首页 Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling

Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling

举报
开通vip

Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational ModelingSynthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling HindawiPublishingCorporation JournalofNanomaterials Volume2011,ArticleID374096,5pages doi:10.1155/2011/374096 ResearchArticle Synthe...

Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling
Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling HindawiPublishingCorporation JournalofNanomaterials Volume2011,ArticleID374096,5pages doi:10.1155/2011/374096 ResearchArticle SynthesisofAg-AuNanoparticlesbyGalvanic ReplacementandTheirMorphologicalStudiesby HRTEMandComputationalModeling 3 1 4 ManuelRamos,1,2DomingoA.Ferrer, RussellR.Chianelli, VictorCorrea, 4 2 JosephSerrano-Matos, andSergioFlores 1 MaterialsResearchandTechnologyInstitute,UT-ElPaso,500WUnivesityAve.,BurgesHallRm.303,ElPaso,TX79902,USA 2 DepartamentodeF??sicayMatem?aticas,UniversidadAut?onomadeCiudadJu?arez,Cd.Ju?arez,ChihuahuaC.P.32300,Mexico 3 MicroelectronicsResearchCenter,UniversityofTexasatAustin,Austin,TX78758,USA 4 DepartamentodeCienciasyTecnolog??a,UniversidadMetropolitana,SanJuan,PR00928,PuertoRico CorrespondenceshouldbeaddressedtoManuelRamos,maramos1@miners.utep.edu Received13October2010;Revised22November2010;Accepted27December2010 AcademicEditor:ShaogangHao Copyright?2011ManuelRamosetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Bimetallic nanoparticles are important because they possess catalytic and electronic properties with potential applications in medicine,electronics,andchemicalindustries.Agalvanicreplacementreactionsynthesishasbeenusedinthisresearchtoform bimetallicnanoparticles.Thecompletedescriptionofthesynthesisconsistsofusingthechemicalreductionofmetallicsilvernitrite (AgNO3)andgold-IIIchloridehydrate(HAuCl)saltprecursors.Thenanoparticlesdisplayroundshapes,asrevealedbyhigh- resolutiontransmissionelectronmicroscope(HRTEM).Inordertobetterunderstandthecolloidalstructure,itwasnecessaryto employcomputationalmodelswhichinvolvedthesimulationsofHRTEMimages. 1.Introduction facets,whereasdecahedronhasmoderateinternalstrainand smallerfacetsmadeof(111)and(100)planes.Thefollowing Synthesisandcharacterizationofnanocrystalshavebeena (111) < isconcludedregardingmonometallicnanoparticles:γγ(100)<γ(110)asindicatedbyLeeandMeisel[9]. researchtopicofhighinterestinrecentdecadesduetotheir potential application in medical (cancer imaging), optical Previoustheoreticalworkindicatesthattheadditionof physics,catalysis,engineeredmaterials,andelectronics[1– asecondmetal,whensynthesizingnanoparticles,canleadto 6]. Achievement of speci,c particle morphology depends asigni,cantchangeonitsphysical-chemicalproperties,as solelyonrightcombinationofprecursors,aswellassuitable re,ectedalsoonparticlemorphology(i.e.,core-shell,spher- selectionoftemperatureandcappingagents[7]. ical,andtruncated-icosahedral).Verylittleisknownabout Presently,onecan,ndseveralarticleswherefullexplana- bimetallic nanoparticles in terms of its crystallographic structure,shape,andlocationofbimetallicprecursors,which tionsareincludedinchemicalsynthesistechniquestoattain speci,c particle morphologies, along with their potential canattractattentionwhenstudyingbimetallicsystems. applications [8]. Monometallic nanoparticles are assumed Inordertounderstandthedi,erencebetweenbimetallic tohavethreebasicshapes:decahedral,cubo-octahedral,and nanoalloy and bulk systems, Yonezawa and Toshima pro- icosahedral.Nanoparticlesgeometryandfacetsaremadeout posedthatsomebimetallicnanoalloys(i.e.,Au-Ag,Au-Pd) of(111)planesasobservedinicosahedron;andisattributed seemtoexistduetomiscibilitygapsatcertaincompositions to lowest surface energy γ(111) of nucleation in (111)- ratio(i.e.,20%,30%,and10%)provokingtheformationof plane;thisimpliesalargeinternalcore-strainvalues.Cubo- ananoalloy[10].Nanoalloyformationcouldbeattributed to the di,erences in atomic radii and electron migration octahedronpresentsnointernalcore-strainandsigni,cant largesurfaceenergyconstitutedprimarilyby(111)and(100) allowingatomstoaccommodate,showingshellperiodicity 2 JournalofNanomaterials (a) (b) 002 022 022 002 (c) (d) Figure1:(a)20nmresolutionHRTEMimageofsphericalshapeAg-Aunanoparticles.(b)5nmresolutionHRTEMimageshowinglattice distances.(c)Selectareadi,ractionwith(022),(022),and(002)principalre,ections.(d)InverseFastFourierTransformofSADpresented in(c). 100 (i.e.,onionarraylayers)asobservedbyconventionalelectron C. Then a separate second solution that consisted of microscopytechniques[11]. 240mg of gold? -III chloride hydrate (HAuCl) dissolved in ? 500mL of deionized water at 100 C with the addition of WepresentasuccessfulchemicalsynthesisfromAuand a mixture of 1% sodium citrate and 50mL of distilled Agsaltprecursorsforbimetallicsphericalshapenanoparti- cles.Bimetallicparticleformationisattributedtoagalvanic water.Finally,bothprecursorsolutionsweremixedtogether replacement reaction and shape. Bimetallic composition andsubjectedtovigorousstirring atconstanttemperature was con,rmed by high resolution transmission electron of 100 C for 1h. The stoichiometric equation for particle ? microscope (HRTEM) results, as well as computational formationofAg-Augalvanicreactionispresentedasfollows: simulationsforreconstructionofHRTEMimages. (1) 3Ag(s)+AuCl???Au(s)+3Ag++4Cl? andseemstobeinagreementwith[12]. 2.Experimental Two precursor solutions were used for chemical synthesis 3.ResultsandDiscussion of bimetallic Ag-Au nanoparticles. The ,rst solution was madedissolving90mgofsilvernitrite(AgNO3)in500mL Particle size, shape, and morphology were studied by of distilled water; later a mixture was added. It was madeHRTEM on an FEI Tecnai TF20 equipped with an STEM with1%sodiumcitratedissolvedin10mLofdistilledwater, unit,high-angleannulardark-,eld(HAADF)detector,and whichwasbroughtandkeptfor1htoboilingtemperature X-Twinlenses.Samplepreparationwasdonebydissolving JournalofNanomaterials 3 (a) (b) Figure2:(a)HRTEMofelbow-likenanoparticle,formedbyaccommodationofthreesmallAg-Aunanoparticles.(b)3Dreconstruction imageof(a)performedbyImageJpackage. EDXmeasurementsofAg-Aunanoparticle nanoparticles, Figure1(b) corresponds to a section of 4000 C Figure1(a)at5nmofresolution,Figure1(d)ispresenting 3500 atomistic distances for [111] and [121] planar directions 3000 EDX with atomistic distances of 0.268nm and 0.278nm for Au 2500 andAgatoms,respectively;selectareaofdi,ractionindicate Ag 2000 (022),(022),and(002)asprincipalplanarre,ections. 1500 Cu Grain boundary was observed for spherical truncated 1000 Au Ag nanoparticles as presented in Figure2(a). Grain boundary 500 Cu Ag Au Ag can be understood in terms of surface energy thermody- 0 namicsandattributedalsototheionicinteractionbetween 5 10 15 20 0 specimensasproposedbyElechiguerraetal.fornanorods Energy(keV) formation [13]. A 3D reconstruction image is presented in Figure2(b); the image was reconstructed using ImageJ Figure3:EDXresultsofAg-Aunanoparticles,CuandCsignals package.Figure3presentsEDXresults;thetwomajorpeak arefromTEMgrid,insetdark,eldscanningtransmissionelectron signals correspond to C/Cu content on TEM di,raction image. grids; gold shows energy intensities at 2keV and 2.6keV, whereas for silver, intensities are observed at 3keV and 3.4keV. Using A ccelrys Materials Studio, a computational 0.5milligramsinisopropanolplacedinanultrasonicbathfor nanoparticle model was done. The model was subjected dispersionofnanoparticleclusters.Onedropofthesolution to TEM simulations using a full dynamical calculation was used for HRTEM on lacey/carbon (EMS LC225-Cu) by multislice method [14]. The TEM simulator is based grids.Operationalvoltagewas200kVinbothdark,eld(DF) n aie(?ibU2), where U and bright ,eld (BF) mode images, with Scherzer defocus i=1 on projected potential f(U) = represents coordinates in reciprocal space (u,v,w). Results conditionatΔfSch = ?1.2(Csλ)1/2.Energy-dispersiveX-ray fromTEMsimulationsarepresentedinFigure4andseem analysis,EDXwasperformedwhileTEMusingasolidangle to be consistent with experimental HRTEM presented on of0.13srdetector. Figure2(a). Atomicpercentageofgoldfoundwasabout13%from EDX results, which was con,rmed from calculated molar concentrationonbothprecursorsolutions;ratiosofAuCl4 4.Conclusion ionswithrespecttosilverwereroughly10%,indicatingthat foreachgoldatomtherearethreesilverneighborspresent. A successful synthesis to produce nanoparticles gold and The percentages were consistent, since lattice parameters silver precursor solutions is presented here. Bimetallic Ag- in both metals are very similar, for Au-lattice ?0.4078nmAunanoparticleswereformedduetoagalvanicreplacement andAg-lattice?0.4086nmfortypicalFCCbulkstructures. reaction,whichconsistsofthemigrationofionicAgandAu atomsfromsaltprecursorsatboilingtemperature.Products Figure1(a) presents two round spherical shapes Ag-Au 4 JournalofNanomaterials (a) (b) (c) Figure4:(a)ComputerassistedAg-Aunanoparticle(Ag-blueandAu-yellow)usedtounderstandHRTEMimagepresentedin2.(b)TEM simulationof(a)(Ag-Aunanoparticles)forcomparisonwithexperimentalHRTEMimages. wereanalyzedbyHRTEMandEDXtechniques.EDXresults Nanotechnology Infrastructure Network (NNIN) Research show energy intensity peaks at 2keV and 2.6keV for goldProgram of the Microelectronic Research Center of UT - and3keVand3.4keVforsilver.Particleshapewasstudied Austin,andtheMaterialsResearchandTechnologyInstitute bycomputationalmodelingforspeci,celbow-likeshapefor ofUT-ElPasoforusageofresearchfacilities. threesmallAg-Aunanoparticles.Themodelwassubjectedto TEM simulations using full dynamical projected potential. References The authors will start testing synthesized Ag-Au nanopar- ticlesascontrastingagentsincancermappingforbiotissue [1] N. Toshima and T. Yonezawa, “Preparation of polymer- duringmagneticresonanceimaging(MRI)studies[15]. protected gold/platinum bimetallic clusters and their appli- cation to visible light-induced hydrogen evolution,” Makro- molekulare Chemie, Macromolecular Symposia, vol. 59, pp. Acknowledgments 281–295,1992. The authors thank the Consejo Nacional de Ciencia y [2] D. Garcia-Gutierrez, C. Gutierrez-Wing, M. Miki-Yoshida, Tecnolog??a,M?exicofortheireconomicsupport,theNational and M. Jose-Yacaman, “HAADF study of Au-Pt core-shell JournalofNanomaterials 5 bimetallicnanoparticles,”AppliedPhysicsA,vol.79,no.3,pp. 481–487,2004. [3] J.Chen,B.Wiley,Z.Y.Lietal.,“Goldnanocages:engineering theirstructureforbiomedicalapplications,”AdvancedMateri- als,vol.17,no.18,pp.2255–2261,2005. [4] G.A.HusseiniandW.G.Pitt,“Micellesandnanoparticlesfor ultrasonic drug and gene delivery,” Advanced Drug Delivery Reviews,vol.60,no.10,pp.1137–1152,2008. [5] T. Paulmier, J. M. Bell, and P. M. Fredericks, “Plasma electrolytic deposition of titanium dioxide nanorods and nano-particles,”JournalofMaterialsProcessingTechnology ,vol. 208,no.1-3,pp.117–123,2008. [6] V. Vashchenko, A. Krivoshey, I. Knyazeva, A. Petrenko, and J. W. Goodby, “Palladium-catalyzed Suzuki cross-coupling reactionsinamicroemulsion,”TetrahedronLetters,vol.49,no. 9,pp.1445–1449,2008. [7] L. Rivas, S. Sanchez-Cortes, J. V. Garc??a-Ramos, and G. Morcillo, “Mixed silver/gold colloids: a study of their for- mation,morphology,andsurface-enhancedRamanactivity,” Langmuir,vol.16,no.25,pp.9722–9728,2000. [8] N. N. Kariuki, J. Luo, M. M. Maye et al., “Composition- controlled synthesis of bimetallic gold-silver nanoparticles,” Langmuir,vol.20,no.25,pp.11240–11246,2004. [9] P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” Journal of Physical Chemistry,vol.86,no.17,pp.3391–3395,1982. [10] T. Yonezawa and N. Toshima, “Polymer- and micelle- protected gold/platinum bimetallic systems. Preparation, application to catalysis for visible-light-induced hydrogen evolution, and analysis of formation process with optical methods,”JournalofMolecularCatalysis,vol.83,no.1-2,pp. 167–181,1993. [11] J. M. Montejano-Carrizales, J. L. Rodriguez-Lopez, C. Gutierrez-Wing, M. Miki-Yoshida, and M. Jose-Yacaman, “Crystallography and shape of nanoparticles and clusters: geometricalanalysis,image,di,ractionsimulationandhigh resolutionimages,”inEncyclopediaofNanoscienceandNan- otechnology,H.S.Nalwa,Ed.,vol.2,pp.237–282,American Scienti,cPublishers,LosAngeles,Calif,USA,2004. [12] J.Chen,B.Wiley,Z.Y.Lietal.,“Goldnanocages:engineering theirstructureforbiomedicalapplications,”AdvancedMateri- als,vol.17,no.18,pp.2255–2261,2005. [13] J. L. Elechiguerra, J. Reyes-Gasga, and M. J. Yacam?an, “The roleoftwinninginshapeevolutionofanisotropicnoblemetal nanostructures,” Journal of Materials Chemistry, vol. 16, no. 40,pp.3906–3919,2006. [14] A.Go?mez-Rodr??guez,L.M.Beltr?an-del-R??o,andR.Herrera- Becerra, “SimulaTEM: multislice simulations for general objects,”Ultramicroscopy,vol.110,no.2,pp.95–104,2010. [15] P.K.Jain,I.H.ElSayed,andM.A.El-Sayed,“Aunanoparticles targetcancer,”NanoToday,vol.2,no.1,pp.18–29,2007. Journal of International Journal of Journal of Smart Materials Nanotechnology Polymer Science Research Composites Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporatio nHindawi Publishing Corporation Volume 201 4Volume 2014 Volume 2014 Volume 2014 Submit your manuscripts at Journal of Nano materials The Scienti,c Advances in Materials Science and Engineering Scienti,ca World Journal Hindawi Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Volume 2014 Volume 2014 Volume 2014 Journal of Coatings Hindawi Publishing Corporation Volume 201 4
本文档为【Synthesis of Ag-Au Nanoparticles by Galvanic Replacement and Their Morphological Studies by HRTEM and Computational Modeling】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_180829
暂无简介~
格式:doc
大小:144KB
软件:Word
页数:0
分类:生活休闲
上传时间:2018-04-24
浏览量:19