首页 【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION

【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION

举报
开通vip

【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION 1282ACTAMATHEMATICASCIENTIAVo1.31Ser.B whereR(z)isarationalfunction,P(z)isapolynomia1. BankandKaufman…gavethefollowingresultconcerningtheexistence...

【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION
【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION 1282ACTAMATHEMATICASCIENTIAVo1.31Ser.B whereR(z)isarationalfunction,P(z)isapolynomia1. BankandKaufman…gavethefollowingresultconcerningtheexistenceandthegrowth restrictionofsolutionsofdifferenceequations. TheoremAForanyrationalfunctionR(),equation(1.1)alwayshasameromorphic solutiony(z)suchthatT(r,Y)=O(r)asr__?... Inthispaper,weassumethereaderisfamiliarwiththebasicnotionsofNevanlinna’s valuedistributiontheory(seee.g.[25]).Inaddition,weusethenotations(.厂)todenotethe orderofgrowthofthemeromorphicfunction.厂(z),(. 厂)and(?)todenote,respectively,the exponentsofconvergenceofzerosandpolesof.厂 ().Wealsousethenotation7_(,)todenote theexponentofconvergenceoffixedpointsoffdefinedby 7-(_厂)1imS .. Hp— logN(r,~_z) Recently,anumberofpapers(including[62O])focusedoncomplexdifferenceequations anddifferenceanaloguesofNevanlinna’stheory.AsthedifferenceanaloguesofNevanlinna’s theoryareinvestigated,manyresultsonthecomplexdifferenceequationsweregotrapidly. Manypapers(including[6,11,12,1520])mainlydealwiththegrowthofmeromorphic solutionsofdifferenceequations. Thegoalofourresearchistoconsidertheexistence,thegrowth,poles,zeros,fixedpoints andtheBorelexceptionalvalueofsolutionsof(1.1)and(1.2).wlewillprovethefollowingfour theorems. Theorem1ForanyrationalfunctionR(z)?0,considerequation(1.1),thefollowing statementsho】ds. (1)Equation(1.1)musthaveameromorhpicsolutiony(z)satisfies auitstranscendentalmeromorphicsolutionsoffiniteordersatisf)r()= ()=()=l,and ()1. (2)Everytranscendentalmeromorphicsolutiony(z)offiniteorderofithasatmostone Borelexceptionalvalue. (3)Ifitssolution()hasinfinitelymanypoles,then()1. (4)Ifn(z)?1andy(z)isitstranscendentalmeromorphicsolutionoffiniteorder,then theexponentofconvergenceoffixedpointsofy(z)satisfiesr()=(). The.rem2LetR(z)= polynomials,degP(z)=P,degQ( statementshold. ?0bearationalfunctionwhereP(),Q(z)areirreducible z)=q,P—q=8.Considerequation(1.1),thefollowing polynomialswithdegm(z):m,degn(z)=礼,thenm—n:s+1. (3)Ifs一2andy(z)isdefinedasin(2),then仃一n=s+1orm—n=0. (4)Ifq=0(i.e.Q(z)isanonzeroconstant),then(1.1)musthasapolynomialsolution y(z)=as+lz++-??+alz+ao(as+l?0),coefficientsas+1,…,alofwhichcanbedecided bycoefficientsofR(名),andthecoefficienta0maytakeanyconstant. ByTheorem1,wecanobtainthefollowingcorollary. NO.4z?x?Chenetal:ONDIFFERENCEEQUATIONSRELATINGTOGAMMAFUNCTION1283 Corollary1FortheGausspsifunction():(see[21,Chapter7]),wehave ()=A()=r()=()= ‘IIheorem3LetP(z)beapolynomialwithdegP(z)=P1. Considerthedifference equation(1.2),then (1)Equation(1.2)hasnononzerorationalsolution: (2)EVerYtranscendentalmeromorphicsolutionof(1.2)satisfies()l, andhasatmost oneBorelexceptionalvalue. ThefollowingExamplesl,6showtheexistencesandtheform sofrationalsolutionsof Theorem2?Examples2-4showthatthereassuredlyexistt wocasesm—n::s+1and m一礼 0undercondition(3)ofTheorem2.Example6showspropertiesontranscendent a1 Example7showsthatthec.nditi.nR(z)?1inTheorelTl1(4)cannotbeomitted. Example1Thedifferenceequation (z+1)一()=z2丽+3z+l hasas.luti.n():z2,wheres=2—2:0andm, n:2一l:1:s+1 Example2Thedifferenceequation y(z+1)一y(z) hasasolutiony(z)=1,wheres=一2andm,礼 Example3Thedifferenceequation v(z+1)一y(z) , 1 z(z+1) —— 1=8J,1 3U (Z+3)+2) hasasolution(z)=z-1,wheres=一2andm—n:0 Example4Thedifferenceequation y(z十1)一y(z)=-4(z1)—11 — 2)(z(z+ hasas.luti.n(z)=‘(z- z( 1 . ) 一 (z 3 -- ) 2) , wheres:一3and一他:0 Example5Thedifferenceequation (+1)一(): Z hasaranscendenta1s.luti.n(z):()andhasn.rationals.lutj.n. Equati.ns y(z+1)一y(z)(Z—1)(z一2)andv(z+1)一()=z(z一1)— (—(—z———-—’——2——)—.(—z———-’———3—’)——(—z———-————4——) havenorationalsolutions. xampe6Thedi舶renceequatjon(+1)一(z)=2z+lhasthef0llOwingthree solutions: 1284ACTAMATHEMATICASCIENTIAVb1. 31Ser.B (1) andm一 (2) -a0(a0maybeanyconstant),wheres=1—0= Apolynomialsolutionyl(z)=-4 n=2—0=2=s-4-1: Afiniteordersolutiony2(z)=e-4-zwhichsatisfies(2)=7_(2)=o(y2)=1 (3)AinfiniteordersolutionY3(z)=ee+2. Example7Thedifferenceequationy(z-4-1)一 y(z)=1hasasolutiony(z)=e+Z, whichhasnofixedpoint. 2ProofofTheorem1 WeneedthefollowinglemmasfortheproofofTheorem1. Lemma2.1[7】Letfbeatranscendentalmeromorphicfunctionsatisfying limsupT(r,f)= 0(2.1) Thenf(z-4-1)一f(z)istranscendenta1. Lemma2.2ForanyrationalfunctionR(z)?0,thedifferenceequation(1.1)musthave atranscendentalmeromorphicsolutiony(z)satisfying盯()=1. ProofByTheoremA,weseethatthedifferenceequation(1.1)alwayshasameromorphic solutionYl()suchthatT(r,Y1)=o(r)asr_?.IfYlistranscendental,thenwesety(z)= 1().NowsupposethatYlisarationalfunction.Sinceanyperiodicfunctionwith period1 satisfiesthecorrespondinghomogeneousdifferenceequation y(z-4-1)一y(z)=0 of(1.1),wetakeameromorphicperiodicfunction y(z)yl(z)-4-yo(z).Thenfortwocasesabove,y(z) Yistranscendentaland()1. yo(z)with satisfiesf1. period1anda(yo1=1.Set 1)andT(r,Y)=0(r),namely, If盯()<1,thenYsatisfies(2.1).ByLemma2.1,weseey(z+1)一 y(z)istranscendental, whichcontradictsourassumptionthatR(z)isarationalfunction.Soo(y)=1. Lemma2.3[11,13】LetfbeameromorphicfunctionoffiniteorderandC? C.Then m (r,)=s(r,,), wheres(r,f)denotess(r,f)=o{T(r,,)). Lemma2.4[13,20】 Letw(z)beanonconstantfiniteordermeromorphicsolutionof P(z,W)=0 wheref(z,W)isadifferencepolynomialin(z).IfP(z,a)?0forameromorphicfu nction a(z)satisfyingT(r,a)=s(r,),then W一0 ,:(,)J Lemma2.5(see[22])Letg(z)beanentirefunctionoforder()=<...Then foranygiven,>0,thereisasetE? (1,?)thathasfinitelinearmeasuremEandfinite logarithmicmeasureImE,suchthatforallZsatisfying=r[0,1]UE, exp{一r+)?l9()lexp{r+)(2.2) No.4Z.X.Cheneta1:ONDIFFERENCEEQUATIONSRELATINGTOGAMMAFUNCTION1285 Remark2.6Letgbeameromorphicfunctionoforder(g)=<(3o.Thenby Lemma2.5,weeasilyobtainthatforanygiven,>0,thereisasetE? (1,..)thathas finitelinearmeasuremEandfinitelogarithmicmeasurelmE,suchthatforallzsatisfying 1zI=r【0,1]UE,(2.2)holds. ProofofTheorem1f1)ByLemma2.2,weseethat(1.1)musthaveatranscendental meromorphicsolutiony(z)whichisoforderofgrowth()=1.ByLemma2.3and (1.1),we obtainthat m ()=m(一)=m(r.)砌 ? ()=?(1)+.(1ogr)砌 HenceA(y)=()=1. Ify(z)isatranscendentalsolutionwith()<1,theny(z+1)一 y(z)istranscendentalby Lemma2.1.ThiscontradictsoursuppositionthatR(z)isarationalfunction.He nce()?1. Usingthesamemethodasabove,wehave()=(). (2)Now,weprovethatafiniteordermeromorphicsolutiony(z)hasatmostone Borel exceptionalvalue. Supposethaty(z)hastwoBorelexceptionalvalueaand6(?0,口).Wewillresultina contradiction. First,wesupposethata,barefinitevalue.Weset Then(,)=()and f(z)= A(f):(一a)<() Hence,f(z)mayberewrittenas (z)一a (z)一b’ ()=(y-b)<c f(z)=7r(z)e, (2.3) (2.4) where(?0)isaconstant,nisapositiveintegerand(,)=n,7r()(?0)isameromorp hic functionwith By(2.3),wehave (7r)<(.厂)=n )= Substituting(2.6)into(1.1),weobtainthat R(z)f(z+1)f(z)+(b—a—R()),(+1)+(a—b—R())I厂()+R(z)=0 By(2.4),wehave .,(+1):7r(+1)e5(z十)”=7r(+1)ez+n”+…十=71”1(z)e” (2.5) (2.6) (2.7) (2.8) 1286ACTAMATHEMATICASCIENTIAVo1.31Ser.B where7r1()=7r(+1)enz”一十…+(?0)and 0”(71”1)max{(7r),n Substituting(2.4)and(2.8)into(2.7),weobtainthat R(z)7r(z)7r1()e.+[(6—0一R())7r1z)+(0一b—R(z))7r()]e”+R(z)=0 By(2.5)and(2.9),weseethat max{G(Tr),(不1))=d<(,)=n (2.9) (2.10) ByLemma2.5andRemark2.6,weseethat,foranygiven,(0<2,<n—d),thereisaset E(1,..)withfinitelinearmeasure,suchthatforallZsatisfyingIZI=r[0,1】UE, exp{一r+)lR()7r1(z)7r(z)lexp{rd+) (b一0一R(z))7r1z)+(0一b—R())7r(z)lexp{r+)(2.12) ForsufficientlylargelZl=r,wehavelR(z)1rwherek(>0)issomeconstant. Nowwecanchoosepointszj=e,J=1,2,…,satisfyingrj..,rj[0,1]UE,and exp{25z~)=exp{2151n) Thus,by(2.11)一(2.13)andd+,<礼,weobtainthat IR(zj)7r()7r1(zj)e2~z+[(6一.-n(zj))7r1()+(.一6 exp{一d+}exp{2lI吁)一exp{rjd+)exp{l1哆)一k exp{215lr~(1一o(1))}(1一o(1)). (2.13) R(乃))7r()】e+R()1 (2.14) Thus,(2.14)contradicts(2.10). Second,wesupposethataisafinitevalueandb=?.Wesetf(z)=y(z)一a.Then (,)=()and c.厂=c一n,<c,入()=()<c Hence,f(z)mayberewrittenas f(z)=不()e, wheren,and7r()aredefinedasabove.And/(z+1)mayberewritten嬲 /(z+1)=71”1()e where71”1(Z)isdefinedasabove.Since/(z+1)一/(z)y(z+1)一(z),wehave f(z+1)一f(z)=(不1z)一7r())e=R(z)(2.15) ByR(z)?0,weseethat不1(z)一不 (z)?0.Thusby(2.5),(2.9)andthefactthatR()isa rationalfunction,weseethat(2.15)isacontradiction. No.4Z.X.Chenetal:ONDIFFERENCEEQUATIONSRELATINGTOGAMMAFUNCTION1287 (3)Now,wesupposethaty(z)hasinfinitelymanypoles.Thenwewillprove(1,) 1.SupposethatasetA={+iyjlJ=1,…,s)consistsofallpolesofR().SetM= max{Ixj『+ll+1:lJs}.Thenthereisnopoleofn(z)inregionsD1=z:Re>M}, D2={:Rez<一M),D3=z:Imz>M)andD4=z:Imz<一M}. Sincey(z)hasinfinitelymanypoles,weseethatthereisatleastoneDjsuchthat Yhas infinitelymanypolesinp.IfYhasinfinitelymanypolesinD1,thenthereexists apoint Zl?Dlsuchthaty(z1)=co.Thusforanyn?N,Zl+佗?DIandR(zl+ 佗)?..,andby (1.1),weseey(zl+n)=?.Hence()1. IfYhasinfinitelymanypolesinD3orD4,wecanusethesamemethodtoprove( 1)1. IfYhasinfinitelymanypolesinD2,thenthereexistsapointz2? D2suchthaty(z2)=... Wemayrewrite(1.1)as y(z)一y(z一1)=R(z一1) InD2,n(z一 1)hasnopole,usingthesamemethodasabove,weobtainthat,foranyn? N,y(z2,n)=?.So,()1. (4)SupposeR(z)?1.Weprovethattheexponentofconvergenceoffixedpoints ofY satisfies丁()=().Set f(z)=y(z)一z. Thenf(z)isatranscendentalmeromorphicfunctionand Substitutingy(z) (.厂)=(),丁()=(,),s(r,f)=s(r,y) f(z)+zinto(1.1),weobtainthat P(z,f):,(+1)一,()+l—n(z)=0 SinceP(z,0)=1一n(z)?0,byLemma2.4,weseethat ? (,71)=(卅+,,) Hencer()A(f):(,)=() 3ProofofTheorem2 WeneedthefollowinglemmasfortheproofofTheorem2. Lemma3.1Letm(z)and佗 (z)beirreduciblepolynomialswithdegm(z)=mand deg礼(z)=凡,m+n1.Then (1)Ifm?礼,thendeg[m(z+1)n(z)一m(z)n(z+1)】=m+n一1; (2)Ifm=礼,thendeg[m(z十1)n(z)一m(z)凡(z十1)]m+礼一2. ProofSupposethat m()0mz+am-lZ一+…+ao,n(z)=bnz+bn-1”一+...+b0, wheream,…,a0,bn,…,b0areconstants,ambn?0.Since m(z+1)n(z)一m()礼(z+1)Azm+一J_Bzm+ 1288ACTAMATHEMATICASCIENTIAVo1.31Ser.B whereA=0m6n(仃—n)and B: l a~bn(m(m-1)-n(n-1))+ambn-l(m-n+1)+am-lbn(m-n-1)) weseethat (1)Ifm?n,thenby0mb(m—n)?0,?reha deg【m(+1)礼()一m(z)礼(z+1)】:m十礼一1 (2)Ifm:n,thenbynbn(m一礼)=0,Weh陀 m(+1)n(z)一m(z)札(z+1):(nm6一.m一1bn).+ ;Supposethat’s=--iand…(1.…1)has…ti0na1s0lution , m…哪2’?polyn0degm():deg” n(z)一wherere(z)),n(z)areirredu )(? cible 0)絮一C1ea!ecannotbeaconstantbyn(z)(?0)?So,m+礼’u钉儿 y(z+1)一y(z)m(z+1)— n(z)-— m(z)n(z+1)一 n(z+1)札() ByLemma3.1,wehave m+他一1+q:2几+p, m—n:P—q+1=s+1:0 Thiscontradictsoursuppositionthatm>礼 Ifm:n,thenbyLemma3.1,wehave P(z) Q(z)’ deg[m(+1)礼()一m()礼(+1)】m+n一2? Ifdeg[m(+1)n(z)一m(z)礼(z+1)] 1.e., :盯+钆一2,thenby(3.1),wehave m+n一2+q=P+2n, 0:m一礼=P—q+2=一1+2=1 (3.1) Thisisac.ntradict_l0n.Ifdeg[m(+1)n(z)一m(z)礼(+1)】:m+佗一 (3),thenwe obtainthat Thisisalsoacontradiction 0:m—n:s+k:一1(3) Ifm<礼,thenbyLemma3.1and(3.1),weobtainthat 0>m一亿:P—q+1=s+1=一1+1=0? Thisisalsoacontradiction.Hence(1.1)has (2)Supposethats0and(z) aredefinedasintheproofofLemma norationalsolution 3.1 isarationalsolutionof(1.1)wherere(z)and No.4Z.X.Chenetal:ONDIFFERENCEEQUATIONSRELATINGTOGA MMAFUNCTION1289 First,supposethats>0.Then have()一,(+1)__+abm.So,_?(asz-_?o0).Ifm=佗,then,asZ-_?0(3,we }? aSZ— y(z+1)一u(z)一0 Thiscontradicts(1.1).Ifm< 扎,then,usingthesamemethodasabove,wehavey(z+1)一 ()__+0.Thisisalsoacontradiction.Hencewehavem>n.ByLemma3.1an d(3.1),we obtainthatm—n=8+1. Second,supposethatS:0.Usingthesamemethodasabove,wegetm一礼:s+1 m,n=s+1一2+1=一1. Thisisacontradiction.Hencewehavemn. Ifm<n,thenbyLemma3.1,wehavem一佗=s+1. Hencey(z)satisfiesm,n=s+1 orm=n. (4)Supposethatq=0,ieR(z)兰P(z)isapolynomialofdegP=S.Set Supposethat P(z)=dsz+ds,iz一+…+dl0(ds?0) y(z)=nm+am--1Z一+…+a0(n?0) isasolutionof(1.1).Then (+1),()=ammZ一+【0m—一1am--1z一 +…+[c锄.m+11.一1+…+Clm_ (j_1)am-(J一1)]zm-j +…+【a+am--1+…+01], (3.2) (3.3) where(h=2,…,m;d=1,…,h)areusualnotationsforthebin0mia1coefficients. sut)- stituting(3.2)and(3.3)into(1.1),weobtainthat m=s+1. am~as+l= 1 d+卜l, l 0m一10s+1—1 S上1——1 am—U一1)as+l一(J一1) (ds+1—2一C2+10+1) 8+1,—1)(d~+l-J—+n叶 一 j + -- 1 I — l.s+1—1一…一c1一 .一2)as+l-.一2)), al口8+1—8 8+1一s (d0一as+l—a8一???一02). (3.4) Thus,coefficients0s+l,…,alcanbedecidedbycoefficientsofR(z),andthecoe fficientn0may takeanyconstant. Theorem2isthusproved. 1290ACTAMATHEMATICASCIENTIAVo1.31Ser.B 4ProofofCorollary1 By[21,Chapter7】,weseethat?(z)satisfiesthedifferenceequation q2(z+1)一()= Sincewehaveknownthat(专)=()=1,byTheorem1(1),weseethat()=()=1. ByTheorem1(4)andR(z)=1(?1),weseethat皿 (z)hasinfinitelymanyfixedpoints andtheexponentofconvergenceofitsfixedpointssatisfies7_(皿)=()=1. Thus,Corollary1isproved. 5ProofofTheorem3 WleneedthefollowingremarkandlemmasfortheproofofTheorem3. Remark5.1FollowingHayman 【23,p.75—76】,wedefineanc-settobeacountableunion ofopendiscsnotcontainingtheorigin,andsubtendinganglesattheoriginwhosesumisfinite. IfEiSanE—set,thenthesetofr>1forwhichthecircles(0,r1meetsEhasfinitelogarithmic measure.andforalmostallreal0theintersectionofEwiththerayargZ=0isbounded. Lemma5.217lLetgbeafunctiontranscendentalandmeromorphicinthecomplex planeoforderlessthani.Leth>0.Thenthereexistsan,.setEsuchthat C 一..q(+)一asz一一\E) uniformlyinCforlCIh.Furthermore,EmaybechosenSOthatforlargenotinEthe functionghasnozerosorpolesinl(一zlh. Lemma5.3[11]LetCl,C2betwocomplexnumberssuchthatCl?C2andletf(z)be afiniteordermeromorphicfunction.Let盯betheorderof.厂(z),thenforeach ,>0,wehave O(r一+) wherem(z)andn(z)areirreduciblepolynomialswithdegm(z)=m,degn(z) 1.By(1.2),wehave m(z+1)n(z)一P(z)m(z)n(z+1)=0. nandm一_n> (5.1) Buttheleftsideof(5.1)isapolynomialofdegreep+m+n.So,(5.1)isacontradic tion.Hence y(z)hasnononzerorationalsolution. Nowsupposethaty(z)istranscendentaland()<1.ThenbyLemma5.2,there exists an,一setEsuchthat y(z+1)=()(1+0(1))asz一?inC\E By(1.2)and(5.2),wehavethat (z)(1+o(1)一P())=0asz—..inC\E (5.2) (5.3) No.4z.X.Chenetal:ONDIFFERENCEEQUATIONSRELATINGTOGAMMAFUNCTION1291 SinceforsufficientlylargeJZI=randinC\E 1+o(1)一P()I>1, weobtain()三0by(5.3).Thisisacontradiction.So,()1. Now,weprovethat()hasatmostoneBorelexceptionalvalue.First,supposeth at a(?..)and..aretwoBorelexceptionalvaluesof(z).Setf(z)=y(z)一 a.Thenf(z)has Borelexceptionalvalues0and...andcanberewrittenas ,()=H(z)e() whereH(z)isameromorphicfunction,h(z)isanonconstantpolynomial o(H)<degh(z)=h.By(1.2)and(5.4),weobtainthat H(z+11 H(z)P(ze(外1)一h(z):1) (5.4) ofdegh(z)=h,and (5.5) Ifh=1,seth(z):+(OL?0,areconstants),thenh(z+1)一h(z)=.Thus,by Lemma5.2and(日)<h=1,thereexistsanE—setEsuchthat : 1+.(1)H(z1一asz—}?inCkE Thus,byh(z+1)一h(z)=,degP(z)1and(5.6),weseethat H(z+11 g(z)P(z Thiscontradicts(5.5). Ifh2,thendeg[h(z+ havethat e(舛)一h()0as_..in\E 1)一(z)] (5.6) h一11and(日)=<h.By(1.2)and(5.4),we : P(z)eh?)H( z) ByLemma5.3,weseethat,foranygivenE(0<2s<h一), whereC?0isaconstant. Sinceh一>2s,by(5.8)and Second,supposethata(??) Set = O(r—H) P()eh’’一h外1’1=Crh一 (5.7) (5.8) (5MATHEMATICASCIENTIAVl0】.3lSer.B Substituting(5.11)into(1.2),weobtainthat (1一P(z))bf(z+1),(z)+(0P()一b)f(z+1)+(6P(z)一口),()+n—aP(z):0 Usingthe
本文档为【【word】 ON DIFFERENCE EQUATIONS RELATING TO GAMMA FUNCTION】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_841159
暂无简介~
格式:doc
大小:54KB
软件:Word
页数:0
分类:生活休闲
上传时间:2018-04-15
浏览量:8