首页 模流分析

模流分析

举报
开通vip

模流分析模具厂所接的订单的和一般公司还有所不同,我们所接的模具订单各种各样,工程师的经验有时毕竟有限,所以借助MOLDFLOW软件的分析功能,对我们设计模具帮助很大。 案例一,CLIP设计: 此产品为一固定U盘的回行夹。如下图所示,标示处变形量要求较严格,以往生产出来的产品此处变形常常偏大, 我们的工程师考虑先在模具设计时设定一方向的预变形,与产品变形相互抵消,保证产品符合要求的。 问题是此预变形量多大,方向如何,设计前并不知道,如果预变形做的太大,将来产品可能就会反向变形。 借助MOLDFLOW软件的FLOW C...

模流分析
模具厂所接的订单的和一般公司还有所不同,我们所接的模具订单各种各样,工程师的经验有时毕竟有限,所以借助MOLDFLOW软件的分析功能,对我们设计模具帮助很大。 案例一,CLIP设计: 此产品为一固定U盘的回行夹。如下图所示,标示处变形量要求较严格,以往生产出来的产品此处变形常常偏大, 我们的工程师考虑先在模具设计时设定一方向的预变形,与产品变形相互抵消,保证产品符合要求的。 问题是此预变形量多大,方向如何,设计前并不知道,如果预变形做的太大,将来产品可能就会反向变形。 借助MOLDFLOW软件的FLOW COOL WARP 模块,我们先分析出产品可能的变形量,在此基础上,给模具设计一合理的预变形量, 从而一次试模成功,获得了合格的产品。 案例二,memorex-bottom-top 设计:[/ALIGN] 此套模具为2+2 模穴,设计为自然平衡流道,如果不经过分析,模具设计者很难想到要在标示处加强排气, 只能等试模时才能发现问题,必然会提高整个产品上市周期。 经过 MOLDFLOW 软件的FLOW 模块分析后, 我们在模具设计前就已经知道此问题,所以模具设计时特意在此处加强排气,保证一次试模成功。 还有一些案例解决流道平衡的问题,一模多腔的设计,通过控制流道尺寸,保证流动平衡,从而控制产品品质。避免由于流动不平衡带来过保压现象,导致产品翘曲变形。同时优化流道尺寸设计还有一个很大的益处就是减小循环周期。因为很多情况下,产品最后凝固在流道处,如果流道尺寸偏大,必然提高整个循环周期,同时还会产生较多的废料。 电池盖部件是我们运用MOLDFLOW软件的又一成功案例。此产品是薄壁件,难以填充。 在分析之前,解决它的方法是加大注射压力,提高注射速度,强制成型。这样一方面机器磨损较大,另外高压高速注射后的产品内部残余应力较大,产品品质仍然无法保证。采用MOLDFLOW分析后,采用局部加厚的方法,改善了产品的流动,从而使公司可以利用较小的压力和较低的注射速度成型。提高了成型参数的选择范围,改善了产品品质。 [/ALIGN] [/TD][/TR 在注塑成型中,模具的温度直接影响到制品的质量和生产效率。通过温度调节,保持适当的模具温度,可减小制品的变形、增强制品力学性能、改善制品的 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 观质量、提高制品尺寸精度。同时,缩短占整个注射循环周期约[/SIZE]80%的冷却时间是提高生产效率的关键。因此,设计合理的冷却系统,对模具温度进行有效调节是十分必要的。冷却系统的设计在20世纪60年代就已引起了人们的重视,并进行了大量研究,得到了一些简化公式或经验公式,但由于实际制品的形状往往十分复杂,因此,这些公式的应用范围存在着很大的局限性。MPI/Cool通过分析模具冷却系统对模具和制品温度场的影响,优化冷却系统的布局,以达到使塑件快速、均衡冷却的目的,从而缩短注塑成型的冷却时间,提高生产效率,减少废品,增加经济效益。[/SIZE] [PP]    一、[B]MPI/Cool[/B]简介[/SIZE] [PP]    [/SIZE]影响注塑模冷却的因素很多,如制品的形状,冷却介质的种类、温度、流速,冷却管道的几何参数及空间布置,模具材料,熔体温度,工件要求的顶出温度和模具温度、制品和模具间的热循环交互作用等。这些参数之间互相联系、互相影响,唯有这些参数的合理组合才能获得理想的效果。但靠传统的经验和简化公式是很难确定的,只有通过CAE分析才能得到理想的结果。 [PP]    [/SIZE]MPI/Cool采用边界元法(Boundary Element Method)对模具的温度场进行三维模拟,对于制品在其厚度方向上采用解析解来计算温度分布,并通过制品的热流量将二者完全耦合进行迭代求解。同时将模具的温度场与冷却管道中冷却介质的能量方程联立起来求解,因此可以可靠地计算制品/模具及模具/冷却介质间的界面温度。在计算过程中,考虑了型芯和型腔在制品厚度方向的不对称性对制品温度分布的影响。 [PP]    [/SIZE]MPI/Cool能够模拟冷却管道(包括隔板管、喷流管、连接软管)、镶块、多种模具材料、冷流道和热流道、分型面及模具边界对模具和制品温度的影响,从而为优化冷却系统提高可靠的依据。 [PP]    [/SIZE]MPI/Cool不仅能对中性面模型和Fusion模型进行冷却分析,而且能够对3D模型进行冷却分析。 [PP]    [/SIZE]此外,MPI/Cool和MPI/Flow相结合,可以得到十分完美的动态的注塑过程分析。 [PP]    [/SIZE]二[B]、[/B][B]MPI/Cool[/B]的作用 [PP]    [/SIZE]MPI/Cool通过对模具、制品、冷却系统的传热分析,为用户提供了丰富的模拟结果。 [PP]    [/SIZE](1) 冷却时间  为保证制品在脱模时要有足够的强度,以防止脱模后发生变形,要确定合适的冷却时间。MPI/Cool能够计算制品完全固化或用户设定的固化百分比所需要的冷却时间。 [PP]    [/SIZE](2) 型腔表面的温度分布  型腔表面温度对制品质量具有重要影响。MPI/Cool能够模拟注射周期的型腔表面温度分布,帮助 工艺 钢结构制作工艺流程车尿素生产工艺流程自动玻璃钢生产工艺2工艺纪律检查制度q345焊接工艺规程 人员确定模具温度的均匀程度及是否达到材料所要求的模具温度。对于中性面模型,MPI/Cool还可以计算制品两个侧面的温度差别。 [PP]    [/SIZE](3) 制品厚度方向的温度分布  制品在顶出时刻的温度是确定冷却时间是否合理的重要因素,如果温度过高,则需加强冷却或适当延长冷却时间,而温度过低,说明冷却时间太长。MPI/Cool能够预测制品在顶出时刻沿厚度方向不同位置的温度分布,最高温度在厚度方向的位置,沿厚度方向的平均温度以及某一单元温度沿厚度方向的变化。 [PP]    [/SIZE](4) 制品的固化时间  依据模具表面的温度预测制品完全固化所需要的时间。 [PP]    [/SIZE](5) 冷却介质的温度分布及冷却管道表面的温度分布  冷却介质的温度变化、冷却管道表面与冷却介质间的温度差是决定冷却是否有效的重要依据。 [PP]    [/SIZE](6) 冷却管道中的压力降低、流动速度及其雷诺数  雷诺数决定了流动状态,应保证冷却介质处于紊流状态。 [PP]    [/SIZE](7) 镶块的温度分布、镶块/模具界面的温度差分布  镶块/模具间的温度差别反映了热量通过界面的阻力大小。 [PP]    [/SIZE](8) 分型面和模具外表面的温度分布。 [PP]    [/SIZE]三、[B]MPI/Cool[/B]应用实例 [PP]    [/SIZE]3.1 建模 [PP]    [/SIZE]制品在三维CAD软件如Pro/E、UG中建模,通过STL文件格式读入MPI,冷却系统和浇注系统在MPI中创建。制品模型、冷却系统和浇注系统如图1所示。 [PP] [/SIZE] 图1  模型、冷却系统和浇注系统 3.2 工艺条件 制品材料选用Montell Australia VMA617,其工艺参数为:熔体温度225oC,型腔温度40oC。冷却管道的直径为10mm,冷却介质为水,温度为25oC,入口雷诺数为10000。整个注塑成型周期为20s,其中注射、保压及冷却时间为15s,用于顶出的时间为5s。 3.3 模拟结果 按照上述工艺条件,对制品的冷却过程进行了模拟分析,得到的部分模拟结果如图2所示。 [PP] [PP](a)  型腔表面的温度分布 [PP] [PP](b) 制品沿厚度方向的温度变化 [PP] [PP](c)  制品完全固化所需时间 [PP] [PP](d)  冷却介质的温度变化 [PP]图2  冷却过程模拟得到的结果 [PP] [PP] [PP][B]    四、结束语[/B] MPI/Cool通过对冷却过程的模拟,帮助模具设计人员和工艺人员全面了解模具冷却系统的冷却效率及其合理性。这对于优化出合理的冷却系统,提高制品的生产效率和质量,具有重要的指导意义。 [PP] [PP] [PP]参考文献 1.  李德群:塑料成型工艺及模具设计,机械工业出版社,1994 2.  余卫东,陈建:注塑成型CAE技术,计算机辅助设计与制造,60-62,No.3,2002 3.  胡俊翘,李德群,卢义强:注塑模三维瞬态温度场建模及仿真,中国塑料,52-59,No.3, 气体辅助成型技术作为新的注射成型工艺,是注射成型工业最重要的发展之一,被业界誉为塑料注塑成型工艺的第二次革命。与传统的注射成型相比,气体辅助注射成型技术有许多优点,如提高产品强度、刚度、精度,可消除缩痕从而提高制品表面质量,简化浇注系统、模具设计和装配工艺,减小产品成型应力和翘曲,节省塑料材料,减轻产品重量,解决大尺寸和壁厚差别较大产品的变形问题,降低注射压力和成型压力,锁模力等。但是,影响气体辅助注射成型工艺的因素很多,如注射温度、注射时间、熔体预注射量、打气工艺与位置、材料种类等。与普通注射成型相比,气体辅助注射成型的工艺难度大,要求严格。由于气体的注入,使得塑料熔体在模腔中的成型行为发生显著变化,气体注入对塑料熔体的填充形式、模具冷却、制品的收缩和翘曲及最终的使用性能产生很大影响。 气体辅助注射成型技术中,选择合适的气道设计、气体注入位置、延迟时间及压力是保证制品质量的关键因素。如果产品设计不合理,工艺设置不恰当或其他参数设置不好,很容易导致整个产品品质欠佳,如气体穿透深度不够,或漏气、穿透,严重者甚至导致产品报废。 为了提高产品质量,同时缩短产品开发周期,我们引进CAE 软件MOLDFLOW FLOW/GAS/WARP 模块进行分析,通过对气辅成型过程进行模拟计算,帮助设计人员确定合理的产品壁厚,模具及工艺条件设计,大大降低了产品的试模次数。以下就是我们利用MOLDFLOW/GAS 进行分析的一个实际案例。 图1 为一制品的填充和保压分析得到的填充时间、气体穿透时间、制品中塑料层厚度比例的分布云图及气体体积分数随时间变化的关系,锁模力,以及凝固层百分比随时间的变化关系图。 [/ALIGN]通过MPI/Gas 对气辅成型过程进行模拟计算,我们能够检查现有设计中是否存在穿透,充填不饱,以及手指效应等不良缺陷;确定合适的注射量以避免吹穿;同时,确定避免短射、熔体前沿粘滞所需气体压力;考虑气体注入前的延迟时间以便使薄壁凝固,确定合适的气道尺寸,以优化填充工艺和气体注入工艺;并确定最佳的气道布局及控制气室长度,查看成型机吨位,检查现有机器能否成型。在此基础上,进一步确定气体穿透后制品最终的壁厚及制品最终的重量。
本文档为【模流分析】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_954223
暂无简介~
格式:doc
大小:30KB
软件:Word
页数:0
分类:生产制造
上传时间:2019-04-11
浏览量:8