下载

1下载券

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 化工原理知识点

化工原理知识点.doc

化工原理知识点

熵不起
2012-09-08 0人阅读 举报 0 0 暂无简介

简介:本文档为《化工原理知识点doc》,可适用于工程科技领域

一、流体力学及其输送单元操作:物理化学变化的单个操作过程如过滤、蒸馏、萃取。四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。牛顿粘性定律:F=±τA=±μAdudy(F:剪应力A:面积μ:粘度dudy:速度梯度)。两种流动形态:层流和湍流。流动形态的判据雷诺数Re=duρμ层流过渡湍流。当流体层流时其平均速度是最大流速的。连续性方程:Au=Au伯努力方程:gzpρu=C。流体阻力=沿程阻力局部阻力范宁公式:沿程压降:Δpf=λlρud沿程阻力:Hf=Δpfρg=λludg(λ:摩擦系数)层流时λ=Re湍流时λ=F(Reεd)(ε:管壁粗糙度)局部阻力hf=ξug(ξ:局部阻力系数情况不同计算方法不同)流量计:变压头流量计(测速管、孔板流量计、文丘里流量计)变截面流量计。孔板流量计的特点结构简单制造容易安装方便得到广泛的使用。其不足之处在于局部阻力较大孔口边缘容易被流体腐蚀或磨损因此要定期进行校正同时流量较小时难以测定。转子流量计的特点恒压差、变截面。离心泵主要参数:流量、压头、效率(容积效率v:考虑流量泄漏所造成的能量损失水力效率H:考虑流动阻力所造成的能量损失机械效率m:考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率工作点(提供与所需水头一致)安装高度(气蚀现象气蚀余量)泵的型号(泵口直径和扬程)气体输送机械:通风机、鼓风机、压缩机、真空泵。常温下水的密度kgm,标准状态下空气密度kgmatm=Pa=kPa=MPa=mHO=mmHg()被测流体的压力>大气压表压=绝压-大气压()被测流体的压力<大气压真空度=大气压-绝压=-表压管路总阻力损失的计算离心泵的构件:叶轮、泵壳(蜗壳形)和轴封装置离心泵的叶轮闭式效率最高适用于输送洁净的液体。半闭式和开式效率较低常用于输送浆料或悬浮液。气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高叶轮中各处压强高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高液体蒸汽压过高③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体往复泵的流量调节·()正位移泵·流量只与泵的几何尺寸和转速有关与管路特性无关压头与流量无关受管路的承压能力所限制这种特性称为正位移性这种泵称为正位移泵。·往复泵是正位移泵之一。正位移泵不能采用出口阀门来调节流量否则流量急剧上升导致示损坏。·()往复泵的流量调节·第一旁路调节如图所示采用旁路阀调节主管流量但泵的流量是不变的。第二改变曲柄转速和活塞行程。使用变速电机或变速装置改变曲柄转速达到调节流量使用蒸汽机则更为方便。改变活塞行程则不方便。流体输送机械分类离心泵特性曲线:OqvqvHH管路he~qv图离心泵的工作点泵H~qv泵~qvA流体输送机械特点:·速度式流体输送机器的特点·()由于速度式流体输送机械的转动惯量小摩擦损失小适合高速旋转所以速度式流体输送机械转速高、流量大、功率大。·()运转平稳可靠排气稳定、均匀一般可连续运转~年而不需要停机检修。·()速度式流体输送机械的零部件少结构紧凑。·()由于单级压力比不高故不适合在太小的流量或较高的压力(>MPa)下工作。·容积式流体输送机械的特点·()运动机构的尺寸确定后工作腔的容积变化规律也就确定了因此机械转速改变对工作腔容积变化规律不发生直接的影响故机械工作的稳定性较好。·()流体的吸入和排出是靠工作腔容积变化与流体性质关系不大故容易达到较高的压力。·()容积式机械结构复杂易于损坏的零件多。而且往复质量的惯性力限制了机械转速的提高。此外流体吸入和排出是间歇的容易引起液柱及管道的振动。流体体积随压力变化而改变的性质称为压缩性。流体静力学基本方程:双液位U型压差计的指示:)伯努力方程:实际流体机械能衡算方程:雷诺数:范宁公式:哈根泊谡叶方程:局部阻力计算:流道突然扩大:流产突然缩小:二、非均相机械分离颗粒的沉降:层流沉降速度Vt=(ρpρ)gdpμ(ρpρ:颗粒与流体密度差μ:流体粘度)重力沉降(沉降室Hv=Lu多层增稠器以得到稠浆为目的的沉淀)离心沉降(旋风分离器)。过滤:深层过滤和滤饼过滤(常用助滤剂增加滤饼刚性和空隙率)分类:压滤、离心过滤间歇、连续滤速的康采尼方程:u=(ΔpLμ)εa(ε)(ε:滤饼空隙率a:颗粒比表面积L:层厚)。.过滤介质:过滤过程所用的多孔性介质称为过滤介质过滤介质应具有下列特性:多孔性、孔径大小适宜、耐腐蚀、耐热并具有足够的机械强度。助滤剂:若滤浆中所含固体颗粒很小或者所形成的滤饼孔道很小又若滤饼可压缩随着过滤进行滤饼受压变形都使过滤阻力很大而导致过滤困难。可采用助滤剂以改善滤饼的结构增强其刚性。常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等过滤速率基本方程恒速过滤恒压过滤过滤设备:板框压滤机(间歇操作构造简单过滤面积大而占地省过滤压力高(可达MPa左右)便于用耐腐蚀性材料制造便于洗涤。它的缺点是装卸、清洗劳动强度较大。)、叶滤机(叶滤机也是间歇操作设备具有过滤推动力大、单位地面所容纳的过滤面积大、滤饼洗涤较充分等优点。其生产能力比板框压滤机大而且机械化程度高劳动力较省密闭过滤操作环境较好。其缺点是构造较复杂、造价较高。)、厢式压滤机、转筒真空过滤机(操作连续、自动)自由沉降:单个颗粒在流体中的沉降过程称。干扰沉降:若颗粒数量较多相互间距离较近则颗粒沉降时相互间会干扰称为干扰沉降。影响因素:当颗粒浓度增加沉降速度减少。容器的壁和底面沉降速度减少。非球形的沉降速度小于球形颗粒的沉降速度。流态化是一种使固体颗粒通过与流体接触而转变成类似于流体状态的操作。分三个阶段:()固定床阶段:流体通过颗粒床层的表观速度u较低使颗粒空隙中流体的真实速度u小于颗粒的沉降速度ut则颗粒基本上保持静止不动颗粒层为固定床。流化床阶段:在一定的表观速度下颗粒床层膨胀到一定程度后将不再膨胀此时颗粒悬浮于流体中床层有一个明显的上界面与沸腾水的表面相似这种床层称为流化床。(散式流态化聚式流态化)。()颗粒输送阶段:如果继续提高流体的表观速度u使真实速度u大于颗粒的沉降速度ut则颗粒将被气流所带走此时床层上界面消失这种状态称为气力输送。气力输送的优点()系统封闭避免物料飞扬减少物料损失改善劳动条件。()输送管路不限制即使在无法铺设道路或安装输送机械的地方使用气力输送更加方便。()设备紧凑易于实现连续化、自动化操作便于同连续化工生产相衔接。()在气力输送过程中可同时进行粉料的干燥、粉碎、冷却、加料等操作。恒压过滤方程:令则此方程为:三、传热传热方式:热传导(傅立叶定律)、对流传热(牛顿冷却定律)、辐射传热(四次方定律)热交换方式:间壁式传热、混合式传热、蓄热体传热(对蓄热体的周期性加热、冷却)。傅立叶定律:dQ=λdA(Q:热传导速率A:等温面积λ:比例系数:温度梯度)λ与温度的关系:λ=λ(at)(a:温度系数)。不同情况下的热传导:单层平壁:Q=(tt)b(CmA)=温差热阻(b:壁厚Cm=(λλ))多层平壁:Q=(ttn)bi(λiA)单层圆筒:Q=(tt)b(λAm)(A:圆筒侧面积C=(AA)ln(AA))多层圆筒:Q=πL(ttn)λiln(riri)。对流传热类型:强制对流传热(外加机械能)、自然对流传热、(温差导致)、蒸汽冷凝传热(冷壁)、液体沸腾传热(热壁)前两者无相变后两者有相变牛顿冷却定律:dQ=hdAΔt(Δt>h:传热系数)。吸收率A反射率R透射率D=黑体A=镜体R=透热体D=灰体AR=总辐射能E=Eλdλ(Eλ:单色辐射能λ:波长)四次方定律:E=C(T)=εC(T)(C:灰体辐射常数C:黑体辐射常数ε=CC:发射率或黑度)两物体辐射传热:Q=CφA(T)(T)(φ:角系数A:辐射面积C=(C)(C)(C))总传热速率方程:dQ=KmdA(dQ:微元传热速率Km:总传热系数A:传热面积)K=hbAλAmAhA(hh:热、冷流体表面传热系数)。换热器:夹套换热器、蛇管式换热器、套管式换热器、列管式换热器。、()强化传热为了使物料满足所要求的操作温度进行的加热或冷却希望热量以所期望的速率进行传递()削弱传热:为了使物料或设备减少热量散失而对管道或设备进行保温或保冷。热传导物体各部分之间不发生相对位移时依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为热传导又称导热。对流传热:对流仅发生于流体中它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。传热的基本方式:()热传导()对流传热热对流()辐射传热影响冷凝传热的因素和冷凝传热的强化①流体物性:冷凝液、、潜热r→②温差:液膜层流流动时t=ts-tW,③不凝气体:不凝气体的存在会导致(不凝气可使)所以应该定期排放④蒸汽流速与流向(u>ms):蒸汽与液膜同向时u,反向时u,u时(无论方向)。因此蒸汽进口一般设在换热器上部以避免蒸汽与液膜逆向流动使。⑤蒸汽过热:包括冷却和冷凝两个过程。⑥冷凝面的形状和位置:以减少冷凝液膜的厚度并作为目的。垂直板或管:可开纵向沟槽水平管束:可采用错列。导热系数的物理意义:表示温度梯度为Km或℃m时单位时间通过单位面积的热量。即:单位温度梯度下的热通量。为固体在℃时的导热系数k为温度系数℃,对大多数金属材料为负值对大多数非金属固体材料为正值。在物体边界上传热边界条件可分为以下三类:()已知物体边界壁面的温度称为第一类边界条件()已知物体边界壁面的热通量值称为第二类边界条件已知物体壁面处的对流传热条件称为第三类边界条件。准数的定义与物理意义:努塞尔准数(Nusselt)Nu:对流传热与厚度为L的流体层内的热传导之比。努塞尔数越大对流传热的传热强度也越大。它反映了固体壁面处的无因次温度梯度的大小。雷诺准数(Reynold)Re:惯性力与粘性力之比。雷诺数小表示流体的粘性力起控制作用抑制流层的扰动随着雷诺数的增大流体中流体微团的扰动加剧壁面处的温度梯度增大对流传热系数增大。普朗特准数(Prandtl)Pr:动量扩散与热量扩散之比。它表征了流体的动量传递能力与热量传递能力的格拉晓夫准数(Grashof)Gr:浮升力与粘性力之比。它反映了由于流体中温度差引起密度差所导致的浮升力对对流传热的影响。它在自然对流中的作用与强制对流中雷诺数的作用相当。蒸汽与低于饱和温度的壁面接触时有膜状冷凝和珠状冷凝两种影响沸腾传热的因素及强化途径:①液体的性质:②温差:③操作压强:④加热面:辐射:物体通过电磁波来传递能量的过程。热辐射:物体由于热的原因以电磁波的形式向外发射能量的过程。热辐射=反射吸收穿透(黑体白体透热体灰体)物体的黑度:指同温度下物体与黑体辐射能力之比。仅与自身特性有关。斯蒂芬波尔茨曼定律──黑体辐射常数=×W(mK)克希霍夫定律:C──黑体辐射系数=W(mK)角系数气体的热辐射具有以下两个主要特点:()气体的辐射和吸收对波长具有强烈的选择性()气体的辐射和吸收是在整个容积内进行传热三步:()热流体以对流传热方式将热量传给固体壁面()热量以热传导方式由间壁的热侧面传到冷侧面()冷流体以对流传热方式将间壁传来的热量带走。热量衡算方程反映了冷、热流体在传热过程中温度变化的相互关系。根据能量守恒原理在传热过程中若忽略热损失单位时间内热流体放出的热量等于冷流体所吸收的热量。热量衡算方程传热过程的平均温差计算:恒温差传热变温差传热按照冷、热流体之间的相对流动方向流体之间作垂直交叉的流动称为错流如一流体只沿一个方向流动而另一流体反复地折流使两侧流体间并流和逆流交替出现这种情况称为简单折流。不同流动排布型式的比较:进出口温度条件相同时逆流的平均温差最大并流的平均温差最小对于其他的流动排布型式其平均温差介于两者之间。在实际的换热器中应尽量采用逆流流动而避免并流流动。但是在一些特殊场合下仍采用并流流动以满足特定的生产工艺需要。采用折流和其他复杂流动的目的是为了提高传热系数然而其代价是减小了平均传热温差。换热器传热效率e的定义为实际传热速率Q与理论上可能的最大传热速率Qmax之比傅立叶定律:热导率与温度的线性关系:单层壁的定态热导率:或单层圆筒壁的定态热传导方程:或单层圆筒壁内的温度分布方程:(由公式推导)三层圆筒壁定态热传导方程:牛顿冷却定律:努塞尔数普朗克数格拉晓夫数流体在圆形管内做强制对流:或其中当加热时k=冷却时k=热平衡方程:无相变时:若为饱和蒸气冷凝:总传热系数:考虑热阻的总传热系数方程:总传热速率方程:两流体在换热器中逆流不发生相变的计算方程:两流体在换热器中并流不发生相变的计算方程:两流体在换热器中以饱和蒸气加热冷流体的计算方程:四、质量传递基础质量传递(简称传质)是指物质从一处向另一处转移包括相内传质和相际传质两类前者发生在同一个相内后者则涉及不同的两相。()气(汽)-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程。解吸:为吸收的逆过程。蒸馏:不同物质在气液两相间的相互转移。气体增(减)湿:湿分由液相(气相)向气相(液相)转移。()液液系统:萃取:溶质由一液相转入另一液相。这是在液体混合物中加入另一不相溶的液相物质使原混合物组分在两液相中重新分配的过程。()气(汽)-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程。解吸:为吸收的逆过程。蒸馏:不同物质在气液两相间的相互转移。气体增(减)湿:湿分由液相(气相)向气相(液相)转移。()气-固系统:干燥:加入热量使液体气化从固体的表面或内部转入气相。吸附:物质由气相趋附于固体表面(主要是多孔性固体的内表面)吸附平衡是过程进行的极限。费可定律:实验表明在二元混合物(AB)中组分的扩散通量与其浓度梯度成正比这个关系称为费克(Fick)定律。化学反应可分为两类:一类是在整个相内均匀发生的反应称为均相反应另一类则是局限在某个特定区域内的反应它可以是在相的内部也可以在边界上称为非均相反应。对流传质通常指运动流体与固体壁面(或两股直接接触的流体之间)间的质量传递是相际传质的基础。一般情况下传质设备中流体的流动形态多为湍流。传质过程应用的设备有多种类型其主要功能是给传质的两相(或多相)提供良好的接触机会包括增大相界面面积和增强湍动强度主要有填料塔和板式塔。板式塔:有害因素:空间上的反向流动:泡沫夹带(增大板间距)、气泡夹带(增大降液管长度)空间上的不均匀流动:气体液体。如何提高效率:《》合理选择塔板孔径和开口率造成适宜气液接触状态《》设置倾斜的进气装置塔板压降:塔板上下对应位置的压力差(新型:泡罩塔板、浮阀塔板、筛孔塔板、舌型塔板、网型塔板、垂直塔板)填料塔:主要特性数据:比表面积、孔隙率、添填料的几何形状(拉西环、鲍尔环、矩鞍型填料、阶梯环添料)填料塔操作范围小对液体负荷变化敏感不易处理易聚合或含有固体悬浮物的物料反应过程中需要冷却时填料塔复杂有侧线出料时填料塔不如板式塔方便板式塔设计简便安全填料塔小时结构简单造价低易起泡物系、腐蚀性物系、热敏性物系填料塔更合适填料塔压降比板式塔小真空操作方便。蒸发水量的计算:水的蒸发量:完成时的溶液浓度:单位蒸气消耗量:此时原料液由预热器加热至沸点后进料且不计热损失r为加热时的蒸气汽化潜热r’为二次蒸气的汽化潜热传热面积:对加热室作热量衡算求得T为加热蒸气的温度t为操作条件下的溶液沸点。蒸发器的生产能力:蒸发器的生产强度(蒸发强度):五、气体吸收吸收是将气体混合物与适当的液体接触利用个组。分在液体中溶解度的差异而使气体中不同组分分离的操作。混合气体中能够溶解于液体中的组分称为吸收质或溶质不能溶解的组分称为惰性气体吸收操作所用的溶剂称为吸收剂溶有溶质的溶液称为吸收液或简称溶液派出的气体称为吸收尾气。(分物理吸收煤气脱苯化学吸收二氧化碳碳酸钾)吸收操作是气体混合物的主要分离方法化工生产。中它有以下几种具体的应用:1.化工产品2.分离气体混合物3.从气体中回收有用组分4.气体净化(原料气的净化和尾气、废气的净化)5.生化工程。一个完整地吸收分离过程一般包括吸收和解吸两部分。溶剂的选择:()溶剂应对气体中被分离组分有较大溶解度()溶剂对其他组分的溶解度要小()溶质在溶剂中的溶解度对温度变化敏感()容积蒸汽压低减少回收时的损失()溶剂有较好的化学稳定性()溶剂有较低的粘度()溶剂价廉无腐蚀性、无毒不易燃。吸收率η=(mA除mA进)×≈(yy)y×(yy:进塔和出塔混合气中A的摩尔分数)。.稀溶液中亨利定律:c*A=HpA(c*A:溶解度H:溶解度系数pA:气相分压)p*A=ExA(xA:液相中溶质摩尔分数E:亨利系数)y*=mx(平衡常数m=Ep)E=ρsHMs(ρsMs:纯溶剂密度和相对分子质量)。费克定律:jA=DABdcAdz(jA:扩散速率DAB:组分A在组分B中的扩散系数dcAdz:组分A在扩散方向z上的浓度梯度)等分子扩散速率:NA=jA=D(pA,pA,)RTz单向扩散:NA=D(pA,pA,)pRTzpB,m(ppB,m:漂流因子pB,m=(pB,pB,)ln(pB,pB,)即对数平均值)同理NA=D(cA,cA,)czcB,m。吸收塔操作线方程:qn(L)qn(V)=(yy)(xx)(qn(V):二元混合气摩尔流量qn(L):液相摩尔流量xy:任意一截面液气相摩尔流量)最小液气比qn(L)qn(V)min=(yy)(x*x),qn(L)qn(V)=()qn(L)qn(V)min低浓度时填料塔高度h=qn(V)dy(yy*)KyaS=qn(L)dx(x*x)KxaS=NOGHOG=NOLHOL(K:传质系数S:塔截面积a:单位体积填料有效接触面积NOG=dy(yy*):气相总传质单元数HOG=qn(V)KyaS:气相总传质单元高度)相平衡线为直线时:NOG=ln(S’)(ymx)(ymx)S’(S’)NOL=ln(A)(ymx)(ymx)A(A)(吸收因数:A=S’=qm(V)mqm(V))。填料塔:液体上进下出气体下进上出其中设有液体在分布器可使其均匀分布于填料表面塔顶可按转除末器。填料塔是一种应用广泛的气液两相接触并进行传热、传质的塔设备可用于吸收(解吸)、精馏和萃取等分离过程。填料塔不仅结构简单而且具有阻力小和便于用耐腐蚀材料制造等优点尤其适用于塔直径较小地情形及处理有腐蚀性的物料或要求压强较小的真空蒸馏系统此外对于某些液气比较大的蒸馏或吸收操作也宜采用填料塔。(气液逆流流动增加传质推动力)表征填料特性的主要参数有:.比表面积.空隙度.单位堆体积内的填料数目n.堆积密度.干填料因子及填料因子.机械强度及化学稳定性六、蒸馏蒸馏分类:操作方式:连续蒸馏、间歇蒸馏对分离的要求:简单蒸馏、平衡蒸馏(闪蒸)、精馏、特殊精馏(精馏还包括水蒸气精馏、间歇精馏、恒沸精馏、萃取精馏、反应精馏)压力:常压蒸馏、加压蒸馏、减压蒸馏组分:双组分蒸馏和多组分蒸馏(精馏)常用精馏塔。精馏加压提高蒸汽冷凝温度降压降低沸点温度。双组分溶液气液相平衡:液态泡点方程:xA=ppB(t)pA(t)pB(t)(xA:液态组分A的摩尔分数p(t):压强关于温度的函数)气态露点方程:yA=pAp=pA(t)p×ppB(t)pA(t)pB(t)平衡常数KA=yAxA理想溶液:KA=p°Ap即组分饱和蒸气压和总压之比挥发度:υA=pAxA相对挥发度:αAB=υAυB最终可导出气液平衡方程:y=αx(a)x气液平衡相图:px图(等温)、tx(y)图(等压)、xy图。平衡蒸馏:qn(F)xF加热至泡点以上tF减压气化温度达到平衡温度te两相平衡qn(D)yD和qn(W)xW物料衡算:yD=qxW(q)xF(q)(液化率:q=qn(W)qn(F))热量衡算:tF=te(q)γCp,m(Cp,m:原液的摩尔定压热容γ:原液的摩尔气化潜热)平衡关系:yD=αxW(α)xW。简单蒸馏:持续加热至釜液组成和馏出液组成达到规定时停止关系式:lnn(F)n(W)={ln(xFxW)αln(xF)(xW)}(α)总物料衡算:n(F)=n(W)n(D)易挥发组分衡算:n(F)xF=n(W)xWn(D)xD推出:xD=n(F)xFn(W)xWn(F)n(W)。精馏:多次部分气化部分冷凝(连续、间歇)泡点不同采取不同的压力操作塔板数从上至下记塔顶易挥发组分回收率:ηD=qn(D)xDqn(F)xF×釜中不易挥发组分回收率:ηW=qn(W)(xW)qn(F)(xF)×精馏段总物料衡算:qn(V)=qn(D)qn(L)精馏段易挥发组分衡算:qn(V)yn=qn(D)xDqn(L)xn(V:各层上升蒸汽量D:塔顶馏出液量L:各板下降的液量yn:第n块板上升的蒸汽中易挥发组分的摩尔分数xn:第n块板下降的液体中易挥发组分的摩尔分数)精馏段操作线方程:yn=Rxn(R)xD(R)(回流比R=qn(L)qn(D))提馏段总物料衡算:qn(L’)=qn(V’)qn(W)提馏段易挥发组分衡算:qn(L’)x’m=qn(V’)y’mqn(W)xW(W:釜液量)提馏段操作线方程:y’m=qn(L’)x’mqn(V’)qn(W)xWqn(V’)总的物料衡算:qn(F)qn(V’)qn(L)=qn(V)qn(L’)乘上各焓值Hx即为热量衡算qn(V)=qn(V’)(q)qn(F)(精馏进料热状态参数q=(HVHF)(HVHL)即单位原料液变为饱和蒸汽所需要的热量与单位原料液潜热之比)进料方程:y=qx(q)xF(q)理论塔板的计算逐板法和图解法回流比R增大理论塔板数减小解析法:全回流理论塔板数Nmin={lgxD(xw)xw(xD)}lgam(am:全塔平均挥发度)最小回流比Rmin=(xDyq)(yqxq)(xqyq:进料时)R实=()Rmin全塔效率ET为理论塔板数与实际塔板数之比间歇精馏:分批精馏一次进料待釜液达到指定组成后放出残液再次加料用于分离量少而纯度要求高的物料每批精馏气化物质的量n(V)=(R)n(D)所需时间τ=n(V)qn(V)特殊精馏:恒沸精馏(加第三组分形成新的低恒沸物增大相对挥发度)、萃取精馏(加第三组分增大相对挥发度)、加盐萃取精馏、分子蒸馏(针对高分子量、高沸点、高粘度、热稳定性极差的有机物)。根据溶液的蒸汽压偏离拉乌尔定律的方向一般可将非理想溶液分成两大类:1、正偏差溶液2、负偏差溶液精馏回流中下降也体重的轻组分向气相传递上升正其中的重组分向液相传递塔下半部分完成了重组分的提浓叫做提馏段。完整的精馏塔包括精馏段和提馏段。增加回流量提高了上升蒸汽的量但增加了能耗突出最小回流比回流比是塔顶回流量比塔顶产品量的比值。板式塔加料位置在第五块板效率最高。只有提馏段没有精馏段的叫回收塔。加入第三组分和原溶液中的某一组份形成最低恒沸物以新恒沸物的形式从塔顶蒸出叫做恒沸蒸馏(糠醛水)若加入的第三组分仅改变各组分的相对挥发度叫做萃取精馏(乙醇水)。恒沸精馏的挟带剂要符合能与混合组分钟至少一个形成最低恒沸物新形成的恒沸物要便于分离恒沸物中挟带剂的含量要少。萃取精馏添加剂要选择性高、挥发性小与原溶液可以很好的互溶。相比较萃取精馏添加剂的选择范围广不用形成汽化物从塔顶蒸出能耗少但其需要连续不断的加入不能用于间歇精馏。多组分精馏获得n个产物需要n个塔。乌拉尔定律:道尔顿分定律:双组分理想体系气液平衡时系统总压、组分分压与组成关系:泡点方程:露点方程:挥发度:相对挥发度:或相平衡方程:全塔物料衡算:馏出液采出率:釜液采出率:精馏段操作线方程:令(回流比)则提馏段操作线方程:总物料衡算:易挥发组分的物料衡算:即q线方程(进料方程):芬斯克方程:五、吸收吸收剂的要求:对溶质的溶解度大对其他成分溶解度小、易于再生、不易挥发、粘度低、无腐蚀性、无毒不易燃、价低吸收率η=(mA除mA进)×≈(yy)y×(yy:进塔和出塔混合气中A的摩尔分数)。稀溶液中亨利定律:c*A=HpA(c*A:溶解度H:溶解度系数pA:气相分压)p*A=ExA(xA:液相中溶质摩尔分数E:亨利系数)y*=mx(平衡常数m=Ep)E=ρsHMs(ρsMs:纯溶剂密度和相对分子质量)。六、干燥绝对湿度δ=pV(ppV)(pV:水蒸汽分压)相对湿度φ=pVpS(pS:水蒸汽饱和分压)湿焓I=IgδIv(Ig:绝干空气的焓Iv:水蒸汽的焓)。物料的干基湿含量X=m水m绝干是基湿含量ω=m水m总×ω=X(X)物料分类:非吸湿毛细孔物料、吸湿多孔物料和胶体无孔物料物料与水分:总水分、平衡水分、自由水分、非结合水分、结合水分。干燥过程物料衡算:qm,c(XX)=qm,L(δδ)=qm,W(qm,c:绝对干料的质量流量qm,L:绝干空气质量流量qm,W:干料蒸发出水分的质量流量)即湿物料减少水分等于干空气中增加的水分热量衡算:q=qDqP=qm,L(II)qm,c(I’I’)qL(qD:单位时间干燥器热量qP:单位时间预热气热量qL:单位时间热损失I:出干燥器的空气的焓I:进预热器的空气的焓I’I’:进出干燥器物料的焓)qD=qm,L(II)=qm,L(δ)(tt)qD=qm,L(II)qm,c(I’I’)qL干燥器热效率:η=qdqP×(qd=qm,L(δ)(tt))。干燥速率U=h(ttW)rtw(h:对流表面传热系数t:恒定干燥条件下空气平均温度tW:初始状态空气湿球温度r:饱和蒸汽冷凝潜热)恒速干燥阶段时间:τ=qm,c(XXc)UcS(Xc:临界湿含量S:干燥面积)降速干燥阶段时间:τ=qm,c(XcX*)ln(XcX*)(XX*)UcS。干燥器分类:厢式干燥器、隧道干燥器、转筒干燥器、带式干燥器、转鼓干燥器、喷雾干燥、流化床干燥器、气流干燥器、微波高频干燥。湿度:相对温度:湿比热容:在~℃时湿空气焓:具体表达式为:湿比体积:露点温度:即七、新型分离技术超临界萃取:以超临界流体作萃取剂(密度接近于液体而粘度接近于气体扩散系数位于两者之间)其具有很强的选择性和溶解能力传质速率大流程可分为:等温法、等压法和吸附吸收法。膜分离技术:微滤、超滤、纳滤、反渗透、透析、电渗析、气膜膜分离、渗透气化(溶质发生相变化再透过侧以气相状态存在)。液液萃取(石油馏分氧化的稀醋酸提浓):与分离液体混合物的整流方法比较下列情况采用是可取的:()溶质A的浓度很小而稀释剂的浓度B易挥发组分时直接用蒸馏的方法能耗是很大这时可以先萃取使溶质A富集于萃取剂S中然后对萃取相进行蒸馏如以氯仿为萃取剂从咖啡因水溶液中分离咖啡因。()恒沸物或沸点相近组分的分离此时普通整流方法不适用如催化重整油中芳烃与烷烃的分离因沸点相近而需要塔板数太多工业上常用环丁砜为萃取剂融解苯、甲苯、二甲苯以及其他芳烃衍生物。()需分离的组分不耐热蒸馏时易分解、聚合或发生其他变化如从发酵液中提取青霉素时采用醋酸丁酯为萃取剂进行萃取。溶剂需满足:溶剂不能与被分离混合物完全互溶只能部分互溶溶剂对A、B两种组分有不同的溶解能力有选择性。对被分离组分A相对挥发度高。混合液相对挥发度小浓度稀含热敏物质宜采用液液萃取。(两相接触方式分微分接触级式接触)(三角形图、溶解度曲线)主要设备:筛板塔、填料塔、脉冲填料塔脉冲筛板塔、转盘塔等。八、结晶由蒸汽、溶液或熔融物中析出固体晶态的操作叫结晶。吸附多孔性固体表面的分子或原子因受力不均而具有剩余的表面能当流体中的某些物质碰撞固体表面时受到这些不平衡力的作用就会停留在固体表面上。具有吸附作用的物质称为吸附剂被吸附的物质称为吸附质。常见的吸附剂有活性炭、磺化煤、焦碳、木炭、白土、炉渣及大孔径吸附树脂等。吸附的应用()气体和液体的深度干燥()食品、药品和有机石油产品的脱色、除臭()有机烷烃的分离和精制()气体的分离和精制()从废水或废气中除去有害的物质。膜分离是以对组分具有选择性透过功能的膜为分离截至通过在膜两侧施加(或存在)一种或多种推动力使原料中的膜组分选择性地优先透过膜从而达到混合物分离并视线产物地提取、浓缩、纯化等目的的一种新型分离过程。

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/11

化工原理知识点

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利