下载
加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 egsb反应器英文文献及翻译

egsb反应器英文文献及翻译.doc

egsb反应器英文文献及翻译

赵智也
2017-09-30 0人阅读 举报 0 0 暂无简介

简介:本文档为《egsb反应器英文文献及翻译doc》,可适用于综合领域

egsb反应器英文文献及翻译EffectsofUpflowLiquidVelocityonPerformanceofExpandedGranularSludgeBed(EGSB)SystemSeniKarnchanawongandWacharaPhajeeAbstractTheeffectsofupflowliquidvelocity(ULV)onperformanceofexpandedgranularsludgebed(EGSB)systemwereinvestigatedTheEGSBreactor,madefromgalvanizedsteelpipemdiameterandmheight,hadbeenusedtotreatpiggerywastewater,afterpassingthroughacidificationtankItconsistedoflworkingvolumeinreactionzoneandlworkingvolumeinsedimentationzone,attheupperpartThereactorwasseededwithanaerobicallydigestedsludgeandoperatedattheULVsof,,andmh,consecutively,correspondingtoorganicloadingratesof–kgCOD(md)TheaverageCODconcentrationsintheinfluentwere,–,mglTheCODremovalwasnotsignificantlydifferent,ie,exceptatULVmhwhereSSintheinfluentwasexceptionallyhighsothatVSSwashouthadoccurred,leadingtolowCODremovalTheFCODandVFAconcentrationsintheeffluentofallexperimentswerenotmuchdifferent,indicatingthesamerangeoftreatmentperformanceThebiogasproductiondecreasedathigherULVandULVofmhissuggestedasdesigncriterionforEGSBsystemKeywordsExpandedgranularsludgebedsystem,piggerywastewater,upflowliquidvelocityIINTRODUCTIONAnaerobicdigestion(AD)ofwastewatercanconcurrentlyremoveorganicmatteraswellasproducebiogaswhichistherenewableenergyTheapplicationofADaspretreatmentstepforhighchemicaloxygendemand(COD)wastewater,preferablyhigherthan,mgl,iseconomicallysuitablewhilehigherCODalsoresultsinhigherbiogasproductionInThailand,piggerywastewaterisincreasinglytreatedbyADtechnologysuchasupflowanaerobicsludgeblanket(UASB)system,anaerobicpond,channel(plugflow)digesterandanaerobiccoveredlagoonThebiogasisgenerallyusedforonfarmelectricitygenerationviainductionmotorUASBsystemisthehighratewastewatertreatmentprocesswherewastewaterisfedatthebottomandflowsupward,passingthroughlayersofanaerobicbacteriawithupflowliquidvelocity(ULV)–mhThebottomlayer,referredtoassludgebed,consistsofgranuleswithhighsuspendedsolids(SS)concentration(~)whiletheupperlayer,referredtoassludgeblanket,consistsofflocculentsludge(SS~)Thegranulehasveryhighsettlingvelocityaswellastreatmentefficiencysinceitconsistsoflayersofbacteria,responsibleforvariousanaerobicdigestionstepsThebiogasproducedisseparatedbygassolidsseparator(GSS)installedattheupperpartofreactorwhilesedimentationzone,aboveGSS,helpSSremovalaswellasreturnitbacktoreactorThereactionsoccurunderenclosedpartandsmellisminimalToimprovetheefficiencyofUASBsystem,highULVs(mh)wereappliedbyeffluentrecyclingandresultedinsludgebedexpansionthroughoutthereactor’sheightThehightotalbiomassallowedtheimprovedsystem,calledexpandedgranularsludgebed(EGSB)system,toaccommodatehigherorganicloadingrate(OLR)thanUASBsystemSinceEGSBsystemisrecommendedforlowSSwastewater,theapplicationonpiggerywastewaterwhichhashighSSshouldbefirstlyverifiedbylaboratoryexperimentMoreover,highULVresultsinhighpumpingcostwhichshouldbeminimizedTheobjectiveofthisstudywastodeterminetheeffectsofULVonperformanceofEGSBsystemaswellastodeterminethesuitableULVforpiggerywastewatertreatmentIIMATERIALANDMETHODSThelaboratoryscaleEGSBreactor,madefromgalvanizedsteelpipemdiameterandmheightwithdigestionvolumeofl,wasusedTheupperpartofreactorwassedimentationzone,madefromsteelplatemdiameter,mheightwithmfreeboardandworkingvolumeofl(Fig)Thebiogaswasmeasuredbygasmeter,ierevolvingboxeswithcounterThereweresamplingportsalongreactor’sheightatmspacingThemajorsamplingportswereat,,andm–heightThepiggerywastewaterwasbiweeklycollectedfrompigfarms,firstlyKittiwatFarmandsecondlyChomthongFarmThewastewaterwasstoredin–:CstorageroompriortousingItwasdailypreparedinlplastictankequippedwithmechanicalmixer(EYELAmodelMDCMS)Thewastewaterwaspumpedbyaperistalticpump(WatsonMarlowmodels)tothecompletemixacidificationtank,operatedathhydraulicretentiontime(HRT)Theacidificationtankwasmadefromplasticwatertank,mdiameter,mheightandworkingvolumeoflThecompletemixconditionwasmaintainedbyacirculatingpump,submersibletype(watts)TherewasnoseedinginacidificationreactorTheacidificationtankeffluentwaspumpedtoEGSBreactorattherateoflhwithexpectedOLRofkgCOD(md)TheEGSBeffluentwasstoredinalplastictankandwasrecycledbyaperistalticpump(WatsonMarlowmodels)tocontrolULVat,,andmh,consecutivelyTheEGSBreactorwasseededwithanaerobicallydigestedsludgefromChiangMaiUniversitywastewatertreatmentplantat,mgVSSlDuringstartupperiod,OLRandULVwerestepwiseincreasedtothetargetvaluesThewatersamplesweretakentimesweekandanalyzedaccordingtoStandardMethodsTheexperimentshadbeenconductedunderambienttemperature,tropicalclimateattheDepartmentofEnvironmentalEngineering,CMU,Thailand,duringMaytoMayIIIRESULTSANDDISCUSSIONThepiggerywastewaterwasfirstlycollectedfromKittiwatFarmDuringthelastperiodofrun,thisfarmwhichwasmediumsizedsometimesdidnothaveuniformwastewaterflowratesoabiggerfarm,ChomthongFarm,waschosenthroughoutthestudyThewastewatercharacteristicshadhighfluctuationsofCODandSSandtheacidificationtankhelpedstabilizingthewastewaterconcentrationsTheperformanceofacidificationtankwasratherpoor,ieCODremoval–,VSSremoval–TherewasnopHadjustmentinacidificationtankTheinfluentpHwasinneutralrange,,whiletheeffluentpHwasslightlydecreased,TheeffluentVFAfromacidificationwerenotsignificantlyincreasedandsometimesslightlydecreased,indicatingmethanogenesisinreactorItisexpectedthatbacterialenrichmentfrompigfecesplaysanimportantroleinVFAdegradationTheFigExperimentalsetupeffluentofacidificationtankwasfurtherfedtoEGSBreactor,initiallyatOLRkgCOD(md)andULVmhTheOLRswerestepwiseincreasedtokgCOD(md)atULVmhIttookaboutmonthstostartuptheEGSBsystembeforethestudyperiodThesystemwasthenoperatedatvariousdurationsasfollowsrun(ULVmh)d,run(ULVmh)d,run(ULVmh)d,run(ULVmh)d,consecutivelyItwasfoundthattheinfluentCODandSSconcentrationsvaried,causingeffluentvaluefluctuationsinrunDuringthestudy,therewasnobiomasswithdrawalfromthereactor,exceptviaeffluentTheresultsofCODandSSvariationsthroughoutthestudyareshowninFigand,respectivelyInrun,theEGSBinfluentcharacteristicshadaveragevaluesasfollowsCOD,mgl,FilteredCOD(FCOD),mgl,VFA,mglasaceticacid,SS,mgl,VSS,mglInrun,theaveragevaluesareasfollowsCOD,,mgl,FilteredCOD(FCOD),,mgl,VFA,mglasaceticacid,SS,,mgl,VSS,,mglTheEGSBinfluenthadlowFCOD:CODratios,ie–,andhighVSS:SSratios,ie–TheseindicatedthathighproportionoforganicswasinsuspendedformwhichwasbiologicallydegradableInrun,theinfluentSSwasexceptionallyhigh,causingbiomassflushingfromEGSBreactorThepeakeffluentCODwasfoundtobe,thmglonthedayofstudyperiodwhileFCODdidnotincrease(Fig)ThebiomasseventuallyadaptedtohighULVandresumedtonormaloperatingconditionduringthelaterperiodofrunThesteadystateconditioninrunthereforecouldnotbeconcludedAlthoughtheOLRinallrunswasexpectedtobeuniformatkgCOD(md),thefluctuationsininfluentCODconcentrationsresultedinactualOLRsofkgCOD(md)TheoverallperformanceofEGSBatvariousULVissummarizedinTableIFigCODvariationsFigSSvariationsTheperformanceofEGSBsystemintermsofCODremovalwasinthesameranges(–),exceptinrunwhereeffluentsuspendedbiomass(VSS)causedpoorCODremoval()TheVFAandFCODintheeffluent,iemglasaceticacidandmgl,respectively,werenotmuchdifferent,indicatingtherelativelystableperformanceHowever,heavybiomassflushinginrunshowedthehighereffluentSSconcentrations,aspresentedinTableI,withremovalOncetheinfluentSSdecreasedandthesystemadjustedtotheappliedULV,theEGSBsystemresumedtonormaloperatingconditionInrunwhereULVmhwasapplied,theSSremovalwasfoundtobeItissuggestedthatEGSBsystemshouldbeoperatedatinfluentSSconcentrationlessthan,mgl,ifhighCODandRemark:()Averagevaluesduringsteadystateconditionsthth()Averagevaluesduring–dayofstudyperiodSSremoval(>)isneededTheperiodicSSwithdrawalfromreactorisalsorecommendediflowSSintheeffluentisrequiredBasedonFCOD,therewasnosignificantdifferenceinsystemperformanceintermsoforganicmatterremovalatULV–mhThebiogasmeasuredhadproportionallydecreasedwithincreasingULVItisexpectedthatbiogasvolatilization,fromexcessivedissolvingcapacityinrecycletank,mayberesponsibleinhigheffluentrecyclingconditionThemethane(CH)compositionalsoslightlydecreasedathigherULValongwithbiogasproductionTheothermajorgascompositionswerenitrogen()andcarbondioxide()ThecarbondioxidecontentwasrelativelylowascomparedtonormalUASBreactors,Basedonbiogasproductionandrecyclingcostofeffluent,ULVmhissuggestedasdesigncriterionTherewasnopHadjustmentinEGSBreactorandthesystempH,,wereslightlyhigherthanoptimumrangeforanaerobicprocess,ieTheinfluentVFA:alkalinityratioswereTheaveragetotalphosphorus(TP),NHNandTKNconcentrationsintheinfluentofrunswere,–and–mgl,respectivelyTheCOD:N:Pratiosintheinfluentofrunwere::–::whichweresufficientascomparedtothesuggestedratio::,indictingenoughmacronutrientsforbacterialcellsynthesisTheadvantageofEGSBsystemoverUASBsystemishigherbiomassaccumulationsincehigherULVwillexpandthesludgebedlayerupwardthroughthereactor’sheightTheverticalsolidsprofileconfirmedthisassumption,wherehighconcentrationsofSS(>)werefoundalongthereactor,asshowninFigThissolidsprofilepatternwasdifferentfromUASBreactor,andsimilartootherEGSBstudyHowever,veryhighSSconcentration(>)werefoundatthebottomlayerThesolidsdistributionandtotalbiomassthroughoutthestudyaresummarizedinTableIIAccordingtoTableII,thetotalbiomassdidnotmuchdifferduringthestudyperiodThewatersamplesatthereactor’sheightof,,andmwereperiodicallytakenItwasfoundthatCOD,FCODandVFAdecreasedverticallyfromthebottomtothetopofreactor,accordingtoreactionsoccurredduringupflowingThegranulesweremeasuredbymicroscopeTheaveragegranulesizesatmfrombottomwerehighest(mm)whileat–mweresmaller(mm)TheEGSBgranulesweremuchsmallerthanUASBgranulesandtheflocculentsludgedidnotpresentinEGSBreactorascomparedtoUASBreactorThehighULVobviouslyflushedouttheflocandlowdensitysludgeTheEGSBgranuleappearedtoberoundshapeandmoreuniformlydistributedthanUASBgranulesDuringthestudy,thescaleofstruvite(MgNHPOHO,MagnesiumAmmoniumPhosphate)wasfoundinrecycletubesThepiggerywastewaterisfavorableforstruviteprecipitationduetohighmagnesium,ammoniaandphosphorus,asobservedinotherstudyPeriodicallycleaningofrecyclingfacilityisalsorequiredthFigVerticalsolidsprofileofEGSBreactor(run,day)IVCONCLUSIONBasedontheresultsobtained,thefollowingconclusionscanbedrawnTheperformanceintermsoforganicmatterremovalofEGSBsystematULVtomhisnotsignificantlydifferentTheinfluentSSconcentrationshouldbelessthan,mgltopreventsolidswashoutThehighULVresultsinlowerbiogasproductionandULVmhissuggestedassuitabledesigncriterionRemark:DataatthebeginningandtheendofeachrunACKNOWLEDGMENTTheresearchsupportfromFacultyofEngineering,ChiangMaiUniversityisgratefullyappreciatedREFERENCESGLettinga,AFMVanVelson,SWHobma,WdeZeeuwandAKlapwijka,―UseofUpflowSludgeBlanket(UASB)ReactorConceptforBiologicalWastewaterTreatmentEspeciallyofAnaerobicTreatment‖,BiotechnolBioeng,vol,,ppFAMcLoed,SRGuiotandJWCosterton,―LayeredStructureofBacteriaAggregatesProducedinanUpflowAnaerobicSludgeBedandFilterReactor‖,AppliedEnvMicro,vol,,ppMTKato,JAField,PVersteegandGLettinga,―FeasibilityofExpandedGranularSludgeBedReactorsfortheAnaerobicTreatmentofLowStrengthSolubleWastewater‖,BiotechnolBioeng,vol,,ppAPHA,AWWAandWEF,StandardsMethodsfortheExaminationofWaterandthWastewater,Ed,WashingtonDC:AmericanPublicHealthAssociation,SKarnchanawongandKTeerasoradech,―LaboratoryscaleStudyofSoftDrinkWastewaterthTreatmentbyUASBProcess‖,ProceedingsoftheInternationalConferenceonAnaerobicDigestion,Sendai,May,ppPLMcCarty,―AnaerobicWasteTreatmentFundamentals,PartI:ChemistryandMicrobiology‖,JPublicWorks,vol,,ppRESpeeceandPLMcCarty,―NutrientRequirementsandBiologicalSolidsAccumulationstinAnaerobicDigestion‖,ProceedingofInternationalConferenceWaterPollutionResource,London:PergamonPress,RGZoutbergandRFrankin,―AnaerobicTreatmentofChemicalandBreweryWastewaterwithaNewTypeofAnaerobicReactor:theBiobedEGSBReactor‖,WatSciTech,vol(),,ppKMWebbandGEHo,―Struvite(MgNHPOHO)SolubilityanditsApplicationtoaPiggeryEffluentProblem‖,WatSciTech,vol(),,pp水力上升流速对膨胀颗粒污泥床(EGSB)性能的影响摘要研究水力上升流速对膨胀颗粒污泥床(EGSB)性能的影响。用镀锌钢管制成的直径为m高为m的EGSB反应器处理经过酸化罐处理后的养猪场的废水。EGSB反应器上部是由工作容积为L的反应区和工作容积为L的沉淀区组成。在反应器内接种厌氧消化污泥控制其水力上升流速分别为和mh进水容积负荷为–kgCOD(md)。COD的平均浓度在–mgl。COD去除率没有明显的区别基本保持在–除了水力上升流速在mh时进水的SS非常高并伴随着VSS的消除及COD的低去除率。表明在相同的情况下在所有的实验组中出的FCOD和VFA的去除率大不一样。较高的上升流失使沼气的产量也减少建议EGSB反应器的水力上升流速以mh为标准。膨胀颗粒污泥床反应系统养猪厂废水水力上升流速关键词引言废水的厌氧消化在去除有机物的同时还可以产生再生性能源沼气。厌氧消化可以用于COD含量高达mgl的废水的预处理更经济的是高COD可以产生大量的沼气。在泰国厌氧消化技术用作养猪厂废水处理的日益增加像升流式厌氧污泥床(UASB)、厌氧消化塘、平流消化池和厌氧覆盖湖。沼气一般用作发电机发电供养殖场使用。UASB反应器是一种高效率的废水处理系统废水从底部进入以mh的上升流速穿过厌氧细菌层。最底层被叫做污泥床包含浓度高达颗粒悬浮固体它上面那层叫做悬浮层包含浓度为的絮凝性污泥。由于它由层层的细菌负责各种厌氧消化步骤所以污泥颗粒具有很高的沉降速度和处理效率。产生的沼气由安装在上部沉淀区底部的三相分离器分离悬浮颗粒分离后返回反应器。整个反应发生在封闭环境中产生的气味很小。为了提高UASB反应器的效率对UASB进行改进将上升流速提高到mh并将出水回流和提高反应器的高度以至于不会引起污泥膨胀。这个高生物处理量的改进系统叫做膨胀颗粒污泥床(EGSB)比UASB系统适应更高的有机负荷(OLR)。由于EGSB反应器被推荐用于处理低SS的废水而用来处理像养猪厂废水这样高SS的废水则需要通过实验室实验来验证。此外高的上升流速会导致泵的成本的提高。为了减少此成本本研究的目的就是通过实验了解上升流速对EGSB反应器的影响并决定合适的上升流速用来处理养猪场废水。材料与方法实验室所用EGSB反应器是用镀锌钢管制成直径为m高为m消化量为L反应器上部为沉淀区是由直径为m高为m的钢板制成其中超高为m有效容积为L如图一所示。沼气的产量用燃气表计量即旋图实验装置转的带柜台的盒子。沿着反应器高度每隔米设一个取样口共个取样口。主要的取样口在m、m、m和m处。实验所用废水主要是每隔两周时间从两个养猪场收集。第一周为Kittiwat农场第二周为Chomthong农场。废水在使用前储存在–:C的储藏室内。使用前每天放在配有机械搅拌器的容积为L的塑料罐内做准备(EYELA搅拌器模型MDCMS)。这些废水通过一台蠕动泵(沃森马洛模型s)抽到完全混合的酸化罐控制在个小时的水利停留时间(HRT)。酸化罐是由塑料制成的水箱直径m高米工作容积为L。完全混合是通过一台循环潜水泵来维持的潜水泵型号W。酸化罐内没有接种污泥。酸化罐出水以Lh的流速抽到EGSB反应器内有机负荷(OLR)为kgCOD(md)。EGSB反应器的出水贮存在容积为L塑料罐内通过一台蠕动泵(沃森马洛模型s)连续循环控制流速分别在和mh。EGSB反应器内的接种的厌氧凯丽污泥来自清迈大学污水处理厂浓度为mgVSSl。在启动期间逐步增加有机负荷(OLR)和上升流速直到目标值。水样根据标准方法每周分析两次。这些实验是由泰国热带气候部门下属的环境工程CMU在环境温度下进行时间为年月至年月。结果和讨论养猪厂废水第一次是从Kittiwat农场收集。在第阶段运行的最后阶段这个中型的农场有时候没有均匀的流量所以只能选择一个更大的流量的农场则整个研究阶段选用Chomthong农场的养猪场废水。这些废水的特点是COD和SS的浓度波动性较大酸化罐用来稳定废水的浓度。酸化罐的性能很差即COD的去除率为–VSS的去除率为–。在酸化罐里没有pH的调整器。流入的废水的pH值范围在–而出水的pH值降低很少为–。酸化罐的出水中VFA没有显著增加,有时略微下降,表明有甲烷产生。预计猪的粪便中丰富的细菌在VFA的降解中起到很重要的作用。酸化罐的出水培养很长时间以后才被送到EGSB反应器内从起初的有机负荷(OLR)为kgCOD(md)和上升流速为mh。有机负荷在上升流速为mh时被逐步增加到kgCOD(md)。在EGSB启动前差不多花费了个月的时间。EGSB反应器在以下各种不同时间内的运行:第阶段(上升流速为mh)天第阶段(上升流速为mh)天第阶段(上升流速为mh)天第阶段(上升流速为mh)天连续运行。结果表明在第三阶段进水的COD和SS浓度的不同导致出水值的不同。在研究期间除了通过出水带走的没有生物质从反应器内去除。在整个研究中COD和SS的变化结果分别呈现在图和图三中。在第阶段EGSB反应器的出水特征平均值如下:CODmgl溶解性COD(FCOD)mglVFAmgl作为有机酸发酵物SSmglVSSmgl。在第阶段平均值如下:CODmgl溶解性COD图COD变化曲线图SS变化曲线(FCOD)mglVFAmgl作为有机酸发酵物SSmglVSSmgl。EGSB反应器出水有低的FCOD:COD比率即–还有高的VSS:SS比率即–。这些表明高比例的有机物在悬浮状态下是可生物降解的。在第三阶段出水的SS异常高导致EGSB反应器内的生物量冲走。出水的COD峰值达到mgl在研究中的第天而FCOD则没有增加(图)。生物质最终适应高的上升流速并恢复到正常工作状态在第阶段的后期。因此在第阶段稳定状态条件下不能得出结论。出水COD的浓度有波动结果实际的有机负荷(OLR)在kgCOD(md)尽管有机负荷在整个阶段中被统一为kgCOD(md)。EGSB反应器在不同上升流速下的整体表现总结见表I表IEGSB反应器的平均性能备注:()稳定状态下的平均值()研究期间第天的平均值。EGSB反应器的性能在COD的去除率方面大致在相同的范围(–)除了在第阶段出水的悬浮性微生物(VSS)造成COD较差的去除率()。VFA和FCOD浓度在出水中为mgl作为有机酸发酵物和mgl分别没有太大的差别表明相对稳定的性能。然而重的生物质的流失在第三阶段展现较高的出水SS浓度如表中所示只有的去除率。一旦进水SS浓度降低系统调整到实用的上升流速EGSB反应器就会恢复到正常运行状态。在第四阶段上升流速为mh时SS的去除率达到。如果想要达到高的COD和SS的去除率(>)建议EGSB反应器的进水浓度控制在低于mgl。如果要求出水SS较低建议反应器中的SS要周期性的去除。基于FCOD在反应器上升流速为–mh时有机物的去除率没有显著性的差异。沼气的产值随着上升流速的增加而成比例的减少。期望沼气能在高溶解能力的回收水箱内挥发出来也许需要很高的出水回流技术。伴随着高的上升流速使沼气的产量下降甲烷的成分也会稍微的降低。其他主要气体成分为氮()和二氧化碳()。二氧化碳的含量和一般的UASB反应器相比较低。基于沼气的产生和出水回流的成本建议上升流速以mh作为设计标准。在EGSB反应器内没有pH调整装置反应器内废水pH值为稍高于厌氧发酵的最适宜的pH范围即:。出水VFA:碱性比率为。在第阶段的出水中总磷(TP)氨氮(NHN)和总凯氏氮(TKN)浓度分别为:、–和–mgl。在第阶段出水中COD:N:P为::–::足以满足推荐的比值::。表明为细菌细胞的合成提供充足的原料。EGSB反应器和UASB反应器比较优点是较高的上升流速使污泥床沿着反应器高度厚度增加即很大的生物积累量。垂直方向上剖面线图证实了这个推论如图所示沿着反应器高度有很高的SS浓度(>)。这个剖线图不同于UASB反应器而类似于其他EGSB反应器的研究。总之在反应器底层有很高的SS浓度。图EGSB反应器内固体垂直剖线图在整个研究过程中的固体的分布和总生物量总结见表II。表IIEGSB反应器内的生物量备注:数据取自每个阶段的开始和结束时。根据表II在整个研究期间总的生物量没有太大的不同。水样是分别从反应器的和m高度定期的取样。根据发生在升流过程中的反应中发现从反应器底部到顶部垂直方向上CODFCOD和VFA浓度都在减少。测量了显微镜下的颗粒。颗粒的平均大小为m在底部的最大(毫米)而在m的较小(毫米)。EGSB反应器内的颗粒远小于UASB反应器而且相对于UASB反应器污泥的絮凝并没有出现在EGSB反应器内。很显然较高的上升流速冲走絮状物并使污泥的浓度很低。EGSB反应器内的污泥颗粒接近圆形和UASB反应器相比更能均匀的分布。在研究期间发现回流管中有一定数量的磷酸铵镁生成(MgNHPOHO磷酸铵镁)。在观测其他研究中养猪场废水由于含有较的镁、氨氮和磷非常有利于磷酸铵镁的沉淀。有必要定期对回收设施进行清洗。IV结论根据获得的结果,可以得出以下的结论。EGSB反应器在上升流速为mh时在去除有机物方面的效率是明显不同的。进水的SS浓度应小于mgl以防止固体物质被冲走。较高的上升流速导致沼气的产量降低并且建议mh的上升流速作为比较合适的设计标准。感谢非常感谢清迈大学工程学院对本次研究的大力支持。时光荏苒感谢教给我人生道理的老师。结语:

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/24

egsb反应器英文文献及翻译

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利