首页 一个非常简单的遗传算法源代码

一个非常简单的遗传算法源代码

举报
开通vip

一个非常简单的遗传算法源代码一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gau...

一个非常简单的遗传算法源代码
一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从ftp.uncc.edu,目录 coe/evol中的文件prog.c中获得。要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include #include #include /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */种群规模 #define MAXGENS 1000 /* max. number of generations */ #define NVARS 3 /* no. of problem variables */ #define PXOVER 0.8 /* probability of crossover */ #define PMUTATION 0.15 /* probability of mutation */ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. */ int cur_best; /* best individual */ FILE *galog; /* an output file */ struct genotype /* genotype (GT), a member of the population */ { double gene[NVARS]; /* a string of variables */ double fitness; /* GT's fitness */ double upper[NVARS]; /* GT's variables upper bound */ double lower[NVARS]; /* GT's variables lower bound */ double rfitness; /* relative fitness */ double cfitness; /* cumulative fitness */ }; struct genotype population[POPSIZE+1]; /* population */结构体数组(种群) struct genotype newpopulation[POPSIZE+1]; /* new population; */ /* replaces the */ /* old generation */ /* Declaration of procedures used by this genetic algorithm */函数声明 void initialize(void); double randval(double, double); void evaluate(void); void keep_the_best(void); void elitist(void); void select(void); void crossover(void); void Xover(int,int); void swap(double *, double *); void mutate(void); void report(void); /***************************************************************/ /* Initialization function: Initializes the values of genes */ /* within the variables bounds. It also initializes (to zero) */ /* all fitness values for each member of the population. It */ /* reads upper and lower bounds of each variable from the */ /* input file `gadata.txt'. It randomly generates values */ /* between these bounds for each gene of each genotype in the */ /* population. The format of the input file `gadata.txt' is */ /* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound ... */ /***************************************************************/ void initialize(void) { FILE *infile; int i, j; double lbound, ubound; if ((infile = fopen("gadata.txt","r"))==NULL) { fprintf(galog,"\nCannot open input file!\n"); exit(1); } /* initialize variables within the bounds */ for (i = 0; i < NVARS; i++) { fscanf(infile, "%lf",&lbound); fscanf(infile, "%lf",&ubound); for (j = 0; j < POPSIZE; j++) { population[j].fitness = 0; population[j].rfitness = 0; population[j].cfitness = 0; population[j].lower[i] = lbound; population[j].upper[i]= ubound; population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]); } } fclose(infile); } /***********************************************************/ /* Random value generator: Generates a value within bounds */ /***********************************************************/ double randval(double low, double high) { double val; val = ((double)(rand()%1000)/1000.0)*(high - low) + low; return(val); } /*************************************************************/ /* Evaluation function: This takes a user defined function. */ /* Each time this is changed, the code has to be recompiled. */ /* The current function is: x[1]^2-x[1]*x[2]+x[3] */ /*************************************************************/ void evaluate(void) { int mem; int i; double x[NVARS+1]; for (mem = 0; mem < POPSIZE; mem++) { for (i = 0; i < NVARS; i++) x[i+1] = population[mem].gene[i]; population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3]; } } /***************************************************************/ /* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual */ /***************************************************************/ void keep_the_best() { int mem; int i; cur_best = 0; /* stores the index of the best individual */ for (mem = 0; mem < POPSIZE; mem++) { if (population[mem].fitness > population[POPSIZE].fitness) { cur_best = mem; population[POPSIZE].fitness = population[mem].fitness; } } /* once the best member in the population is found, copy the genes */ for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[cur_best].gene[i]; } /****************************************************************/ /* Elitist function: The best member of the previous generation */ /* is stored as the last in the array. If the best member of */ /* the current generation is worse then the best member of the */ /* previous generation, the latter one would replace the worst */ /* member of the current population */ /****************************************************************/ void elitist() { int i; double best, worst; /* best and worst fitness values */ int best_mem, worst_mem; /* indexes of the best and worst member */ best = population[0].fitness; worst = population[0].fitness; for (i = 0; i < POPSIZE - 1; ++i) { if(population[i].fitness > population[i+1].fitness) { if (population[i].fitness >= best) { best = population[i].fitness; best_mem = i; } if (population[i+1].fitness <= worst) { worst = population[i+1].fitness; worst_mem = i + 1; } } else { if (population[i].fitness <= worst) { worst = population[i].fitness; worst_mem = i; } if (population[i+1].fitness >= best) { best = population[i+1].fitness; best_mem = i + 1; } } } /* if best individual from the new population is better than */ /* the best individual from the previous population, then */ /* copy the best from the new population; else replace the */ /* worst individual from the current population with the */ /* best one from the previous generation */ if (best >= population[POPSIZE].fitness) { for (i = 0; i < NVARS; i++) population[POPSIZE].gene[i] = population[best_mem].gene[i]; population[POPSIZE].fitness = population[best_mem].fitness; } else { for (i = 0; i < NVARS; i++) population[worst_mem].gene[i] = population[POPSIZE].gene[i]; population[worst_mem].fitness = population[POPSIZE].fitness; } } /**************************************************************/ /* Selection function: Standard proportional selection for */ /* maximization problems incorporating elitist model - makes */ /* sure that the best member survives */ /**************************************************************/ void select(void) { int mem, i, j, k; double sum = 0; double p; /* find total fitness of the population */ for (mem = 0; mem < POPSIZE; mem++) { sum += population[mem].fitness; } /* calculate relative fitness */ for (mem = 0; mem < POPSIZE; mem++) { population[mem].rfitness = population[mem].fitness/sum; } population[0].cfitness = population[0].rfitness; /* calculate cumulative fitness */ for (mem = 1; mem < POPSIZE; mem++) { population[mem].cfitness = population[mem-1].cfitness + population[mem].rfitness; } /* finally select survivors using cumulative fitness. */ for (i = 0; i < POPSIZE; i++) { p = rand()%1000/1000.0; if (p < population[0].cfitness) newpopulation[i] = population[0]; else { for (j = 0; j < POPSIZE;j++) if (p >= population[j].cfitness && p 1) { if(NVARS == 2) point = 1; else point = (rand() % (NVARS - 1)) + 1; for (i = 0; i < point; i++) swap(&population[one].gene[i], &population[two].gene[i]); } } /*************************************************************/ /* Swap: A swap procedure that helps in swapping 2 variables */ /*************************************************************/ void swap(double *x, double *y) { double temp; temp = *x; *x = *y; *y = temp; } /**************************************************************/ /* Mutation: Random uniform mutation. A variable selected for */ /* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /**************************************************************/ void mutate(void) { int i, j; double lbound, hbound; double x; for (i = 0; i < POPSIZE; i++) for (j = 0; j < NVARS; j++) { x = rand()%1000/1000.0; if (x < PMUTATION) { /* find the bounds on the variable to be mutated */ lbound = population[i].lower[j]; hbound = population[i].upper[j]; population[i].gene[j] = randval(lbound, hbound); } } } /***************************************************************/ /* Report function: Reports progress of the simulation. Data */ /* dumped into the output file are separated by commas */ /***************************************************************/ 。。。。。 代码太多 你到下面呢个网站看看吧 void main(void) { int i; if ((galog = fopen("galog.txt","w"))==NULL) { exit(1); } generation = 0; fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n"); initialize(); evaluate(); keep_the_best(); while(generation
本文档为【一个非常简单的遗传算法源代码】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_902204
暂无简介~
格式:doc
大小:94KB
软件:Word
页数:15
分类:
上传时间:2012-11-28
浏览量:22