首页 诱导和共轭效应

诱导和共轭效应

举报
开通vip

诱导和共轭效应诱导和共轭效应 一 化学键的属性 键长是形成共价键的两个原子之间吸引力排斥力达到平衡时的距离的距离,一般为0.1-0.2nm 键能是化学键形成时放出的能量或化学键断裂时吸收的能量,可用来标志化学键的强度 键的极性 键的偶极矩用正负电荷中心的电荷与正负电荷中心的距离乘积μ=q?d来表示;可衡量键的极性 方向:从正电荷指向负电荷 H Cl 多原子分子的偶极矩是分子中各键的偶极矩的矢量和。 HCH3 CHCH33C C C CCHH3 HH 二 .取代基效应 取代基效应:取代基不同而对分子性质产生不同的...

诱导和共轭效应
诱导和共轭效应 一 化学键的属性 键长是形成共价键的两个原子之间吸引力排斥力达到平衡时的距离的距离,一般为0.1-0.2nm 键能是化学键形成时放出的能量或化学键断裂时吸收的能量,可用来标志化学键的强度 键的极性 键的偶极矩用正负电荷中心的电荷与正负电荷中心的距离乘积μ=q?d来表示;可衡量键的极性 方向:从正电荷指向负电荷 H Cl 多原子分子的偶极矩是分子中各键的偶极矩的矢量和。 HCH3 CHCH33C C C CCHH3 HH 二 .取代基效应 取代基效应:取代基不同而对分子性质产生不同的影响。 取代基效应可以分为两大类。 一类是电子效应,包括场效应和诱导效应、共轭效应。另一类是空间效应,是由于取代基的大小和形状引起分子中特殊的张力或阻力的一种效应,空间效应也对化合物分子的反应性产生一定影响。 1.诱导效应 - + + + δ δ δ δ δ δ δ Y A B C 由于原子或基团电负性的影响沿着分子中的键传导,引起分子中电子云按一定方向转移或键的极性通过键链依次诱导传递的效应称为诱导效应(inductive effects)或I效应。 这种效应如果存在于未发生反应的分子中就称为静态诱导效应,用Is表示。 诱导效应的传导是以静电诱导的方式沿着单键或重键传导的,只涉及到电子云密度分布的改变,引起键的极性改变,一般不引起整个分子的电荷转移、价态的变化。 这种影响沿分子链迅速减弱,实际上,经过三个原子之后,诱导效应已很微弱,超过五个原子便没有了。如: K×104 α-氯代丁酸 14.0 β-氯代丁酸 0.89 γ-氯代丁酸 0.26 丁酸 0.155 诱导效应的强度 主要取决于有关原子或基团的电负性,与氢原子相比,电负性越大-I效应越强,电负性越小则+I越强。 ++ORNR>23 -I效应:—F > —OH > —NH2 > —CH3 —F > —C l > —Br > —I —OR > —SR > —SeR ; +I效应:—O- > —S- > —Se- > —Te- 中心原子带有正电荷的比不带正电荷的同类基团的吸电诱导效应强, 而中心原子带有负电荷的比同类不带负电荷的基团供电诱导效应要强。 -I效应: +I 效应: —O- > —OR 不饱和程度增大,吸电的诱导效应增强。 =O > —OR ?N > =NR > —NR2 当某个外来的极性核心接近分子时,能够改变共价键电子云的分布。 由于外来因素的影响引起分子中电子云分布状态的暂时改变,称为动态诱导效应,用Id表示 动态诱导效应与静态诱导效应的区别 (1)引起的原因不同。静态诱导效应是由于键的永久极性引起的,是一种永久的不随时间变化的效应,而动态诱导效应是由于键的可极化性而引起的,是一种暂时的随时间变化的效应。 (2)对化学反应的影响不同 动态诱导效应是由于外界极化电场引起的,电子转移的方向符合反应的要求,即电子向有利于反应进行的方向转移,所以动态诱导效应总是对反应起促进或致活作用,而不会起阻碍作用。而静态诱导效应是分子的内在性质,并不一定向有利于反应的方向转移,其结果对化学反应也不一定有促进作用。 动态诱导效应的比较 (1)在同一族元素,由上到下原子序数增加,电负性减小,电子受核的约束减小,电子的活动性、可极化性增加,动态诱导效应增强。如: Id : —I > —Br > —Cl > —F —TeR > —SeR > —SR > —OR (2)在同一周期中,随着原子序数的增加,元素的电负性增大,对电子的约束性增大,因此极化性变小,故动态诱导效应随原子序数的增加而降低。 Id: —CR3>—NR2>—OR>—F (3) 如果同一元素原子或基团带有电荷,带正电荷的原子或基团比相应的中性原子或基团对电子的约束性大,而带负电荷的原子或基团则相反,所以Id效应随着负电荷的递增而增强。 Id :—O- > —OR > +OR2; —NR2 > —+NR3 ; —NH2 > —+NH3 诱导效应对反应活性的影响 对反应方向的影响 [例] 丙烯与卤化氢加成,遵守马氏规则,而3,3,3-三氯丙烯加卤化氢则按反马氏规则的方向加成。 Cl3C?CH=CH2 + HCl Cl3c—CH2—CH2Cl 在苯环的定位效应中,+N(CH3)3具有强烈的-I效应,所以是很强的间位定位基,在苯环亲电取代反应中主要得到间位产物,而且使亲电取代比苯难于进行。 2.对反应机理的影响 在一些反应中,由于诱导效应等因素可以改变其反应机理。如溴代烷的水解反应,伯溴代烷如CH3—Br主要按 SN2历程进行,而叔溴代烷如(CH3)3C—Br则主要遵从SN1历程进行 3.3.对反应速率的影响 4.[例1] 5. 羰基的亲核加成反应,羰基碳原子的电子云密度越低,就越容易和亲核试剂发生加成反应,在这种情况下,分子所需要的活化能就比较小,容易进入活化状态,因而反应速率较大。故取代基的-I效应愈强,愈有利于亲核加成;取代基的+I效应愈强,对亲核加成愈不利。 6. 如下列化合物发生亲核加成的活性顺序为: 7. 8. Cl3C—CHO > Cl2CHCHO > ClCH2CHO > CH3CHO 4.对化学平衡的影响 [例1] 酸碱的强弱是由其解离平衡常数的大小来衡量的,在酸碱的分子中引入适当的取代基后,由于取代基诱导效应的影响,使酸碱离解平衡常数增大或减小。 2. 共轭效应( conjugative effects) 由于原子间电负性不同,引起分子中电子密度分布的不均衡,通过共轭π键传递,而且不论距离远近,其作用贯穿整个共轭体系中,这样所产生的电子效应。 ++CHH K-+1COOH HOCHCOOO3233 K-+2ClCHCOOHOHO COOH2322 + +ClCH 共轭效应的主要表现: (1)电子密度发生了平均化,引起了键长的平均化 (2)共轭体系的能量降低。各能级之间能量差减小,分子中电子激发能低,以致使共轭体系分子的吸收光谱向长波方向移动。随着共轭链增长,吸收光谱的波长移向波长更长的区域,进入可见光区。 颜色 最大吸收峰波长(nm) 丁二烯 无 217 己三烯 无 258 辛四烯 淡黄 298 蕃茄红素 红色 470 共轭效应与诱导效应的区别 (1)共轭效应起因于电子的离域,而不仅是极性或极化的效应。 (2)共轭效应只存在于共轭体系中,不象诱导效应那样存在于一切键中。 (3)诱导效应是由于键的极性或极化性沿σ键传导,而共轭效应则是通过π电子的转移沿共轭链传递,是靠电子离域传递;共轭效应的传导可以一直沿着共轭键传递而不会明显削弱,不象诱导效应削弱得那么快,取代基相对距离的影响不明显,而且共轭链愈长,通常电子离域愈充分,体系能量愈低愈稳定,键长平均化的趋势也愈大。 共轭效应的相对强度 C效应分为供电共轭效应(即+C效应)和吸电共轭效应(即-C效应)。 通常将共轭体系中给出π电子的原子或原子团显示出的共轭效应称为+C效应,吸引π电子的原子或原子团的共轭效应称为-C效应。 (1)+C效应 在同一周期中随原子序数的增大而减弱。 如: —NR2 > —OR > —F 在同一族中随原子序数的增加而减小。 如: —F > —Cl > —Br > —I ; —OR > —SR > —SeR > TeR ; —O– > —S– > —Se– > —Te – 带负电荷的元素将具有相对更强的+C效应: —O– > —OR > —O+R2 (2)-C效应 在同周期元素中,原子序数越大,电负性越强,-C效应越强。 如: =O > =NH > =CH2 对于同族元素,随着原子序数的增加,原子半径变大,能级升高,即与碳原子差别变大,使π键与π键的重迭程度变小,故-C效应变弱。 如: C=O > C=S 带正电荷将具有相对更强的-C效应。 如: =N+R2 > =NR 共轭效应和诱导效应是并存的,是综合作用于分子的结果,通常是难以严格区分的。 ..- OOH 动态共轭效应 动态共轭效应是共轭体系在发生化学反应时,由于进攻试剂或其他外界条件的影响使p电子云重新分布,实际上往往是静态共轭效应的扩大,并使原来参加静态共轭的p电子云向有利于反应的方向流动。 共轭体系的分类 按参加共轭的化学键或电子类型,共轭效应包括π-π共轭体系、p-π共轭体系、σ-π共轭体系和σ-p共轭体系等。 1、 - 共轭体系 (1)π-π共轭体系,是指由π轨道与π轨道电子离域的体系,一般由单键和不饱和键(双键和叁键)交替排列组成。这些体系中参与共轭的原子数与π电 CHCHCHOCHCHCHO32子数相等。如: 2 μ= 2.49 CH2==CH—CH==CH2 μ= 2.88 CH 2==CH—CH==CH—CH==CH 2 CHCHClCHCHCl322 缺电子共轭体系:CH 2==CH--CH2+ C 6 H 5CH2+ μ= 2.05μ= 1.66 多电子共轭体系:CH 2==CH—CH 2 – CH 2==CH—CH==O 2、p- 共轭体系 具有处于p轨道的未共用电子对的原子与π键直接相连的体系,称为p-π共轭体系。 [如]氯乙烯,当氯原子的p轨道的对称轴与π键中的p轨道对称轴平行时,电子发生离域。 3.超共轭体系 发生在重键和单键之间,如有些σ键和π键、σ键和p轨道、甚至σ键和σ键之间也显示出一定程度的离域现象,这种效应称为超共轭效应。 共轭效应与反应性 1. 对化合物酸碱性的影响 羧酸的酸性是因为羧酸分子中具有p-π共轭,增大了O-H键的极性,促使氢容易离解,且形成的羧基负离子共轭效应增强,更稳定。醇一般为中性,苯酚由于p-π共轭,有一定的酸性。 - OH CHOCHCHOCH=CHCH=CH+ CH65??3 CHCH=CHHOCH=CHCH=CHCHO+652 三硝基苯酚中,由于三个强吸电子硝基的共轭和诱导作用,使其显强酸性,已接近无机酸的强度。 2. 对反应方向和反应产物的影响 在α,β-不饱和羰基化合物分子中,C=O与C=C形成共轭体系,对反应方向和反应产物带来很大影响,使这些醛、酮具有一些特殊的化学性质。如丙烯醛与HCN主要发生1,4加成。 插烯作用是共轭醛、酮中一种特殊作用,也是由于共轭效应的缘故。 3. 对反应速度的影响 Cl Öó?ÐÊýÌì- +ÎÞ??Ó?OH ÈÜÒºNaHCO3 OHCl NO1302?æ 2-NOOHNaHCOÈÜÒº3+ ClOH 100NO?æ2NO2- +OH NaHCOÈÜÒº3 NO2NO2ClOH 35NO?æNO2ON2-NO22+OH NaHCOÈÜÒº3 NO2NO 23. 场效应 分子中原子之间相互影响的电子效应,不是通过键链而是通过空间传递的,称为场效应(field effects)。 场效应和诱导效应通常难以区分,它们往往同时存在而且作用方向一致,实际上场效应是诱导效应的一种表现形式,所以也把场效应和诱导效应总称为极性效应。 但在某些场合场效应与诱导效应的方向相反,从而显示出场效应的明显作用。
本文档为【诱导和共轭效应】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_477730
暂无简介~
格式:doc
大小:22KB
软件:Word
页数:8
分类:
上传时间:2017-10-14
浏览量:129