]S(E),p00t0N 由此可以看出,一旦我们知道离子在固体中的阻止本领S(E)S(E)和,直接对(5.4-13)nt式进行积分并利用(5.4-12),即可以得到平均投影射程的值。 (5.4-13)式为平均投影射程的积分表示式。然而在实际数值计算中,直接采用这种积分 形式来计算平均投影射程并不是一种较为简单的方法,因为在 (5.4-13)式的积分项中,(E,E)也是由一个积分式给出的。下面我们建立平均投影射程所满足的微分方程。将0 (5.4-13)式两边对E微分,则得到 0 ,,,,EEEE2(,)2(,)000dR(E)Ee,edE0p0 (5.4-14) ,,,0dENS(E),ENS(E)tt00 再根据(5.4-11)式,有,(E,E),0。再利用 00 ,,,(E,E)S(E)0n0 , (5.4-15) ,E4S(E)0t0 及R(E)的积分形式(5.4-13),即可以得到如下微分方程 p dR(E),S(E)1p0n0 (5.4-16) ,,R(E)p0dENS(E)2ES(E)0t00t0 这就是平均投影射程的微分方程,利用其边界条件R(E),0。可以 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 ,在现在的理p0 22论模型中,射程偏离,,,x,,,x,可以由如下方程给出 || d2x,,22 ,,xz,,,,,, (5.4-17) dENS(E)0t0 2,S(E),,dz22n0 (5.4-18) ,,,,,,,,xzdEES(E)00t0 22其中,x,,R(E),,z,,,(E),为横向偏离。 p0,0 图5.3 离子在硅靶中的平均投影射程和纵向偏离,其中实线和虚线分别是由BZ射程理论给出的平均投影射程和纵向偏离的值,, 和 ,为实验测量结果,, 和,为用蒙特-卡罗模拟的结果。 由此可以看出,与LSS射程理论相比,在BZ射程理论中平均投影射程方程及纵向偏 d,(T)的离所满足的方程均为一阶微分方程。采用差分迭代的方法,可以很容易地计算出平均投影n 射程及纵向偏离的值。此外,在现在的理论模型中,无需知道核微分散射截面形式,只要知道核阻止截面S(E)S(E)和电子阻止截面的值,就可以计算出平均投影ne射程及纵向偏离。图5.3显示出氦离子在硅靶中的平均投影射程R和射程偏离p 2,R,,的值。 p|| 前面对投影射程的讨论是对单元靶进行的。而对于复合靶,设每种组分的原子质量为 (i)i(i)(),S,,MM,,SM (I=1, 2, … ),将方程(5.4-16)中的替换成,其中并利ini2,21ni ()i用阻止截面的线性迭加原理,即Bragg规则,S,S,则仍可以利用方程(5.4-16),tti计算离子在复合 材料 关于××同志的政审材料调查表环保先进个人材料国家普通话测试材料农民专业合作社注销四查四问剖析材料 中的平均投影射程。不过Bragg规则是一种近似方法。仅对金属化合物,用这种方法给出的阻止截面值与实验测试值符合得较好,而对其它化合物,如氧化物 SiO ,则符合得较差。这时必须考虑化学键效应。 23 5.5 离子在固体中浓度分布 前面两节我们分别介绍了两种不同的射程理论,由此可以计算出离子在固体材料中的 平均投影射程R, 及射程偏离。特别是利用LSS射程理论,原则上可以计算出任意阶p|| nn的矩函数,(E),进而可以构造出任意的矩函数。在数学上可以严格地证明,离,x,l n子在固体中的浓度分布N(x)可以用矩函数来构造。特别是在低剂量离子注入情,x,i 况下,如果忽略了固体的晶体效应,则离子的浓度分布可以简单地由低阶矩R,,x,和p 22,,,x,,,x,来构造,即 || 2xR,,,(),piNx (5.5-1) ()exp,,i,,22,2,,||,,||,, 其中,为离子的注入剂量。 i 由 (5.5-1)式给出的离子的浓度分布为一简单的高斯分布,且在x,R处离子的浓度最p大 0.4,,ii (5.5-2) N(R),N,,ipp2,,,|||| ,考虑100 keV 的R,106nm注入Fe中,可以算得离子的平均投影射程为,纵向偏Np 162离为,,22nm,,1,10原子cm。如果注入剂量为,那么离子在固体中的最大浓||i 222212度为 N,8.5,10原子cm。铁的原子密度为,则有N,1.82,10原子cmp NN(,N),0.021,2.1%。因此在一般的离子束材料表面改性工艺(包括等离子pp 体源离子注入技术)中,注入离子在固体中的浓度远低于固体的原子密度。 在高剂量注入的情况下,离子的浓度分布将对高斯分布(5.5-2)式有所偏离。这样一来必 3/22n3须考虑高阶矩,,,带来的修正。如果三阶矩的值远小于的,x,R,,x,R,||pp值,则可以采用如下双高斯分布来逼近离子的浓度分布,即 2,,xx,(,)(1)m0 (x,x) (5.5-3) Nx(),exp,m,,i22,2,(,,,)1,,12 2,,xx,(,)(2)m0 (x,x) (5.5-4) Nx(),exp,m,,i22,2,(,,,)2,,12 其中x,,,,,,,,,,, 及由如下方程组确定: m1m2m x,R,1.6, (5.5-5) mp 22,,m (5.5-6) ,0.44,122,R||p 32,,,x,R,,,p (5.5-7) ,,20.80.26,,232R,,,,p||,,|| 在 (5.5-3)和(5.5-4)式中,常数,,可以由离子的注入剂量来确定 0i ,x(1)(2)m (5.5-8) ,N(x)dxN(x)dx,,,,iii0xm 3/2234如果三阶矩的值大于,,,的值,则需要考虑四阶矩带来的修,x,R,,x,R,||pp正。这时可以采用所谓的埃及华斯(Edgeworth)分布来逼近离子的浓度分布 ,,,34212N(x),N(x)1,(y,2y),(y,6y,3)ig,624, (5.5-9) 2,,6421yyy,(,15,45,15,72, 23/224232其中y,(x,R)/,,,,,,x,R,,,,,,,,x,R,,,, 1||pp||2p|| 2xR,,,(),p0 Nx (5.5-10) ()exp,,g,,22,2,,||,,||,, ,为高斯分布,,由条件确定。 dxN(x),,,0ii0 5.6 离子与固体相互作用过程的Monte-Carlo机模拟 在前面几节,我们采用了解析的方法研究了离子与固体的相互作用过程,即离子的射 程和浓度分布。在这一章,我们将借助于计算机模拟来研究离子在固体中的慢变和散射过 程。目前主要有两种不同的计算机模拟方法用于研究离子与固体的相互作用过程:一种是 蒙特卡罗(Monte-Carlo,简称MC)方法,另一种是分子动力学(molecular dynamics,简称MD)方法。MC方法是建立在二元碰撞基础之上的,主要适用于模拟能量在以keV 左右)在固体中的慢变过程。与前面的解析理论相比较,用MCkeV上的离子在固体中的散射过程,而MD方法则是建立在多体相互作用基础之上的,适用 方法研究离子与固体的相互作用过程有许多优点:MC方法能使我们以较严格的方法处理于低能离子(能量在 弹性散射过程,同时还能给出离子的角分布和能量分布。此外,MC方法还能模拟离子在非均匀靶中的慢变过程,而解析方法则无能为力。 在过去几十年中,已建立了许多用于模拟离子与固体相互作用过程的MC程序,这些MC程序的主要差别在于对弹性散射过程的处理及所使用的电子阻止本领。目前较为流行 的MC程序是由 Biersack,Ziegler 和Littmark等人(1980;1985)建立的TRIM(Transport of Ions in Matter)程序。本节我们将对TRIM 程序中如何处理散射过程、计算电子阻止本 领以及跟踪离子的运动历史等问题做以简单地介绍。 在TRIM程序中,采用了如下基本假设:(1)固体是一个非晶靶,即原子在靶中的排 列是随机的;(2)入射离子同固体中单个原子的相互作用被看成是一个二体碰撞过程,忽 略周围原子的影响;(3)核散射和电子阻止被认为是两个独立的过程。TRIM程序可以处理离子在三维空间中的慢变过程。但为了简化问题,在如下讨论中我们将假设靶是一个半 无限大的平板,离子的入射方向沿 x轴。 我们知道离子在慢变过程中,将不断地同固体中的原子发生碰撞。离子同靶原子每碰撞 一次,它的能量位置xx,速度的偏转方向及能量均发生变化。因此,可以用,及E,,三个量来确定离子在固体中的运动历史: E x,x,?x,??x,,01iN,, ,,,,,,,,?,?? (5.6-1) 01iN,, ,,E,E,?E,??E01iN,,,, 设离子在相邻两次碰撞之间飞行的距离为,,即碰撞自由程,则离子在次碰撞时的位置ii x,x,,cos, (5.6-2) 为 ii,1i,1i,1 利用球面三角函数的公式,离子在次碰撞时其速度的偏转角为 i ii()() cos,,cos,cos,,sin,sin,cos, (5.6-3) iiriri,1,1其中, 为实验坐标系中的散射角,为速度的方位角。在次碰撞时,离子的能量为 ,ir (n)(e) E,E,,E,,E (5.6-4) ii1i1i1,,, (n)(e)其中,E,E为核碰撞时产生的能量损失,为电子阻止产生的能量损失。 i1i1,, 由次可见,为了知道离子在固体中的历史,首先要确定出离子的碰撞自由程,、实验 (n)坐标系中的散射角,、速度的方位角、核碰撞时的能量损失 和电子阻止引起的,,Er (e)能量损失等物理量。下面分别确定之。 ,E (1)碰撞自由程,,的确定。设固体的原子密度为,则碰撞自由程应小于或等于固 N ,1/3体中原子之间的平均距离。另外,我们知道离子在每次同靶原子碰撞时是随机的,N 因此,,应是一个随机量。这样可以将表示成 1/3, ,,,Nln, (5.6-5) 1 其中, 是[0,1]之间的均匀分布的随机数。 1 (2)散射角的确定。由第三章的二体弹性碰撞理论,我们知道实验坐标系中的散射角 ,,可以用质心系中的散射角表示 cr ,,sin,c ,, (5.6-6) ,,arctgr,,cos,,MMc12,, ,可以由第三章中的散射积分公式(2.2-6)来确定。在MCc 3原则上讲,质心系中的散射角模拟中,需要跟踪大量离子的运动历史,跟踪的离子的个数在,以上。这样为了求出,10c 离子每同靶原子碰撞一次,需要完成一次数值积分,这样很费计算机时间。 较好的方法 是采用Beirsack等人的“散射三角”法来计算散射角,,见(2.4-7)式。由(2.2-6)式c 或(2.4-7)式可以看出,,是离子的能量和碰撞参数的函数,即 Epc ,,,(E,p) (5.6-7) cc 其中离子的能量由(5.6-4)式确定。碰撞参数也是一个随机量,它可以表示为 Ep 1/21/3, ,,p,N,, (5.6-8) 2 ,也是[0,1]之间的均匀分布的随机数。 2 (3)能量损失的确定。从第三章的讨论可以知道,离子每同靶原子核进行进行一次弹性 碰撞,其能量损失为 ,4MM,,(n)2c12 (5.6-9) ETE,,,sin,,22(M,M),,12 (e)这种能量传递仅在碰撞点发生,是不连续的。(5.6-4)中的为离子在相邻两次碰撞之,E间飞行时电子阻止力造成的能量损失,它是连续的,其表示式为 ()e (5.6-10) ,E,,NS(E)e 其中S(E)为电子阻止本领截面,可以由?7.5中的经验公式给出。 e (4)方位角的确定。我们知道方位角的取值在0到 之间,它也是一个随机变量, ,2, 其表示式为 ,,2,, (5.6-11) 3 ,也是[0,1]之间的均匀分布的随机数。 3 这样借助于以上各式,我们就可以模拟大量入射离子在固体中的运动历史。在模拟过其中 程中,当离子的能量E小于某一给定的值(约为靶原子的移位阈能,) 5~25eVEd 时,即离子不在运动时,记下离子在固体中的停留位置。然后对不同离子的运动历史进行 统计平均,即可以得到离子在固体中的浓度分布N(x),进而可以确定出离子的投影射i程。图5.4为采用TRIM程序模拟的能量为120Sb离子在Si靶中的浓度分布,并与keV :实验结果进行了比较,其中对应的投影射程约为R,592A。 p 图5.4 Sb离子在Si中的浓度分布。实线为TRIM程序模拟的结果,,为实验数据。 实际上,采用MC方法不仅可以模拟离子的运动历史,同时也可以模拟出固体中反冲 原子的运动历史,并由此可以确定移位原子的空间分布及靶原子的溅射情况。
本文档为【第八章离子在固体中的射程理论】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_842972
暂无简介~
格式:doc
大小:74KB
软件:Word
页数:22
分类:生活休闲
上传时间:2017-11-20
浏览量:65