首页 利用0至1V模拟乘法器实现电池供电系统的精确功率管理

利用0至1V模拟乘法器实现电池供电系统的精确功率管理

举报
开通vip

利用0至1V模拟乘法器实现电池供电系统的精确功率管理利用0至1V模拟乘法器实现电池供电系统的精确功率管理 有些系统要求测量输出到负载的功率,这比通过传统的电流检测放大器简单测量电流更为重要。负载功率测量可以精确管理电池或交流适配器供电设备的功率。该应用笔记显示了创建一个简易模拟乘法器(用MAX4210D/E/F)的方法,将两路0到1V的输入信号相乘,从而实现精确的负载功率测量。 负载功率测量的重要性 在笔记本电脑应用中,负载功率的测量往往非常重要,此类应用中,整个 负载)是由锂离子(Li+)电池供电或由同时向电池充电的交流适配器供电。电路( 因为每个电源的输出...

利用0至1V模拟乘法器实现电池供电系统的精确功率管理
利用0至1V模拟乘法器实现电池供电系统的精确功率管理 有些系统要求测量输出到负载的功率,这比通过传统的电流检测放大器简单测量电流更为重要。负载功率测量可以精确管理电池或交流适配器供电设备的功率。该应用笔记显示了创建一个简易模拟乘法器(用MAX4210D/E/F)的方法,将两路0到1V的输入信号相乘,从而实现精确的负载功率测量。 负载功率测量的重要性 在笔记本电脑应用中,负载功率的测量往往非常重要,此类应用中,整个 负载)是由锂离子(Li+)电池供电或由同时向电池充电的交流适配器供电。电路( 因为每个电源的输出电压不同,负载电流也不同。通常情况下,交流适配器输出16V,而电池包由3节Li离子电池组成,充满电时电压约12.6V,完全放电时约为9V。 要精确管理电路中的功率,仅仅测量负载电流是不够的,因为那样无法给出正在使用哪种类型的电压源的信息。此外,有些便携式应用中的微控制器所能提供的引脚有限,所以需要直接测量功率,而不是分别测量电压和电流,然后在固件中相乘。 用MAX4210D/E/F构建0至1V模拟乘法器 MAX4210D/MAX4210E/MAX4210F为高边电流和功率监测器,具有内部真模拟乘法器。这些器件可以直接将电池电流和0到1V的输入电压相乘。但如果需要简单的将两个0到1V的信号相乘,输入共模电压门限(4.5V最小)将使电路无法工作。 图1显示了利用MAX4210D/E/F与一个MAX4477运放和n沟道MOSFET构建0到1V模拟乘法器的电路。该电路可以将最高1V的2个独立输入电压相乘。 图1: 采用MAX4210D/E/F和MAX4477构建通用的1V模拟乘法器。 本应用笔记以MAX4210E为例;MAX4210D和MAX4210F也可以用于构建通用模拟乘法器。 在图1电路中,输入电压V1通过运放、MOSFET和R1电阻转换成电流;R2电阻再将其转换至较小的电压。这个小电压连接至MAX4210E的差分输入。MAX4210E允许的最大输入检测电压为150mV。据此,选择R1和R2值:R1 = 1kΩ 和R2 = 150Ω 。整个电路的电源VCC为5V;MAX4210E具有25V/V的增益。因此,满幅输出电压为3.75V。 电路中应选择输入共模电压范围包含地、而且精度应该优于MAX4210E的运算放大器。25?C时,MAX4210E的总输出误差小于满量程输出(FSO)范围的?1.5%。MAX4477具有pA级的超小偏置电流,输入电压偏置小于350μV,CMRR至少90dB;因此,所引入的误差相比于MAX4210E可以忽略。 图2显示了第一组测量结果,输入V2为0.9V,输入V1从0至1V范围内以100mV递增。 图2: VOUT与V1的关系,V2 = 0.9V。 计算增益误差为0.8%,总输出误差为FSO的0.6%。增益误差等于:测量的曲线斜率和理想曲线斜率之间的差与理想曲线斜率的比值,以百分比 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 示。每个斜率由假设为线性的2个端点测量值得到。总输出误差为测量值和理想曲线的最大差值与3.75V的FSO比值,以百分比表示。 图3显示了另一组测量值,输入V1为0.9V,输入V2在0到1V之间以100mV递增。计算增益误差为0.81%,总输出误差为FSO的0.58%。 图3: VOUT与V2的关系,V1 = 0.9V。 两组测量中,增益误差和总输出误差均在MAX4210的参数范围内。 结论 为实现精确的功率管理,一些应用需要进行负载功率检测,而不仅仅是负载电流检测。MAX4210D/E/F能同时检测负载电流和电源电压,理想用于由电池或交流适配器供电的应用中。应用笔记中提供了采用MAX4210D/E/F构建通用模拟乘法器,能够将两路0至1V的信号相乘,实现精确的功率管理。 一、基于数字滤波器的内阻测量技术 在线测量每个单电池的内阻是检测装置的难题之一,测量准确度直接关系到分析的准确度。在线测量需要解决充电机和用电负载干扰的问题。对于大容量电池,电池内阻是微欧级小信号,本文中采用了数字滤波技术提高测量准确度。 在线测量主要存在以下因素影响测量: 1) 测量线耦合的高频干扰信号; 2) 50Hz工频干扰; 3) 充电机低频纹波; 4) 充电或放电的电压缓变; 5) 负载的不规则变动。 对于高频干扰,一方面通过硬件低通滤波削减,另一方面,在有效的A/D采样频率下进行平滑滤波处理。有效信号组成如图1-1所示。 本文的研究中设计了专用的激励装置,向电池组馈入受控交流信号,测量电路采集被测电池的交流电压信号。为消除上述影响因素,采用了IIR数字滤波技术。 采用直接方式即可实现差分方程运算。图1-2是采用椭圆滤波器设计的带通滤波器,M=N=11,具有良好的下降斜率,在通带和阻带内均为等纹波。 图1-1 表1是量程为50mΩ的实测数据,表明该方法具有良好的线性和重复性。 表1 采用IIR滤波器的实测数据(mΩ) 二、监测装置与充电机互动设计 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 监测装置与充电机互动方案是提高劣化程度预测准确性的创造性工作模 -1所示。 式,其基本结构如图2 互动方案的监测系统结构 浮充状态下的测量理论和方法有其固有的局限性,放电测试能得到更为可靠的数据,但目前的放电测试或者需要人工干预,或者在不确定的停电发生后被动进行,前者难于经常性的进行,而且风险较大,后者的不确定性也带来隐患。本文的互动方案是针对先进电源装置的系统化设计方案,能有效解决前述的多方面问题。 互动方案的主要原理是:电池监测(Battery Monitoring Unit--BMU)进行日常的巡检,并且分析采集的数据及变化趋势,在一定条件下请求充电机(Rectifier Unit--RU)配合进行部分放电测试。由于RU在部分放电时设置为一个比蓄电池放电下限电压低的某一整流输出值,既能使电池提供用电设备的负荷功率,又避免了放电过程中由于电池问题带来的停机风险。 在正常浮充状态下,BMU连续检测电池组的电压和内阻,若发现电压或内阻异常,则启动部分放电测试过程,进行更深一层次的测试。该测试过程也被设置为按一定周期启动,如一个月。 在放电测试期间,将劣化程度预测模型所需的放电数据,采集包括浮充电压、初始跌落、正常放电电压等数据,通过电池的劣化程度(SOH)预测模型运算,准确得知SOH。 此外,互动方案并不排斥停电后的被动测试,被动放电也可以触发进行预测计算,出现放电即触发数据采集,在放电深度达到某个设定值时启动一次预测运算。 这样,在内阻监测的基础上,监测系统通过采用三类不同深度的放电测试达到长期连续准确检测SOH的目的: 1) 完全放电 电池在投运之前应进行一次100%深度的放电,以确认该电池组能满足设计要求。否则,若存在产品本身的质量问题,会影响到后续监测数据处理的准确性,放电前应该充满并在浮充状态保持一定的时间。 2) 中等深度的放电 中等深度指30—50%深度的放电。检测装置的数据处理方法根据此深度的放电数据可以相当准确地计算各电池的SOH,同时亦避免 了更加深度放电过程的突然停电,使设备承受断电的危险,一般的电池配置往往考虑了电池容量的裕量,比如一倍。因此中等深度的放电在一般情况下,包括一般性的停电故障发生情况下是安全的 。 3) 周期性的短时放电 根据蓄电池应用场合选取适合的周期,例如3个月。一般短时放电的深度为5%左右,检测装置启动FNN运算,预测电池的SOH。因为是预测,其可靠程度在目前仍处在研究中。这也包括FNN算法中所使用的输入数据是否对所有 的电池失效情况均敏感。在FNN运算中,还存在算法的“保守性”一面,即宁可低估SOH,也放弃高估SOH所带来的风险。 因此,互动方案在长期运行方式如图2-2所示,一般为多次短时放电测试后加入一次中等深度放电,或者在短时放电测试结果发现电池可能严重劣化时进行一次中等放电予以确认。如果被确认预测结果正确,则通知控制中心;若证明预测有误,则对预测模型作自适应调整。在最后一次中等深度放电确定电池劣化严重后,采取更换措施,更换之前进行一次完全放电,本组数据对于SOH模型的完善有重要意义。 图2-2 互动方案的监测过程 三、监测装置的模块化设计 3.1监测装置设计要求 图3-1 监测装置硬件结构 3.2检测模块设计 检测模块主要包括5个部分: 电压、电流、温度的测量电路; 1) 2) 通道切换; 3) A/D转换电路; 4) 微处理器单元; 5) 通讯接口。 检测模块完成数据采集,并将数据传给控制模块。高精度、高时效的 相关文章推荐阅读: 移动电源哪个牌子好
本文档为【利用0至1V模拟乘法器实现电池供电系统的精确功率管理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_589748
暂无简介~
格式:doc
大小:166KB
软件:Word
页数:0
分类:
上传时间:2018-03-17
浏览量:7