首页 Java算法分析详解

Java算法分析详解

举报
开通vip

Java算法分析详解null第3章 动态规划第3章 动态规划null 学习要点: 理解动态规划算法的概念。 掌握动态规划算法的基本要素 (1)最优子结构性质 (2)重叠子问题性质 掌握设计动态规划算法的步骤。 (1)找出最优解的性质,并刻划其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造最优解。null通过应用范例学习动态规划算法设计策略。 (1)矩阵连乘问题; (2)最长公共子序列; (3)最大子段和 (4)凸多边形最优三角剖分; (5)多边形游戏; ...

Java算法分析详解
null第3章 动态规划第3章 动态规划null 学习要点: 理解动态规划算法的概念。 掌握动态规划算法的基本要素 (1)最优子结构性质 (2)重叠子问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 性质 掌握 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 动态规划算法的步骤。 (1)找出最优解的性质,并刻划其结构特征。 (2)递归地定义最优值。 (3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造最优解。null通过应用范例学习动态规划算法设计策略。 (1)矩阵连乘问题; (2)最长公共子序列; (3)最大子段和 (4)凸多边形最优三角剖分; (5)多边形游戏; (6)图像压缩; (7)电路布线; (8)流水作业调度; (9)背包问题; (10)最优二叉搜索树。 算法总体思想动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题算法总体思想算法总体思想但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。算法总体思想算法总体思想如果能够保存已解决的子问题的 答案 八年级地理上册填图题岩土工程勘察试题省略号的作用及举例应急救援安全知识车间5s试题及答案 ,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。算法总体思想T(n)动态规划基本步骤动态规划基本步骤找出最优解的性质,并刻划其结构特征。 递归地定义最优值。 以自底向上的方式计算出最优值。 根据计算最优值时得到的信息,构造最优解。完全加括号的矩阵连乘积16000, 10500, 36000, 87500, 34500完全加括号的矩阵连乘积可递归地定义为: 设有四个矩阵 ,它们的维数分别是: 总共有五中完全加括号的方式完全加括号的矩阵连乘积矩阵连乘问题矩阵连乘问题给定n个矩阵 , 其中 与 是可乘的, 。考察这n个矩阵的连乘积 由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。 若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积矩阵连乘问题矩阵连乘问题给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。 矩阵连乘问题矩阵连乘问题穷举法 动态规划将矩阵连乘积 简记为A[i:j] ,这里i≤j 考察计算A[i:j]的最优计算次序。设这个计算次序在矩阵 Ak和Ak+1之间将矩阵链断开,i≤k 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示方法的求解速度更快(空间占用小,问题的维度低)动态规划算法的基本要素动态规划算法的基本要素二、重叠子问题递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质。 动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。 通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项式时间,从而获得较高的解题效率。 动态规划算法的基本要素动态规划算法的基本要素三、备忘录方法备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。int LookupChain(int i,int j) { if (m[i][j] > 0) return m[i][j]; if (i == j) return 0; int u = LookupChain(i,i) + LookupChain(i+1,j) + p[i-1]*p[i]*p[j]; s[i][j] = i; for (int k = i+1; k < j; k++) { int t = LookupChain(i,k) + LookupChain(k+1,j) + p[i-1]*p[k]*p[j]; if (t < u) { u = t; s[i][j] = k;} } m[i][j] = u; return u; }最长公共子序列最长公共子序列若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。 给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。 最长公共子序列的结构最长公共子序列的结构设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则 (1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。 (2)若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。 (3)若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。由此可见,2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。因此,最长公共子序列问题具有最优子结构性质。 子问题的递归结构子问题的递归结构由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系。用c[i][j]记录序列和的最长公共子序列的长度。其中, Xi={x1,x2,…,xi};Yj={y1,y2,…,yj}。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时C[i][j]=0。其它情况下,由最优子结构性质可建立递归关系如下:计算最优值计算最优值由于在所考虑的子问题空间中,总共有θ(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。 void LCSLength(int m,int n,char *x,char *y,int **c,int **b) { int i,j; for (i = 1; i <= m; i++) c[i][0] = 0; for (i = 1; i <= n; i++) c[0][i] = 0; for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) { if (x[i]==y[j]) { c[i][j]=c[i-1][j-1]+1; b[i][j]=1;} else if (c[i-1][j]>=c[i][j-1]) { c[i][j]=c[i-1][j]; b[i][j]=2;} else { c[i][j]=c[i][j-1]; b[i][j]=3; } } }构造最长公共子序列 void LCS(int i,int j,char *x,int **b) { if (i ==0 || j==0) return; if (b[i][j]== 1){ LCS(i-1,j-1,x,b); cout<π(j)。 电路布线问题要确定将哪些连线安排在第一层上,使得该层上有尽可能多的连线。换句话说,该问题要求确定导线集Nets={(i,π(i)),1≤i≤n}的最大不相交子集。 电路布线记 。N(i,j)的最大不相交子集为MNS(i,j)。Size(i,j)=|MNS(i,j)|。 (1)当i=1时, (2)当i>1时, 2.1 j<π(i)。此时, 。故在这种情况下,N(i,j)=N(i-1,j),从而Size(i,j)=Size(i-1,j)。 2.2 j≥π(i),(i,π(i))∈MNS(i,j) 。 则对任意(t,π(t)) ∈MNS(i,j)有tT(S,b(1)),设’是作业集S在机器M2的等待时间为b(1)情况下的一个最优调度。则(1), ’(2),…, ’(n)是N的一个调度,且该调度所需的时间为a(1)+T(S,b(1))2n时,算法需要Ω(n2n)计算时间。 算法改进算法改进由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的i(1≤i≤n),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其全部跳跃点唯一确定。如图所示。对每一个确定的i(1≤i≤n),用一个表p[i]存储函数m(i,j)的全部跳跃点。表p[i]可依计算m(i,j)的递归式递归地由表p[i+1]计算,初始时p[n+1]={(0,0)}。 一个例子一个例子n=3,c=6,w={4,3,2},v={5,2,1}。算法改进函数m(i,j)是由函数m(i+1,j)与函数m(i+1,j-wi)+vi作max运算得到的。因此,函数m(i,j)的全部跳跃点包含于函数m(i+1,j)的跳跃点集p[i+1]与函数m(i+1,j-wi)+vi的跳跃点集q[i+1]的并集中。易知,(s,t)q[i+1]当且仅当wisc且(s-wi,t-vi)p[i+1]。因此,容易由p[i+1]确定跳跃点集q[i+1]如下q[i+1]=p[i+1](wi,vi)={(j+wi,m(i,j)+vi)|(j,m(i,j))p[i+1]} 另一方面,设(a,b)和(c,d)是p[i+1]q[i+1]中的2个跳跃点,则当ca且d
本文档为【Java算法分析详解】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_148931
暂无简介~
格式:ppt
大小:539KB
软件:PowerPoint
页数:0
分类:互联网
上传时间:2012-09-13
浏览量:9