首页 数学文化教案

数学文化教案

举报
开通vip

数学文化教案数学文化教案 第0章关于“数学文化”课 《数学文化》这门课不是以数学的知识系统为线索进行教学,而是以比较浅显的知识为载体,讲授数学的思想、精神、方法,旨在提高大学生的数学素质、文化素质和思想素质。该课程讲究科学素质教育与人文素质教育的有机融合。 今天第一堂课讲序言,介绍数学文化课,主要有5个内容。以及“数学文化”课的开设,“数学文化”课的上法,和“数学文化”课的考核与评分。 第三周每堂课安排一位同学演讲,时间大概15-20分钟。 一、“数学文化”一词的使用 “数学文化”一词在世界上出现已经有二三十年了...

数学文化教案
数学文化教案 第0章关于“数学文化”课 《数学文化》这门课不是以数学的知识系统为线索进行教学,而是以比较浅显的知识为载体,讲授数学的思想、精神、方法,旨在提高大学生的数学素质、文化素质和思想素质。该课程讲究科学素质教育与人文素质教育的有机融合。 今天第一堂课讲序言,介绍数学文化课,主要有5个内容。以及“数学文化”课的开设,“数学文化”课的上法,和“数学文化”课的考核与评分。 第三周每堂课安排一位同学演讲,时间大概15-20分钟。 一、“数学文化”一词的使用 “数学文化”一词在世界上出现已经有二三十年了,在中国,比较早的是1990年北大邓东皋先生的一本书--《数学文化》里边,还有武汉大学前校长,数学家齐民有先生。对许多人来说,“数学文化”一词是陌生的,近年来使用频率才大大增加, 说明 关于失联党员情况说明岗位说明总经理岗位说明书会计岗位说明书行政主管岗位说明书 他是有生命力的,说明许多人更愿意从文化角度来关注数学,更愿意强调数学的文化价值。中华人民共和国教育部2003年颁布的《普通高中数学课程 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 》中,有四个地方用较大的篇幅谈到“数学文化”,说明这一词已在官方文件中正式使用。 2002年,北京国际数学家大会期间,陈省身先生为“中国少年数学论坛”活动题词“数学好玩”,鼓励青少年喜爱数学、学好数学。 二、什么是“数学文化”? 对这一词的理解,不同的学者从不同的角度有不同的理解。到目前为止还没有哪一位学者给出数学文化这 。最狭窄的一种就是说文化就是知识,说一个人有文化,就是说他有知识,这是最狭义的,还有好多好多,我就不在这儿列举了,但是各个词典,关于文化这个词的广义的解释,都差不多。文化是人类社会,历史实践过程中所创造的,物质财 地说“数学文化”课的宗旨就是要提高学生的数学素养。一个人从 小学 小学生如何制作手抄报课件柳垭小学关于三违自查自纠报告小学英语获奖优质说课课件小学足球课教案全集小学语文新课程标准测试题 到大学要学十几年的数学,但并不是学的时间越长,而掌握数学的精髓,相反,大多数学生对数学的思想精神了解的比较肤浅,数学素养较差,他们认为只要会做题,能应付考试,就可以了。教师在这个教学活动当中,往往先把自己变成类型题的,有效解题者和熟练操作工,什么意思呢?就是说,拿到一道题以后,马上能判断这道题是哪种类型,然后这种类型,分几步可以解出来,然后就能把这个题完成,再努力把学生也变成这种,类型题的有效解题者和熟练操作工,这个对于考试确实是有用的,能提高分,但是对于了解数学的思想,培养数学的素养,是有所欠缺的,所以我们大学教师常常会感到,中学输送来的好学生,很会做习题,但是不大善于学数学,那么实际上,学生毕业以后走入社会,如果不是在,与数学相关的领域工作,那么学过的那些数学定理,公式,解题方法,可能大多用不上, 很快多少年就忘掉了。我们曾经在一个,教学研究的项目里边,做过问卷调查,就是四十岁上下的这些人回答,说我十三年的数学白学了,一大批人这样回答,说我毕业以后,我就没用过一个数学定理,一个数学公式,我十三年的数学白学了,可能他确实没有用过,一个数学定理一个数学公式,但是绝不是十三年数学白学了,因为老师在十三年的数学课当中,除了教给你数学定理、数学公式以外,还教给了你它背后的数学思想,提高了你的数学素养,这些数学素养,在你参加工作以后,无论是有意识的还是无意识的, 一定是用过的,不会是没用过的,而且数学素养的不同,也一定对你的工作的效果的不同是有影响的。一位数学教育家说,不管人们从事什么工作,深深铭刻在头中的数学的思想精神,数学的思维方法和看问题的着眼点等,都会随时随地发生作用,使人们终身受益。 耐人寻味的是,在数学文化这个词被日益广泛地使用的时候,跟它相对应的物理文化化学文化,生物文化,天文文化这样一些词,并没有得到如此广泛地使用,并不是说它没有被使用,而是没有得到如此广泛地使用,那么什么原因呢? 我想,它的原因是因为,数学的研究对象,和那些自然科学的研究对象,有本质的区别,每一门不同的科学,当然都有它不同的研究对象,但现在说的是本质的区别,其他的自然科学,无论是哪个自然科学,它的研究对象都是某种物质,某种物质的运动形态。我们拿物理来举例。力学,电学,光学,热学,原子 物理学,都有具体的物质和物质运动形态作为它的研究对象。化学也是如此。生物学也是如此。天文学也是如此。但是如果问你数学呢?数学是以哪种物质?哪种物质运动形态?作为它的研究对象呢?你怎么回答?很难回答。你说不上是哪种物质,哪种物质运动形态,作为数学的研究对象。数学的研究对象是,从众多的物质和众多的物质运动形态当中,抽象出来的,是人脑的产物。你说数学研究这圆吧,客观世界里边有太阳,有月亮,有车轮,但是并没有数学里研究的这个圆,数学这个圆是人脑的产物,所以数学的研究对象是人,跟人相关系的,文化也是跟人相关系的,所以这个数学文化被广泛使用。我想是有这样的道理,就是数学的研究对象,和那些具体的,自然科学的研究对象很不一样,是人脑的产物,所以数学它具有超越具体科学,和普遍适用的特征,具有公共基础的地位。特别是不同的,社会现象和自然现象,在某一方面,可能遵循同样的数学规律,所以数学它既用到不同的自然科学里边,也用到不同的社会科学里边。这个反映出来,社会现象与自然现象可能在数量关系上有某种共性,所以数学就超越了具体的社会科学和自然科学,成为联系各种科学的纽带。所以有许多学者认为,科学不是简单地分成自然科学,社会科学。这样两大类,而把这个数学科学也作为一个跟其他的自然科学不是在一个层次上,而是有一种超越的味道。像钱学森大学者。这是在十几二十年以前,在人民大会堂讲话的时候,就提出过这样的观点。像丁石孙,我不知道。原来北大的校长,各位知道不知道这位,他也有这样类似的观点,当然这样的观点是逐渐在得到学者的共识。像我们上个世纪90年代以后,全国从数学系很多成立了叫数学科学学院。像北大也是,南开大学也是,它不叫数学学院,叫数学科学学院。就数学科学这四个字成一个词,这是跟这个有关系。 有两句耐人寻味的话: “一个人不识字可以生活,但是若不识数,就很难生活了”。“一个国家科学的进步,可以用它消耗的数学来度量”。前一句通俗易懂,却颇为深刻。后一句比较高雅,有非常精彩。可以看做是从口头与书面两种方式对数学文化的一个定位。 三、数学文化的特征 (1)思维性 数学是研究的任务,主要是应用人类关于现实世界的空间形式和数量关系的思维成果。因此,思维是数学的灵魂。数学教学的核心是思维的教学,思维教学应贯穿于整个教学之中。 (2)数量化 是数学文化区别于其他文化的显著特点之一,也是区分个人是否具有数学素养的标尺之一。 (3)发展性 数学家始终处于“寻求完美—打破完美—寻求新的完美”的循环之中,而每一个这样的循环,都是不断递进,拓宽的这样一个过程。大量的新数学分支由此涌现出来并得到应用。由于数学的不断发展,数学才有了越来越强大的生命力。 (4)实用性 人人必须,人人必用的一种工具,学习他是为了利用它。任何领域与数学都有一种我中有你,你中有我的水乳交融的关系。 (5)育人性 数学培养人们的思维能力,良好的品质和世界观。与人文科学和自然科学相辅相成。 四、数学文化的内涵 数学文化的理性精神—第一次数学危机之后,人们就意识到直观不可靠,数学的理性精神发展起来。因此在教学中应培养学生的独立思考、用于批判的精神。 数学文化的人文精神— 数学文化应用性的体现—数学来源于社会生活和生产实际,是从人们生活、生产过程的 经验 班主任工作经验交流宣传工作经验交流材料优秀班主任经验交流小学课改经验典型材料房地产总经理管理经验 中抽象概括出来的一门关于空间形式和数量关系的学科。小到日常生活中的银行存款、助学贷款、购房分期付款、商品减价、买彩票、股票,达到火箭发射,宇宙航行等都用到数学。数学中的每一次重大发现都给人以丰富的启迪。如非欧几何用于相对论,改变了人们的时空观念。数论用于密码破译,更使这门古老的数学分支大放异彩。 数学文化的相对稳定与延续性--由于数学文化是一个延续的、积极的、不断进步的整体,因而其基本成分在某一特定时期具有相对不变性;由于数学有其特殊的价值标准和发展规律,相对于整个文化环境而言,数学的发展具有一定的独立性。战争、灾害因素在某种程度上会影响他的进程,却无法改变他的方向。 数学文化的反思、批判和完善—三次数学危机每一次都促使对自己进行反思、批判,从而使数学不断完善,向前跨进了一大步。 数学文化的世界性 五、数学文化的价值 ?数学是一种精密的思维工具 ?数学是一种科学的语言—数学是一种符号语言,他可以摆脱自然语言的多义性。数学语言的简洁性,有助于思维效率的提高;数学语言也便于量的比较,便于数量分析;数学语言还可以探讨自然法则的更深层面,而这是其他语言不可能做到的。所以我们说数学以一种科学的语言。 数学家高斯:“数学是科学的皇后,数学也是科学的女仆。”前一句话突出了数学的精密思维,后一句话强调了数学为其他学科服务。 哲学家康德:“我坚决认为,任何一门自然学科,只有它数学化后,才能称得上是真正的科学。” 马克思:“一种科学只有在成功地运用数学时,才能达到真正完美的地步。” ?数学是理性的艺术 数学与艺术是人类创造的两个截然不同的文化产品。数学中强调逻辑思维,艺术强调形象思维。然而,数学与艺术又有相似之处。五线谱、二维画布上反映三维空间的实体,绘画中的“透视学”,达芬奇:“任何人的研究,如果没有经过数学的证明,就不可能成为真正的科学。” 近代计算机技术将数学与美术结合起来—简单公式和线条多次迭代得到奇妙的美术作品-- “分形几何”;“计算机美术” ?数学是人类文化的重要组成部分 六、哈工大“数学文化”课的开设 1.开课的概况 2.开课的初衷 3.开课的指导思想 数学不仅是一种重要的“工具”,也是一种思维模式,即“数学方式的理性思维”; 数学不仅是一门科学,也是一种文化,即“数学文化”; 数学不仅是一些知识,也是一种素质,即“数学素质”。 在提高一个人的推理能力、抽象能力、分析能力和创造能力方面,数学训练的作用,是其他训练难以替代的。 4.学生从课程中可能的收获 了解数学的思想;引起对数学的兴趣;学会以数学方式的理性思维观察世界的方法。 5.重视数学素养,提高数学素养 七、“数学文化”课的上法 1.内容和预备知识 与一般数学课的区别---一般的数学课,是以数学的知识系统为线索来组织 材料 关于××同志的政审材料调查表环保先进个人材料国家普通话测试材料农民专业合作社注销四查四问剖析材料 ,进行教学。“数学文化”课,则可以从数学典故、数学问题、数学方法、数学观点、数学思想等角度切入,并以它们为线索来组织材料,进行教学。 一般的数学课,是以讲授数学的理论知识及其应用为主要目的。“数学文化”课虽然要以知识为载体,却并不以传授数学理论知识为主要目的,而是以教授数学思想为主,以提升学生的数学素养为主。 八、“数学文化”课的考核与评分 1、读书报告 2.上台演讲 第一章概述 第一节数学是什么 一、数学的“定义” 恩格斯:数学是研究(现实世界中)的数量关系与空间形式的一门科学。 1.古今数学家的说法 (美)R·柯朗(《数学是什么》):“数学,作为人类智慧的一种表达形式,反映生动活泼的意念,深入细致的思考,以及完美和谐的愿望,它的基础是逻辑和直觉,分析和推理,共性和个性。” (法)E·波莱尔:“数学是我们确切知道我们在说什么,并肯定我们说的是否对的唯一的一门科学。”(英)罗素:“数学是所有形如p蕴含q的命题的类”,而最前面的命题p是否对,却无法判断。因此“数学是我们永远不知道我们在说什么,也不知道我们说的是否对的一门学科。” 2.数学的15个“定义” 1)哲学说 2)符号说—数学是一种高级语言,是符号的世界。 3)科学说—数学是精密的科学,“数学是科学的皇后” 4)工具说—数学是其他所有知识工具的源泉 5)逻辑说—数学推理依靠逻辑,“数学为其证明所具有的逻辑性而骄傲”。 6)创新说—数学是一种创新,如发现无理数、提出微积分、创立非欧几何。 7)直觉说—数学的基础是人的直觉,数学主要是有那些直觉能力强的人们推进的。 8)集合说—数学各个分支的内容都可以用集合论的语言表述。 9)结构说(关系说)--强调数学语言、符号的结构方面及联系方面,“数学是一种关系学”。 10)模型说—数学就是研究各种形式的模型,如微积分是物体运动的模型,概率论是偶然与必然现象的模型,欧式几何是现实空间的模型,非欧几何是非欧空间的模型。 11)活动说—数学是人类最重要的活动之一。 12)精神说—数学不仅是一种技巧,更是一种精神,特别是理性的精神。 13)审美说—数学家无论是选择题材还是判断能否成功的标准,主要是美学的原则。 14)艺术说—数学是一门艺术。 15)万物皆数说—数的规律是世界的根本规律,一切都可以归结为整数与整数比。 哲学说---代表人物亚里士多德和欧几里德,亚里士多德曾说:“新的思想家把数学和哲学看做是相同的。”古希腊的许多数学家同时也是哲学家。 二、数学的特点 抽象性—是所有各门科学都具有的性质,没有抽象就没有科学。那么为什么把抽象说成是数学的特点那? 第一,数学的研究对象本身就是抽象的; 数学不同于物理、化学等学科,这些学科都研究具体的物质和具体的物质运动形态。例如物理中的电学、光学、热学等。数学的研究对象是从具体的物质和物质运动形态中抽象出来的,是人脑的产物。 第二,在数学的抽象中只保留量的关系和空间形式而舍弃了其他一切; 第三,数学的抽象是一级一级逐步提高的,它们所达到的抽象程度大大超过了其它学科中的抽象; 5个苹果,5条鱼、5个人等抽象出5的概念。到越高的层次,抽象的程度也越高。例如从人类生存的现实空间抽象出三维欧式空间,进一步抽象出n维线性空间乃至无穷维线性空间。 第四,核心数学主要处理抽象概念和它们的相互关系。 举例:哥尼斯堡七桥问题 俄罗斯的加里宁格勒在18世纪时称为哥尼斯堡。有一条河(普累格尔河)穿过该城。河中心有一座美丽的小岛。这条河和两条支流把包含岛区在内的全程分为四个区域:岛区(A),东区(B),南区(C),北区(D)。有七座桥横跨这条河及其支流,连接了这四个区域。问题:能不能找到一条路线,使得散步时不重复地走
本文档为【数学文化教案】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_721103
暂无简介~
格式:doc
大小:27KB
软件:Word
页数:10
分类:高中数学
上传时间:2019-03-11
浏览量:121