首页 交工2马静,郭晓莹

交工2马静,郭晓莹

举报
开通vip

交工2马静,郭晓莹交工2马静,郭晓莹 新能源轮毂汽车驱动受力情况 交工08-2马静 1 轮毂式电动汽车发展现状 轮毂式电动汽车是一种新兴的驱动式电动汽车,有两种基本形式,即直接驱动式电动轮和带轮边减速器电动轮。它直接将电机安装在车轮轮毂中,省略了传统的离合器、变速器、主减速器及差速器等部件,简化了整车结构,提高了传动效率,并且能通过控制技术实现对电动轮的电子差速控制。电动轮将成为未来电动汽车的发展方向。 目前国际上对轮毂式电动汽车的研究主要以日本为主。日本庆应义塾大学的电动汽车研究小组已试制了5种不同形式的样车。其中,19...

交工2马静,郭晓莹
交工2马静,郭晓莹 新能源轮毂汽车驱动受力情况 交工08-2马静 1 轮毂式电动汽车发展现状 轮毂式电动汽车是一种新兴的驱动式电动汽车,有两种基本形式,即直接驱动式电动轮和带轮边减速器电动轮。它直接将电机安装在车轮轮毂中,省略了传统的离合器、变速器、主减速器及差速器等部件,简化了整车结构,提高了传动效率,并且能通过控制技术实现对电动轮的电子差速控制。电动轮将成为未来电动汽车的发展方向。 目前国际上对轮毂式电动汽车的研究主要以日本为主。日本庆应义塾大学的电动汽车研究小组已试制了5种不同形式的样车。其中,1991年与东京电力公司共同开发的4座电动汽车IZA,采用Ni-Cd电池为动力源,以4个额定功率为6.8kW、峰值功率达到25kW的外转子式永磁同步轮毂电机驱动,最高速度可达176km/h。1996年,该小组联合日本国家环境研究所研制了电动轮驱动系统的后轮驱动电动汽车ECO,该车的电动轮驱动系统选用永磁直流无刷电动机,额定功率为6.8kW,峰值功率为20kW,并配以行星齿轮减速机,该电动轮采用机械制动与电机再生制动相结合的方式。2001年,该小组又推出了以锂电池为动力源,采用8个大功率交流同步轮毂电机独立驱动的电动轿车KAZ。该车安装了8个车轮,大大增加了该车的动力,从而使该车的最高速度达到311 km/h。KAZ的电动轮系统中采用高转速、高性能内转子型电动机,其峰值功率可达55 kW,提高了KAZ轿车的极限加速能力,使其0,100km/h加速时间达到8s。为了使电动机输出转速符合车轮的实际转速要求,KAZ电动轮系统匹配行星齿轮减速机构。KAZ前轮采用盘式制动器,后轮采用鼓式制动器。2003年日本丰田汽车公司在东京车展上推出的燃料电池概念车FINE-N也采用了电动轮驱动技术。美国通用汽车公司2001年试制的全新线控4轮驱动燃料电池概念车Autonomy也采用电动轮驱动型式,电动轮驱动系统灵活的控制与布置方式,使该车能更好地实现线控技术。 国内对电动轮驱动方式的研究也取得了一些进展。同济大学研制的“春晖”系列燃料电池概念车采用了4个直流无刷轮毂电机独立驱动的电动轮模块。比亚迪于2004年在北京车展上展出的ET概念车也采用了电动汽车最新驱动方式:4个轮边电机独立驱动模式。中国科学院北京三环通用电气公司研制的电动轿车用直流无刷轮毂电机,又称电动车轮。单个电动车轮功率为7.5 kW,电压264 V,双后轮直接驱动。中船总公司724研究所的4轮电动汽车,其电动机性能指标为:额定功率3 kW,额定转速3000r/min,额定电压为110 V。 2 电动轮汽车结构 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 电动轮式电驱动系统有直接驱动式电动轮和带轮边减速器电动轮两种基本形式。这取决于是采用低速外转子还是高速内转子电动机。直接驱动式电动汽车采用低速外转子电动机,电动轮与车轮组成一个完整部件总成,采用电子差速方 式,电机布置在车轮内部,直接驱动车轮带动汽车行驶。其主要优点是电机体积小、质量轻和成本低,系统传动效率高,结构紧凑,既有利于整车结构布置和车身 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 ,也便于改型设计。这种电动轮直接将外转子安装在车轮的轮辋上驱动车轮转动。然而电动汽车在起步时需要较大的转矩,也就是说安装在直接驱动型电动轮中的电动机必须能在低速时提供大转矩。为了使汽车能够有较好的动力性,电动机还必须具有很宽的转矩和转速调节范围。由于电机工作产生一定的冲击和振动,要求车轮轮辋和车轮支承必须坚固、可靠,同时由于非簧载质量大,要保证车辆的舒适性,要求对悬架系统弹性元件和阻尼元件进行优化设计,电机输出转矩和功率也受到车轮尺寸的限制,系统成本高。 带轮边减速器电动轮电驱动系统采用高速内转子电动机,适合现代高性能电动汽车的运行要求。它起源于矿用车的传统电动轮,属于减速驱动类型,这种电动轮允许电动机在高速下运行,通常电动机的最高转速设计在4000,20000 r/min,其目的是为了能够获得较高的比功率,而对电动机的其它性能没有特殊要求,可以采用普通的内转子高速电动机。减速机构布置在电动机和车轮之间,起到减速和增矩的作用,从而保证电动汽车在低速时能够获得足够大的转矩。电机输出轴通过减速机构与车轮驱动轴连接,使电机轴承不直接承受车轮与路面的载荷作用,改善了轴承的工作条件;采用固定速比行星齿轮减速器,使系统具有较大的调速范围和输出转矩,充分发挥驱动电机的调速特性,消除了电机输出转矩和功率受到车轮尺寸的影响。设计中主要应考虑解决齿轮的工作噪声和润滑问题,其非簧载质量也比直接驱动式电动轮电驱动系统的大,对电机及系统内部的结构 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 设计要求更高。图1为轮边减速器型电动轮示意图。 图1 轮边减速器型电动轮示意图。 3 转向差速控制研究 轮边驱动系统没有传统的减速机构和机械式差速器,因而在转向时需考虑对两个轮边电机的转速和转矩进行重新分配来实现差速控制,从而减少汽车转向时轮胎的磨损和滑移,提高汽车行驶稳定性。 3.1 电子差速控制模型分析 在车辆低速转弯时,通常采用模型分析车辆的转向差速控制。该模型有如下几个假设条件:(1)车体刚性;(2)车轮纯滚动,即不考虑已发生滑移、滑转和轮胎离开地面的运行状态;(3)轮胎侧向变形与侧向力成正比,即不考虑轮胎材质与结构上的非线性和因垂直载荷不同造成的轮胎侧向弹性系数的变化。 3.2 改进的电子差速控制方案 改进后的电子差速控制方案在控制车轮转速的基础上以车轮滑移率为控制目标,以驱动轮转矩为控制变量,在保证汽车操纵稳定性和平顺性的前提下,当汽车直线行驶时,平均分配两驱动轮的转速和转矩;在汽车转向时,对两侧车轮输入不同转速和转矩,使两驱动轮的滑移率最低,确保行驶安全性。 3.2.1 转向时离心力对载荷的影响 在汽车转向时,离心力产生的侧翻力矩对驱动轮垂直载荷影响较大。沿平直道路行驶的汽车可认为两后轮垂直载荷相同。如下式: 式中:b为质心到后轮的距离, m为汽车质量。 转弯时离心力产生的侧翻力矩为: M=FH (2) xa 式中:H为汽车质心到地面的高度。 转弯时后轮的载荷为: 式中:υ为汽车速度。 对的车体和θ<30?的转弯状况,可以由代替,且误差小于5%。由此可得驱动轮内外侧的载荷比: 3.2.2 对驱动电机的转矩控制 控制踏板输入相当于转矩控制指令,采用线性调节负反馈的电流控制,从图 2控制框图得出输出特性,如式(8)所示。 式中:R为电机相电阻, K为转矩系数, t K为电动势系数。 c 转弯行驶时内外侧轮的转矩差及内外侧轮实际所需转矩分别为: 4 轮毂式电动汽车关键技术 4.1 轮毂电机及其控制技术 目前电动轮所用的低速外转子电动机和高速内转子电动机都是径向磁通永磁轮式电机。高速内转子电机的结构与传统的永磁同步电机或无刷直流电机基本相同。电机的最高转速主要受线圈和摩擦损耗以及变速机构承受能力等因素的限制。外转子轮式永磁电机作为电动汽车直接驱动的执行器,电机采用 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 面安装NdPeB磁钢的外转子定子多极少槽结构。外转子结构在车轮直径固定的约束条件下,使电枢直径增加,提高了电机能力;同时,外转子结构使电机散热条件恶化,对长时间过载能力有一定影响。定子采用多极少槽结构,减小体积、简化结构,有利于产生所需的电势谐波以提高力能指标。永磁转子位置传感器采用磁阻式多极旋转变压器,与电机本体一体化安装,结构紧凑。 电机驱动采用轴角变换技术,使用轴角变换芯片将旋转输出信号变换为数字 位置信号,供相电流指令合成电路产生各相的电流指令;相电流指令与电流负反馈信号经电流调节器(CR)处理,控制SPWM型逆变功率电路,驱动电机运行。 轮毂式电动汽车一般有2个或4个轮边电机,对多个电机实行协调控制。实现电动汽车驱动的关键技术是驱动电机的运行控制,其中包括车辆行驶的稳定性控制、转向差速控制、系统动力性能优化和节能控制等。在稳定性控制中,以牵引控制为主要研究方向,系统的综合节能策略在电池技术没有足够进步之前,也相当重要。为了更好地对车辆进行研究和优化设计,电动汽车的有效数学模型和快速有效的系统运行控制算法也是当今世界各国的攻关热点。 4.2 能源及能量管理系统 电池是电动汽车的动力源泉,也是制约电动汽车发展的关键因素。电动汽车电池的主要性能指标是比能量、能量密度、比功率、循环寿命和成本等。要使电动汽车与燃油汽车竞争,关键要开发出比能量高、比功率大、使用寿命长的高效电池。 到目前为止,电动汽车电池经过3代的发展,已取得了突破的进展。第1代是铅酸电池,目前主要是阀控铅酸电池(VRLA),由于其比能量较高、价格低和放电倍率高,是目前惟一能大批量生产的电动汽车用电池。第2代是碱性电池,主要有Ni-Cd、Ni-MH、Na-S、Li-ion和Zn/Air等多种电池,其比能量和比功率都比铅酸电池高,大大提高了电动汽车的动力性能和续驶里程,但其价格比铅酸电池高。第3代是以燃料电池为主的电池。燃料电池直接将燃料的化学能转变为电能,能量转变效率高,比能量和比功率都高,并且可以控制反应过程,能量转化过程可以连续进行,是理想的汽车用电池,但目前还处于研制阶段,一些关键技术还有待突破。 由于电动汽车的车载能量有限,其行驶里程远远达不到燃油车的水平,能量管理系统的目的就是最大限度地利用有限的车载能量,增加行驶里程。智能能量管理系统采集从各个子系统输入的传感器信息,这些传感器包括车内外气温传感 器、充放电时电源电流和电压传感器、电动机电流和电压传感器、速度和加速度传感器以及车外环境和气候传感器等。能量管理系统能实现以下基本功能:优化系统的能量分配;预测电动汽车电源的剩余能量和继续行驶里程;提供最佳的驾驶模式;再生制动时合理地调整再生能量;自动调整温度控制方式。智能管理系统如同电动汽车的大脑,同时具有功能多、灵活性好、适应性强的特点。 汽车性能由谁决定,论马力与扭矩的关系 交工08-2班郭晓莹 马力与扭力哪一项最能具体代表车辆性能, 扭矩的定义是:垂直方向的力乘以到旋转中心的距离,公制单位为牛顿-米(N-m),除以重力加速度 9.8m/sec2之后,单位可换算成大家熟悉的公斤-米(kg-m)。 汽车驱动力的计算方式: 将扭矩除以车轮半径,也可以从发动机马力与扭矩输出曲线图中发现,在每不同转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢,答案很简单,就是除以一个长度,便可获得“力”的数据。举例说一下,一台1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/60 R14尺寸的轮胎,半径约为41厘米,则经车轮所发挥的推进力量为36.6公斤(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位“牛顿”)。 但36公斤的力量怎么能推动一吨多的汽车呢,而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,幸好聪明的人类发明了“齿轮”,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度、降低的比率、以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的“齿轮比”。 举例说明:以小齿轮带动大齿轮,假设小齿轮的齿数为15齿,大齿轮的齿数为45齿。当小齿轮以3000rpm的转速旋转,而扭矩为20kg-m时,传递至大齿轮的转速便降低了1/3,变成1000rpm;但是扭矩却放大了三倍,成为60kg-m。这就是发动机扭矩经过变速箱可降低转速并放大扭矩的基本原理。 在汽车上,发动机将动力输出至轮胎共经过两次扭矩放大的过程,第一次是由变速箱的档位作用而产生,第二次则取决于最终齿轮比(或称最终传动比,也可称为尾牙)。扭矩的总放大倍率就是变速箱齿比与最终齿轮比的相乘倍数。 举例来说:一辆手动档的思域,一档齿轮比为3.250,最终齿轮比为4.058,而引擎的最大扭矩为14.6kgm/5500rpm,于是我们可以算出第一档的最 大扭矩经过放大后为14.6×3.250×4.058=192.55kgm,比原引擎放大了13倍。此时再除以轮胎半径约0.41m,即可获得推力约为470公斤。然而上述的数值并不是实际的推力,毕竟机械传输的过程中必定有磨耗损失,因此必须将机械效率的因素考虑在内。 论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自动变速箱较惨,约剩88%左右,而传动轴的万向接头效率约为98%,各位可以自己计算一下就知道实际的推力还剩多少。整体而言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位为公尺) 马力亦非“力”属于“功率”的一种 马力其实也不是一种“力”,而是一种“功率”的单位,定义为单位时间内所能做“功”的大小。 功率是由扭矩计算出来的,而计算的公式相当简单:功率(W),2π×扭矩(N-m)×转速(rpm)/60,简化计算后成为:功率(kW)=扭矩(N-m)×转速(rpm)/9549,。然而功率“kW”要如何转换成大家常见的“马力”呢,下面还要给大家分析两种不同的马力,英制与公制。公制:1PS=735W;英制:1hp=746W 谈到发动机的马力,相信有些人会下意识的想到DIN、SAE、EEC、JIS等等不同测试标准,但由于英制与公制的不同,对“马力”的定义就不一样。 英制的马力(hp)定义为:一匹马于一分钟内将200磅(lb)重的物体拉动165英呎(ft),相乘之后等于33,000ft-lb/min; 公制的马力(PS)定义为:一匹马于一分钟内将75公斤的物体拉动60公尺,相乘之后等于4500kg-m/min。经过单位换算,(1lb=0.454kg;1ft=30.48cm)最终我们发现英制的1hp=4566kg-m/min,与公制的1PS=4500kg-m有些许差异,而如果以功率W(1W=1Nm/sec= 9.8kgm/sec)来换算的话,可得1hp=746W;1PS=735W两项不一样的结果。 到底世界上为什么会有英制与公制的分别,就好像为什么有的汽车是左舵,有的却是右舵一样,是人类永远难以协调的差异点。若以大家比较熟悉的几个测试标准来看,德国的DIN与欧洲共同体的新标准EEC还有日本的JIS是以公制的PS为马力单位,而SAE使用的是英制的hp为单位,但为了避免复杂,国内一率将马力的单位标示为hp。而现在越来越多的汽车厂家已经采用绝无争议的kw(千瓦)作为发动机动力输出的功率数值。 不过话说回来,1PS与1hp之间的差异仅1.5%,每一百匹马力差1.5匹,差异并不大。一般自然吸气发动机的房车多半仅在200匹马力以下,两者由于定义的差异也仅3匹马力左右,因此如果真要斤斤计较的话,就把SAE标准的数据多个1.5%吧~不过SAE、JIS、DIN、EEC各种测试标准之间亦有些许差异,单位之间不能真正划上等号,然而在差别不大的情况之下,就当作相同吧~管他是英制还是公制,都差不多可以视为相等。 将上述获得的马力与功率换算方式代入功率与扭矩的换算公式,并且将扭矩的单位换算为大家熟悉的kg-m之后,可得下列结果: 英制马力hp=扭矩(kg-m)×引擎转速(rpm),727 公制马力PS =扭矩(kg-m)×引擎转速(rpm),716 ? 简单的改装件并不会给车辆动力带来明显改善 知道这些公式之后有什么用呢,从「马力hp=扭矩×转速/727」看来,如果能增加引擎转速,扭矩不变的情况下,便能增加马力。例如若能将转速从6000rpm增加到8000rpm,等于增加了33%,但因为凸轮轴的角度限制使得8000rpm时扭矩下降了10%,而这种情况下仍能使马力增加19.7%,这说明了时下改装计算机为何能在解除断油后大幅增加马力。所以希望大家在改装电脑是更加谨慎。 让我们从另外一个角度来想:如果在同样的转速下,增加20匹马力,代表能增加多少推力呢,以最大扭矩点发挥于5000rpm的情况下,将公式稍微变 换一下,可发现增加的扭矩=20hp×727,5000rpm=2.9kgm。再将这个结果代入汽车驱动力的公式,同样以思域的一档计算,2.9×3.250×4.058/0.41=93公斤。对于一吨重的车身而言,影响似乎也不怎么大;再者如果相差5匹马力的话,推力更仅增加23公斤,可见相差5匹马力,根本也没差多少,所以能“增加5匹马力”的产品,到底应该花多少钱去改装,您自己会拿捏了吧, 大马力决定真性能~ 到底大马力的车子跑得快,还是大扭矩的车子跑得快,从公式可以知道大马力的原因是:高转速的时候仍保有高扭矩数值,也就是说要有大马力,不只是低转速的扭矩要好,连高转速的扭矩都得继续维持,这表示扭矩与马力的争论根本是多余的,只要能做到高马力,除了表示各转速区域的扭矩都很大之外,更代表材料技术的优越性,将活塞、进排气门的材质与重量予以强化与轻量化,才能将引擎转速提高。 扭矩与功率的换算公式推导 假设一圆的半径为r(单位为m),扭矩为T(单位为N-m),则圆周上切线方向的力F=T/r,由于功率的定义为「每秒钟所作的功」,对于圆周运动而言,每旋转一圈所作的功为:F×圆周总长2πr,将F=T/r代入计算,每一圈所作的功W=F×2πr=(T/r)×2πr=2πT,再乘上引擎转速rpm就是每分钟所作的功,但功率P的单位是N-m/sec ,所以需除以60,转换成每秒所作的功。代入公式:P=T2πrpm/60,将常数整理后,则可得P(kW)=Trpm/9545。 由上文可见,一台车的动力由发动机传输到车轮,需要经过多组齿轮因此有所损耗,如果德制马力测的是传递到车轮上的动力,那么同样发动机用在不同车型 上的动力输出应该不同,试拿bmw330和bmw530做比较,其功率均是225hp/5900rpm;结论,要么bmw在数据上造假,要么它测的是发动机曲轴飞轮 上的输出净值。 由上文可见,一台车的动力由发动机传输到车轮,需要经过多组齿轮因此有所损耗,如果德制马力测的是传递到车轮上的动力,那么同样发动机用在不同车型上的动力输出应该不同,试拿bmw330和bmw530做比较,其功率均是225hp/5900rpm;结论,要么bmw在数据上造假,要么它测的是发动机曲轴飞轮上的输出净值。 交工08-2班郭晓莹
本文档为【交工2马静,郭晓莹】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_852287
暂无简介~
格式:doc
大小:67KB
软件:Word
页数:11
分类:互联网
上传时间:2017-11-17
浏览量:22