首页 锂电池充电器的设计

锂电池充电器的设计

举报
开通vip

锂电池充电器的设计锂电池充电器的设计 安徽理工大学 毕 业(设计)论 文 题目:纯电路客车电池充电器设计 学生姓名 刘佳 学 号 专 业 热动 班 级 07发电三班 指导教师 李毅华 二?一二年 五 月 1 目录 一、摘要------------------------------------------------------------------------3 二、锂电池充电的原理及特性---------------------------------------------3 三、锂电池充电器操作指南...

锂电池充电器的设计
锂电池充电器的设计 安徽理工大学 毕 业(设计)论 文 题目:纯电路客车电池充电器设计 学生姓名 刘佳 学 号 专 业 热动 班 级 07发电三班 指导教师 李毅华 二?一二年 五 月 1 目录 一、摘要------------------------------------------------------------------------3 二、锂电池充电的原理及特性---------------------------------------------3 三、锂电池充电器操作指南------------------------------------------------4 四、硬件电路设计--------------------------------------------------------------------------7 1. 单片机开关电源 2(控制电路 3(志愿检测 4(电流检测 5(温度检测 6(PWM控制 7(按键与显示 (保护电路 8 五、软件设计---------------------------------------------------------------15 六、实验测试结果---------------------------------------------------------16 七、设计 总结 初级经济法重点总结下载党员个人总结TXt高中句型全总结.doc高中句型全总结.doc理论力学知识点总结pdf ---------------------------------------------------------------16 八、参考献文---------------------------------------------------------------17 九、附件---------------------------------------------------------------------18 1.纯电路客车电池充电器实物图 2.纯电路客车实物图 一(摘要 锂电池闲其比能量高、自放电小等优点,成为便携式电子设备的 理想电源。近年来,随着笔记本电脑、PDA,无绳电话等大功耗大容 2 量便携式电子产品的普及,其对电源系统的要求也日益提高。为此,研发性能稳定、安全可靠、高效经济的锂电池充电器显得尤为重要。 本文在综合考虑电池安全充电的成本、设计散率及重要性的基础上,设计了一种基于ATTINY261单片机PWM控制的单片开关电源式锂电池充电器,有效地克服了一般充电器过充电、充电不足、效率低的缺点,实现了对锂电池组的智能充电,达到了预期效果。该 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 设计灵活,可满足多种型号的锂电池充电需求,且ATTINY261集成化的闪存使其便于软件调试与升级。 二.锂电池充电的原理及特性 锂电池充电的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。 同样道理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。不难看出,在锂电池的充放电过程中,锂离子处于从正极 ? 负极 ? 正极的运动状态。如果我们把锂电池形象地比喻为一把摇椅,摇椅的两端为电池的两极,而锂离子就象优秀的运动健将,在摇椅的两端来回奔跑。所以,专家们又给了锂电池一个可爱的名字摇椅式电池。 3 锂电池结构: -+ Li+LiOOPLi+OOLi+FeLi+LiLi+OLi+Li+OPOLi+Li+OFeLi+LiOLi+OPLi+OLi+Li+OFeLi+LiLi+OLi+Li+Li+OPOLi+OFe (图2.1) 纯电路客车充放电原理方程式: 放电 +-正极Li FePO————FePO+Li+e44 充电 放电 +-负极6C+Li+e————LiC6 充电 放电 总反应6C+ Li FePO————FePO4+ LiC46 充电 锂电池充电需要控制它的充电电压,限制其充电电流。锂电池通常都采用三段充电法,即预充电、恒流宽电和恒压充电。锂电池的充电电流通常应限制在1000C(C为锂电池的容量)一下,单体充电电压一般为420V,否则可能由于电聪过高会造成键电池永久性损坏。 4 预充电主要是完成对过放的锂电池进行修复,若电池电压低于30V,则必须进行预充电,否刚可省略该阶段。这也是最普遍的情况。在恒流阶段,充电器先给电池提供大的恒定电流,同时电池电压上升,当魄池电压达到饱和电压对,则转入憾压充电,充电电压波动应控制在50V以内,同时充电电流降低,当电流逐渐减小到规定的值时,可结束充电过程。电池的大部分电能在惯流及恒压阶段从充电器流入电池。曲上可知,充电器实际上是一个精密电源,其电流电压都被限制在所要求的范围之内。 (图2.2 锂电池充电原理图 ) 5 三(锂电池充电器操作指南 一(安全指南 警告:提醒用户该操作有危险 注意:提醒用户该操作为本产品的重要操作 注意事项: 1.严谨设置超过输出电压的标称 2.严谨正常充电的时候断开电源 3.请勿将充电器放在有雨淋的地方 4.直流插座与连接紧固 5.充电过程中如有异常的声音或气味,请断开输入电流 6.请勿堵住充电器的进风和出风口 7.移动充电器时请断开电源线和充电插头 8.为避免损坏充电器电缆,请不要拉扯,扭动电缆 二(操作步骤 第一步:连接和输出端电池 第二步:连通输入电流 第三步:可以调整设计参数 6 四(硬件电路设计 1.单片开关电源 单片开关电源负责将电能转化为电池充电所需要的形式,构成了充电器的主要功率转换方式。与传统线性充电器大损耗、低效率的缺点相比,由美国Power Integrations公司的TNY268P构成的单片开关电源,其输入电压范围宽(85265VAC)、体积小、重量轻、效率高,其有调压、限流、过热保护等功能,特别适合于构成充电电源。其原理图如图1所示。 (图4.1 单片开关电源) 该电源采用配稳压管的光藕反馈电路实现15V的低压直流输出,当输出电压发生变化时,通过线性光藕PC817的发光管的电流发生相应的变化,使得TNY268P的EN脚流出电流也发生变化,从而控制其片内功率MOSFET的断、通、调节输出电压,使输压电压稳定。具体反馈原理 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 详见后文脉宽调制(PWM)的控制。 7 在电路结构上,线性光藕PC817,不但可以起到反馈作用还可起到隔离作用。由PNP管Q2和电阻R9、R1O及R12组成的限流电路,则从源头上防止了过电流的问题。由C6及R11构成的缓启电路,则有效抑止了电源上电瞬间的产生的电压尖峰。而二极管D9则防止了电池组的反向放电。此外,对整个充电系统而言,当因意外情况系统失控时,开关电源所提供的15V直流低压也在某种程度上起到了限制其最高电压的作用。 2. 控制电路 单片机负责控制整个系统的运行,包括充电电流电压值的设定,电流电压的检测与调整,充放电状态的显示等。与专用充电控制芯片相比,单片机控制系统不仅不受电池组容量大小的阻将电流转换为电压进行的,因此其PWM控制调整过程与恒限制,还可通过软硬件配合实现更灵活的综合控制,也便于进一步的后续开发。 系统控制选用Atmel公司的AVRATTINY261来实现,控制框图见图2。ATTINY261采用AVR RISC结构,其大部分指令执行时间仅为1个时钟周期(可达到接近1MIPS/MHZ的性能;11路l o b I t ADC。且15对具有可编程增益的ADC差分通道,精度高达2.5mV的内置2(56V基准源,3个独立PWM发生器,片上温度传感器,足以满足设计需求。 8 (图4.2电池控制电路图) 3. 志愿检测 系统电压采样采用精密电阻分压 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,将测量电压范围转换成0-456V,然后通过1倍的差分ADC通道转换成数字信号,在充电过程中将测得的电压值与预先设定的值进行比较,再控制调整PWM占空比完成对充电电压的控制与调节。 4.电流检测 在系统电流的榆测上,由于选用ATTINY261的ADC差分通道,这就要求其正端输入电压必须大予负端输入电压。困此,在电路设计上,通过串联在电流主回路中的高精度采样电阻(R) sense B和Sense A,经ADC2-ADCl和ADCl-ADC0两对32倍的ADC差分通道(参见图3),分别完成对充、放电电流的检测。可见,差分ADC的选用,既 9 保证了电流采样的精准,又避免了因电路中引入差分远放所带来的功率损耗问题,很好的满足了系统性能与功耗两方面的要求,充分体现了ATTINY261的优势。 (图4.4电流检测图) 5.温度检测 温度检测确保了安全充电步骤的执行。系统中使用ATTINY261的毖上湿度传感器,通过ADCI1进行温度检测。测量电压与温度基本成线性关系,约1V/?C的精度可提供充分精度的温度测量。如欲获得更高精度的温度检测,可通过软件写入校准值的方法来实现 10 (图4.5温度检测电路图) 6.PWM控制 设计中,在前述稳压管反馈控制的摹础上,在反馈环节中引入PWM的方法控制充电。其基本控制思想是利用单片机的PWM端口,在不改变PWM波周期的前提下,通过电流及电压的反馈,用软件的方法调整PWM占空比,从而使电流或电压按预定的充电流程进行。 因系统进入充电工作状态后,受锂电池终止充电电压的限制,其最高电压不得高于1270V,所以开关电源中的稳压管 ,当Z1始终处于截止状态,充电过程完全由PWM的控制来实现。以恒压充电为例,在充电电压调整之前,单片机先快速读取充电电压检测值,然后将设定的电压值与实际读取值进行比较,若实际电压偏高,则提高PWM占空比,使线性光耦PC817的发光二极管的电流1F增大,致使TNY268的EN脚置为低电平,其片内功率MOSFET关断,输出电压降低。反之,则降低PWM占空比->IF减小->EN脚为高电平,片内功率MOSFET接通,输出电压升高。在预充电,恒流充电阶段对电流的调整,是通过采样电阻将电流转换为电压进行的,因此其PWM控制调整过程与恒压阶段完全类似。当充电结束时,PWM持续输出占空比为1的高电平,关断TNY268P的片内MOSFET,中断功率转换回路,实现充满后自动停充。 11 为保证采样的准确,尽量避免由于ADC的读数偏差和电源工作电压等引入的波纹干扰,所有采样点都经过阻容滤波处理,并在软件PWM的调整过程中采用了数字滤波技 7. 按键与显示 充电器的功能按键响应由ATTINY261的外中断来实现,与LED显示相配合可获知池放电状况,并提醒系统即将终止。系统充放电的每个状态都与相应LED显示对应。可根据电压检测判断是否有电池装入及提供电池短路保护,并给出LED报警信。 8.保护电路 由于锂电池的化学特性,在使用过程中,其内部进行电能与化学能相互转化的化学正反应。但在菜蝗条件下(如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧则会严重影响锂电池的性能与使用寿命,甚至会引起爆炸而导致安全问题,因此锂电池保护电路显得至为重要。 如图3所示,该电路选用精工的多节锂电池保护芯片S8233构成,可对电池电压和回路电流进行有效监测,并通过对MOS管FET-A或FET-B的控制在某些条件下关断究、放电回路以防止对电池发生损害。与其它电池保护芯片如S8254相比较,S8233还可通过外接MOS管FET1,FET1及FET3来保证锂电池组的充电平衡,这是其它类似芯 12 片所不具备的优点。通过单片机对S8233芯片CTL端子的控制,可实现对锂电池的故障保护。 (图4.8锂电池保护原理图) 1.在过电压情况下保护 如果在V检测的电池电压超过过压阈值V时间大于过压延DDOV 迟时间t ,则ATTINY261关闭充电FET,并将保护寄存器的OVO VD 置位。在过压期间,放电通路保持开放。除非被另外保护条件锁定,当电池电压降到充电使能阈值V以下或由于放电导致V - V > CEDDPLSV时,充电FET被重新使能。 OC 2.在欠压下保护 如果在V检测的电池电压低于欠压阈值V时间大于欠压延迟DDUV 时间t ,则ATTINY261关闭充电和放电FET,并将保护寄存器的U VD UV置位,使其进入休眠模式。当电池电压升到V以上和连接充电UV 13 器后,IC打开充电和放电FET。 3,在短路情况下保护 如果在V检测的电池电压低于放电阈值V时间达到延迟时间DDSCt ,则ATTINY261关闭充电和放电FET,并将保护寄存器的DOCS CD 置位。除非PLS上的电压升至大于V - V,否则充电和放电FETDDOC 不会导通。ATTINY261提供流经内部V至PLS电阻R的测试电DDTST流,当V升至大于V时上拉PLS。利ATTINY261用此测试电流DDSC 检测有害低阻抗负载的移除。另外,测试电流还提供了流经R,由TSTPLS到V的恢复性充电通路。 DD 4.在过流情况下保护 若加在保护FET的电压(V - V)大于V的时间超过了t DDPLSOCO ,则ATTINY261关断外部充电和放电FET,并将保护寄存器DOCCD 置位。直到PLS上的电压升至大于V - V时电路才会导通。DDOC ATTINY261提供流经内部V至PLS电阻R的测试电流来检测有DDTST害低阻抗负载的移除。 5.在过热情况下保护 若ATTINY261温度超过T,则立即关断外部充电和放电MAX FET。在以下两个条件满足前FET不会导通:电池温度降到低于T,MAX主机将OT复位。 注意充电温度 14 应尽量在室温下充电。镍基电池应在10?C至30?C (50?F至86?F)之间快速充电。低于5?C (41?F)和高于45?C (113?F)时 镍基电池的充电能力急剧下降。锂离子电池在整个温度范围内呈现良好的充电性能,但低于5?C (1?F)时充电速率应小于1?C。 五. 软件设计 系统软件采用汇编语言编写,并在AVR Studio4环境下编译调试完成。整个系统软件内充电主程序和中断服务子程序组成。主程序主要完成系统、变量及看门狗定时器的初始化(控制系统实现充电功能。单片机完成初始化后,根据电池状况判断应该进入哪一个充电阶段,然后通过AD采样与中断响应完成PWM的调整,实现相应阶段的控制。主程序流程见图4。程序中通过AD中断子程序来改变PWM占空比,定时中断子程序来控制最大充电时间,外中断来判断电池组放电状态。 15 (图5.1锂电池充电器主流程图) 六(实验测试结果 实验中采用450A恒流对三组1200Ah的锂电池组进行充电,充电电流(电压测试曲线如图1所示。实验结果她示,由单片开关电源实现AC-DC的转换,通过ATTINY261与S8233保护芯片的相互配合与控制所实现的锂电池充电器,满足了三组锂电池组的充电要求,取得了较好的充电效果。 16 (图6.1锂离子充电曲线图) 七(设计总结 由于AVR ATTINY261良好的性价比,使得产品的智能性与应用性大大提高,且缩短了开发时阔(降低了开发成本。并且,系统采用综合控制的软件算法,避应了不同型号及容量的锂电池需求机电路集成度高,结构简单,性能可靠,经济轻便,具有很大的实用价值。此外,在系统现有功能实现的基础上,充分利用ATTINY261的片内外资源,通过其所具有的12C通信功能,可以很方便的升级为智能电源管理系统,直接成用于各种便携式电子设备。 17 八(参考文献 1.姚和平 锂离子电池充电器设计 西安电子科技大学 2008年 2.马爱华 锂离子电池智能管理系统设计 北京交通大学 2008年 3.朱卓娅;程剑平;魏同立 锂电池管理芯片的过流保护功能设计及实现 电路与系统学报2006年 4.李兵 安凯汽车 锂电池充电器课件 2010.4.4 18 九(附件 1(纯电路客车充电器实物图 (图9.1这是安凯纯电路客车充电器实物图) 19 (图9.1.2充电器侧面图) (图9.1.3纯电路客车充电器待机状态) 20 (图9.1.4纯电路客车充电器工作状态) 一般来说充电是需要五个小时的,这个图可以看到现在只是充电九分钟就用了快四十A的电流所以大约一次充电要用电一万五左右A的电流 21 2(纯电路客车实物图 (图9.2这个车参加了比利时国际车展,是纯电路客车, 22 (图9.2.1安徽安凯客车.新能源纯电路客车) 23
本文档为【锂电池充电器的设计】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_153723
暂无简介~
格式:doc
大小:223KB
软件:Word
页数:17
分类:工学
上传时间:2017-09-01
浏览量:50