首页 电动车充电器电路实例

电动车充电器电路实例

举报
开通vip

电动车充电器电路实例电动车充电器电路实例 下面介绍的是利用三极管、集成电路为开关器件组成的开关充电电路。 (一)恒流部分 整个充电通路是:电流从整流校正极出发首先经R3,然后经3DG4、VD、被充电池、R1,最后回到整流桥负极形成回路。 由于电流的流通,在电阻R1两端形成压差,三极管3DG2的基极电位高于发射极到一定值时,3DG2导通;若电池初充电时电压较低,充电电流就大,R1两端压差也大,基极电位提高,3DG2进一步导通,拉低了三极管3DG3基极电位,继而又导致了三极管3DG4导通降低,通过3DG4的电流被控而减少,达到恒流的...

电动车充电器电路实例
电动车充电器电路实例 下面介绍的是利用三极管、集成电路为开关器件组成的开关充电电路。 (一)恒流部分 整个充电通路是:电流从整流校正极出发首先经R3,然后经3DG4、VD、被充电池、R1,最后回到整流桥负极形成回路。 由于电流的流通,在电阻R1两端形成压差,三极管3DG2的基极电位高于发射极到一定值时,3DG2导通;若电池初充电时电压较低,充电电流就大,R1两端压差也大,基极电位提高,3DG2进一步导通,拉低了三极管3DG3基极电位,继而又导致了三极管3DG4导通降低,通过3DG4的电流被控而减少,达到恒流的目的。 2、保护部分 三极管3DG1原处于截止状态,经充电后电池电压升高,3DG1基极电压跟随升高,直至3DG1导通,造成3DG3基极电压被拉低,相继使3DG4被截止,电路被关断而停止充电。电路停止充电电压值由调节RP2设定。设定时应带负荷(即电池充电状态),当达到该电池充电终止电压时,调节RP2使电路关闭,设定即完成,使关闭电压固定在该品种电池的充电终止电压上,防止过充。 电动车电池充电器原理与维修(一) 作者: 日期:2007-3-7 9:05:36 来源: (一)控制器、充电器与车用电池 控制器和充电器对车用电池的使用寿命是至关重要的。控制器在从电池取用电能的同时,要防止过放电;充电器在向电池充电的同时要防止过充电。否则,电池极板不是因为过充就是因为过放而受到损坏,电池寿命很快终结。因此,充电器和控制器就像电池的监护人一样,在充电和放电的过程中对它加以保护,过放不行,过充不行。同样,欠充仍然不行。欠充结果是活性物质变得顽固而不再容易产生还原反应,出现钝化现象,这部分极板则只占空间和重量,而不再贮存能量。这部分无效物质越多、电池容量越低。过充、过放、欠放是危害电池寿命的三大因素。 (二)脉冲充电 脉冲充电是以不连续的、固定电压的方波形向电池充电,充电电流较大。充电初期由于正负极板都处于硫酸铅状态,有较大的接受能力,又由于方波的不连续性,每个波形间又有停止间歇,给极板活性物质以充分的反应、调整、内外物质均衡的机会,所以初期充电较快。随着极板物质不断得到还原,电压不断升高,充电速度不断减慢,活性物质反应速度逐渐降低,极板周围也逐渐积聚大量带电离子,包围住极板,使极板被隔离,阻止后续带电离子到达活性物质。当极板电位达到极限时(接近充电终止电压),电化作用几乎停止进行。到极化点,转而对极板周围的水分进行分解,表现为大量冒泡和水分蒸发,正极表面吸附大量氧气,负极表面吸附大量氢气,这时的电压称为“产气点”。 解决和消除这种妨碍充电的极化现象,方法是先短暂地停充,然后用较大的、反方向的、时间极短的电流——负脉冲,对正负极板施加反方向电压,清除极板周围聚集的大量正负离子和气体,扫清道路。反脉冲实际就是一种放电措施。将正负极短暂短路的方法也能消除极化,或停顿一段时间极化现象也能自行消除,但负脉冲更有力、更快、更节省时间。 (三)开关电路充电器 当前的车用充电器和过去传统充电器完全不同,充电器都采用了开关电路,并设置自动调整、控制和保护功能,在充电期间,不需有人看守。开关电路的优点是充电快、质量好、效率高、不损及电池的寿命。 开关电路是当前常用的能够稳压稳流、自动调节的装置,并且采用脉冲装置的电路。充电器电路和控制器电路与家用音响、彩电等同属一个类型。只要稍加改造、增加或减少一些元器件,几乎可以代用 电动自行车维护要诀使用窍门及防盗秘笈 作者: 日期:2007-3-7 9:06:02 来源: A.维护要诀 1、每隔半年时间应对电动自行车进行一次维护,对传动部件润滑防锈,加固各紧固件,调整辐条松紧度。 2、电池充电时,先将充电器输出插头插入电池箱,再将充电器的输入插头接入市电插座。充电采用恒流、恒压、浮充三阶段自动转换方式,当电池达到充足程度后自动转入浮充,无须人工控制充电时间。不充电时,不要长时间将充电器空载连接在交流电源上。 3、在维修时,凡电机、电池、控制系统、充电器方面的问题须到特约维修中心维修,不要随便拆卸。 B.使用窍门 善保养:即不要使电动自行车受到意外损害,如不要让积水淹没电机中心、控制器、启动时一定要打开车锁,下车后即关闭电门,平时轮胎充气要足,夏季应避免长时间阳光暴晒,避免在高温度、有腐蚀的环境中存放,刹车要松紧适度。 多助力:理想的使用方法是“人助车动,电助人行,人力电力联动”,省力又省电。因行驶里程数与车载重量、路面状况、启动次数、刹车次数、风向、风速、气温、轮胎气压等有关,所以起步时要先用脚踏骑行,在骑行的过程中扭动调速手把、上桥、上坡、逆风和重载行驶务必用脚踏助力,以避免对电池造成冲击性伤害。影响电池续行里程和使用寿命。 勤充电:使用铅酸电池,要养成当天使用当天充电的习惯,每天骑行电动自行车后不管骑行多远都要充满电,千万不要等电用光了再充电,以免因“深放电”而缩短电池寿命。也不要在电池倒置的情况下充电。 充足电的电池,如果长期放置不用,也要每个月补充电一次。充电要用配套充电器,充电器有保护功能,长时间充电(一般不超过24小时)不会损害电池。充电器要避免高温和潮湿,勿让水进入充电器,以防触电。 C.防盗秘笈 邻居小沈,工作5年来,连买数辆自行车,不久均不翼而飞,三年前,“移情别恋”,花2000余元购了辆电动车,平安两年多,去年11月底,一不小心遭遇“梁上君子”,小沈懊丧之余连称:“看来电动车也要小心防盗。” 这两年,随着市民购买电动车的日益增多,如何采取防盗措施便成了许多顾客购车时的“附带问题”。据介绍:电动车防盗目前已成为许多厂商的研究目标。在厂家开发的防盗报警系统中,有一种设施颇为实用,电动车在未开锁时,凡遇撬动、震动、搬动等情况,车上的警报系统均会发出报警,这种带有报警系统的电动车上市以来。深受消费者青睐。此外,选择附有失窃保险的电动车也是一种预防损失的措施。随着市民防盗意识的增强,目前附有失窃险的电动车销售看好。 电动车用电池充电器的原理与维修 2008-04-10 06:56 一)稳压 由于市电经常有波动,电压不稳;电路的负载也有变化,造成充电电路电压不稳。这对负载是有害的,尤其是最 后阶段超过电池的充终值,电池一定因受损而影响其寿命。在图4-39中,加入一个稳压管,相当于把超过部分——“波 顶”削掉,电路的电压则保持在设定点上,保护了电池和向负载提供稳定的电源,但这个电压是固定的,不能随情况 的变化和需要而调整电压。 (二)自动调压电路 稳压管虽然可以保持电路电压不超过规定值,但它并不能满足今天的 要求 对教师党员的评价套管和固井爆破片与爆破装置仓库管理基本要求三甲医院都需要复审吗 。市电由于用电不均衡,电网电压上下波动较大,就暴露了稳压管的不足。当电路电压超过要求时,它能将超过部分削掉,然而电路电压低于要求值时,却不能补足,结果电路工作仍然会出现不正常;另一方面,电路在设计时,一般比要求电压高出30%,50%,这样市电电压降低时虽然可以保证,但在市电经常保持在平稳值期间,超出的部分势必经常流过稳压管,稳压管经常有电流通过不仅是不经济的,稳压管本身也不允许。实际上,电路稳压并不使用稳压管,而是采用由分离元器件组成的稳压电路,或选用现成的稳压集成块,随时调整因外界电压不稳造成的电路工作不稳定。不管电压升高还是降低,电路始终工作在理想状态。而稳压管只用在充电电路的某个单元部分内,满足单元稳定工作的需要。 集成电路的稳压工作实际是调压,高了可以调低、低了又可以调高,使电压总稳定在设定值范围内。图4-40中采用的是可调式三端稳压集成电路W317(LM317),1脚为输入端Vin、3脚为输出端Vout、2脚为控制端ADJ。稳压电路W317右边有一个并联电路,其中电阻R可以为发光管VD2提供分流电压。图4-40a,电路是固定不可调,当电压达到预定值时,稳压电路停止输出。4-40b是可调典型局部电路,按照这个电路的原理,可以运用到开关电路和充电器等电路中,以达到稳压的目的。图4-40b中,R为取样电阻,1.25V为虚拟电源,实际是W317的基准电压,W317的ADJ和Vout间电压大于或小于此值,内部电路都要做相应的调整,使之稳定在1.25V。这是输出电流Io稳定的关键。输出电流值Io=(1.25-Uab)/R,式中Uab是a、b两点间的压差。 调整方法和原理:当RP滑点移向a点时,Uab降低,输出电流Io增大;当向下移动时,Uab增大,相应地Io变小。若因某种原因造成电流不稳,Io增大或减小,则取样电阻R上的电压也随之增大或减小。这时,Vout和ADJ间的变化促使电路内部做相应调整,使输出电流稳定。 (三)如何显示充电状态 充电电路工作在什么状态,电路是否有电,是否在进行充电,充满了没有,凭眼睛在电路上是看不出来的。为此,只有在电路中设置显示功能,发光管就是最好的元件。在图4-41中最左侧的发光管亮,表示插上电源后市电有通过变压器。但变压器次级有没有电,如果接入电池后,图中最上侧的发光管亮,表示电路有电流通过,充电正在进行。电池充满后,由于电压升高,导致图中最右侧发光管亮,说明充电达到终止点,应当停止充电。 (四)自动调整电流的电路 1、电路组成及原理 电路由整流、充电通路3CT和C1、R1、BT33A等组成的张弛震荡器、稳压管导通自动关断电路和电池接口等组成(图4-42)。当电池接入电路后,电路才能接通并开始工作,其顺序是:电池电压通过D1、R1到单结晶体管BT33A控制极,单结晶体管导通;电流通过震荡变压器触发可控管3CT,使之导通;电路形成充电通路,对电池充电。 2、可调整电流功能 调整图中可变电阻R1,通过改变晶闸管3CT没有导通,电路不能通过电流。 3、自动保护 当电阻没有电池接入,即使接通电源,由于可控管3CT没有导通,电路不能通过电流。 4、自动断电 当被充电电池已经充满,达到充电终止电压时,电流即通过二极管D1、R1,击穿稳压管2DW,电流被旁路,小环路失电,单结晶体管BT33A因控制极失去电压而停振。通过BT33A控制的晶闸管3CT失去出发电压而电流倒流。 四、充电器电路实例 下面介绍的是利用三极管、集成电路为开关器件组成的开关充电电路。 (一)恒流部分 整个充电通路是:电流从整流校正极出发首先经R3,然后经3DG4、VD、被充电池、R1,最后回到整流桥负极形成回路。 由于电流的流通,在电阻R1两端形成压差,三极管3DG2的基极电位高于发射极到一定值时,3DG2导通;若电池初充电时电压较低,充电电流就大,R1两端压差也大,基极电位提高,3DG2进一步导通,拉低了三极管3DG3基极电位,继而又导致了三极管3DG4导通降低,通过3DG4的电流被控而减少,达到恒流的目的。 2、保护部分 三极管3DG1原处于截止状态,经充电后电池电压升高,3DG1基极电压跟随升高,直至3DG1导通,造成3DG3基极电压被拉低,相继使3DG4被截止,电路被关断而停止充电。电路停止充电电压值由调节RP2设定。设定时应带负荷(即电池充电状态),当达到该电池充电终止电压时,调节RP2使电路关闭,设定即完成,使关闭电压固定在该品种电池的充电终止电压上,防止过充。 (二)可调电流、自动关断、自动保护充电器电路 图4-44和图4-42相似,也只有将电池接入电路之后,才能使晶闸管导通进行充电。电池接入后,电流经R2使 单结晶体管BT35D的e极得到电压,BT35开始振荡,射极b2电流流入变压器,次极得到耦合电压,触发晶闸管3CT导通,进入充电状态。 1、自动停止充电 经过一定时间充电,电池电压逐渐升高。当电压达到充电终止电压值时,稳压管WD被击穿,单结晶体管BT35因e极失压而停振,变压器无震荡信号,次极无输出,晶闸管3CT截止,电路被关闭而停止充电。 2、充电电流的调节 图中有两个电位器RP1、RP2。 (1)调节RP1可改变3DD基极控制电压,改变三极管的放大倍数,调整充电电压和电流,以适应不同类型电池的要求。由于整个电路及充电电流都通过3DD,它流过的电流较大,开始时可达3,5A,容易发热,为了防止过热烧毁,应为该管设大面积散热片。 (2)调节RP2可改变晶闸管3CT的导通角,控制充电电流的大小。 3、自动保护 电源无电时,3DD基极无电压,自动截止或不能导通,即使3CT仍然处于导通状态,电路也是关闭的,电池的电流不能倒流,只能在张弛振荡器范围内小量消耗。 4、电路优点 当已经被充满的电池接入电路,电路不会起动也不充电,这是因为稳压管处于击穿状态,单结晶体管不能导通,晶闸管3CT得不到触发电压的缘故。 (三)适合于铅酸电池、镍系列电池使用的充电电路 根据车用电池电压和电路结构,调整电路元器件型号即可改变成适合的电路。 1、电路工作原理 开关稳压电路:整流后的电源,经开关稳压电路稳压在预定点上,也就是电池的充电终止电压。电路由三极管、二极管、电阻、电容和电位器W1组成自激振荡式开关稳压电路,电路工作频率为12kHz,频率大小由1000P电容决定,容量减小,频率就会提高,但以不超过16 kHz为宜,频率高则损耗大。电路也可用稳压管代替,三端式稳压器件效果更好。稳压电路的稳压上限W1调定,调定是在充电电路带负荷状态,50V电压表跨接在电路上。 电压 检测 工程第三方检测合同工程防雷检测合同植筋拉拔检测方案传感器技术课后答案检测机构通用要求培训 :电路采用施密特电路检测电压,对电路的要求是:在电池放电终止电压点上,继电器KM闭合接通电源:在电池充电终止电压点之下,继电器KM释放,切断电路。交流电源电路的开关由KM控制。它的调定与上述方法相同,但要调整的是W2。 2、电路工作状态 (1)充电起始电流较大,达4.6A,对饥饿电池快速充电,短时间内即可充入容量的30%,50%。 (2)很快即转入3.5A电流,约相当于0.4C速率,并自动维持相当一段时间。 (3)随着充电电池电压不断上升,电流强度也不断减低。 (4)当电池电压达到充电终止电压前,电流在750mA上逐渐再降低。 (5)达到充电终止电压时,继电器KM释放,切断交流电输入电路,停止充电。 (四)脉冲反脉冲充电电路 用散件组成的电路繁琐复杂,调制费时、漂移较大不稳定,故障率高不易查找。采用集成电路不仅电路简单,周边散件少,调试简单,性能稳定,还具有各种保护功能、自动调节和控制功能。 图4-46是用两个时基电路555及周边器件组成的脉冲反脉冲充电电路。电路中的555-1是充电脉冲发生IC、555-2是放电反脉冲发生IC。充电脉冲占空比决定于555-1的2、6脚R2和C3,输出脚为3,输出脉冲通过R5、C7给3DD1基极偏压,当555-1的3脚输出高压电平时,触发3DD1导通,充电电池由全波整流电路出发,经过R7、3DD1给电池充电,电流又经R9返回整流器;输出低电平时,3DD1被截止。555-1的3脚输出信号经C5耦合从555-2的2脚输入,触发555-2的3脚发出短暂的间歇阶段。3DD2基极电位被触发而导通,造成电池通过3DD2D、R8、R9形成的小回路放电。反脉冲占空比由555-2的6脚电容C6、电阻R4决定。反脉冲过后有一个小间隙,之后又开始充电脉冲,如此反复,脉冲反脉冲直至充电结束。 时基电路555是充电器经常使用的,另外还有TL494也是常用的集成电路 [组图]电动车充电器原理及维修 2008年11月10日 星期一 08:26 常用电动车充电器根据电路结构可大致分为两种。第一种是以uc3842驱动场效 应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和 元件参数见(图表1) 根据电动自行车铅酸蓄电池的特点,当其为36V/12AH时,采用限压恒流充电方式,初始充电电流最大不宜超过3A。也就是说,充电器输出最大达到43V/3A/129W,已经可满足。在充电过程中,充电电流还将逐渐降低。以目前开关电源技术和开关管生产水平而言,单端开关稳压器输出功率的极限值已提高到180W,甚至更大。输出功率为150W以下的单端它激式开关稳压器,其可靠性已达到极高的程度。MOS FET开关管的应用,成功地解决了开关管二次击穿的难题,使开关电源的可靠性更上一层楼。 目前,应用最广的、也是最早的可直接驱动MOS FET开关管的单端驱动器为UC3842。UC3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,无疑用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。尤其是UC3842可直接驱动MOS FET管的特点,可以使充电器的可靠性大幅提高。由于UC3842的应用极广,本文只介绍其特点。 UC3842为双列8脚单端输出的它激式开关电源驱动集成电路,其内部功能包括:基准电压稳压器、误差放大器、脉冲宽度比较器、锁存器、振荡器、脉宽调制器(PWM)、脉冲输出驱动级等等。UC3842的同类产品较多,其中可互换的有 MC3842、IR3842N、SG3842、CM3842(国产)、LM3842等。UC3842内部方框图见图。其特点如下: 单端PWM脉冲输出,输出驱动电流为200mA,峰值电流可达1A。 启动电压大于16V,启动电流仅1mA即可进入工作状态。进入工作状态后,工作电压在10,34V之间,负载电流为15mA。超过正常工作电压,开关电源进入欠电压或过电压保护状态,此时集成电路无驱动脉冲输出。 内设5V/50mA基准电压源,经2:1分压作为取样基准电压。 输出的驱动脉冲既可驱动双极型晶体管,也可驱动MOS场效应管。若驱动双极型晶体管,宜在 开关管的基极接入RC截止加速电路,同时将振荡器的频率限制在40kHz以下。若驱动MOS场效应管,振荡频率由外接RC电路设定,工作频率最高可达500kHz。 内设过流保护输入(第3脚)和误差放大输入(第1脚)两个脉冲调制(PWM)控制端。误差放大器输入端构成主脉宽调制(PWM)控制系统,过流检测输入可对脉冲进行逐个控制,直接控制每个周期的脉宽,使输出电压调整率达到0.01%/V。如果第3脚电压大于1V或第1脚电压小于1V,脉宽调制比较器输出高电平使锁存器复位,直到下一个脉冲到来时才重新置位。如果利用第1、3脚的电平关系,在外电路控制锁存器的开/闭,使锁存器每个周期只输出一次触发脉冲,无疑使电路的抗干扰性增强,开关管不会误触发,可靠性将得以提高。 内部振荡器的频率由第4、8脚外接电阻和电容器设定。同时,内部基准电压通过第4脚引入外同步。第4、8脚外接电阻、电容器构成定时电路,电容器的充/放电过程构成一个振荡周期。当电阻的设定值大于5kΩ时,电容器的充电时间远大于放电时间,其振荡频率可根据公式近似得出:f=1/Tc=1/0.55RC=1.8/RC。 由UC3842组成的输出功率可达120W的铅酸蓄电池充电器如图2所示。该充电器中只有开关频率部分为热地,MC3842组成的驱动控制系统和开关电源输出充电部分均为冷地,两种接地电路由输入、输出变压器进行隔离,变压器不仅结构简单,而且很容易实现初次级交流2000V的抗电强度。该充电器输出端电压设定为43V/1.8A,如有需要可将电流调定为3A,用于对容量较大的铅酸蓄电池充电(如用于对容量为30AH的蓄电池充电)。 市电输入经桥式整流后,形成约300V直流电压,因而对此整流滤波电路的要求与通常有所不同。对蓄电池充电器来说,桥式整流的100Hz脉动电流没必要滤除干净,严格说100Hz的脉动电流对蓄电池充电不仅无害,反而有利,在一定程度上可起到脉冲充电的效果,使充电过程中蓄电池的化学反应有缓冲的机会,防止连续大电流充电形成的极板硫化现象。虽然1.8A的初始充电电流大于蓄电池额定容量C的1/10,间歇的大电流也使蓄电池的温升得以缓解。因此,该滤波电路的C905选用47μF/400V 的电解电容器,其作用不足以使整流器120W的负载中纹波滤除干净,而只降低整流电源的输出阻抗,以减小开关电路脉冲在供电电路中的损耗。C905的容量减小,使得该整流器在满负载时输出电压降低为280V左右。 U903按MC3842的典型应用电路作为单端输出驱动器,其各引脚作用及外围元件选择原则如下: 第1脚为内部误差放大器输出端。误差电压在IC内部经D1、D2电平移位,R1、R2分压后,送入电流控制比较器的反向输入端,控制PWM锁存器。当1脚为低电平时,锁存器复位,关闭驱动脉冲输出,直到下一个振荡周期开始才重新置位,恢复脉冲输出。外电路接入R913(10kΩ)、C913(0.1μF),用以校正放大器频率和相位特性。 第2脚内部误差放大器反相输入端。充电器正常充电时,最高输出电压为43V。外电路由R934(16kΩ)、VR902(470Ω)、R904(1kΩ)分压后,得到2.5V的取样电压,与误差放大器同相输入端的2.5V基准电压比较,检出差值,通过输出脉冲占空比的控制使输出电压限定在43V。在调整此电压时,可使充电器空载。调整VR902,可使正负输出端电压为43V。 第3脚为充电电流控制端。在第2脚设定的输出电压范围内,通过R902对充电电流进行控制,第3脚的动作阈值为1V,在R902压降1V以内,通过内部比较器控制输出电压变化,实现恒流充电。恒流值为 1.8A,R902选用0.56Ω/3W。在充电电压被限定为43V时,可通过输出电压调整充电电流为恒定的1.75A,1.8A。蓄电池充满电,端电压?43V,隔离二极管D908 截止,R902中无电流,第3脚电压为0V,恒流控制无效,由第2脚取样电压控制充电电压不超过43V。此时若充满电,在未断电的情况下,将形成43V电压的涓流充电,使蓄电池电压保持在43V。为了防止过充电,36V铅酸蓄电池的此电压上限不宜使电池单元电压超过2.38V。该电路虽为蓄电池取样,实际上也限制了输出电压,如输出电压超过蓄电池电压0.6V,蓄电池电压也随之升高,送入电压取样电路使之降低。 ,RT为27kΩ,R911为10Ω。该例中考虑到高频磁第4脚外接振荡器定时元件,CT为2200pF 芯购买困难,将频率设定为30kHz左右。R911用于外同步,该电路中可不用。 第5脚为共地端。 第6脚为驱动脉冲输出端。为了实现与市电隔离,由T902驱动开关管。T902可用5×5mm磁芯,初次级绕组各用0.21mm漆包线绕20匝,绕组间用2×0.05mm聚脂薄膜绝缘。R909为100Ω,R907为10kΩ。如果Q901内部栅源极无保护二极管,可在外电路并入一只10,15V稳压管。 第7脚为供电端。为了省去独立供电电路,该电路中由蓄电池端电压降压供电,供电电压为18V。当待充蓄电池接入时,最低电压在32.4V,35V之间,接入18V稳压管均可得到18V的稳定电压。滤波电容器C909为100μF。 第8脚为5V基准电压输出端,同时在IC内部经R3、R4分压为2.5V,作为误差检测基准电压。 充电器的脉冲变压器T901可用市售芯柱圆形、直径Φ12mm的磁芯(芯柱对接处已设有1mm的气隙)。初级绕组用0.64mm高强度漆包线绕82匝,次级绕组用0.64mm高强度漆包线双线并绕50匝。初次级之间需垫入3层聚脂薄膜。 该充电器的控制驱动系统和次级充电系统均与市电隔离,且MC3842由待充蓄电池电压供电,无产生超压、过流的可能,而T901次级仅有的几只元器件,只要选择合格,击穿的可能性也几乎为零,因此其可靠性极高。此部分的二极管D911可选择共阴或共阳极,将肖特基二极管并联应用。D908可选用额定电流5A的普通二极管。次级整流电路滤波电容器选用220μF已足够,以使初始充电电流较大时具有一定的纹波,而起到脉冲充电的作用。 该充电器电路极为简单,然而可靠性却较高,其原因是:MC3842属逐周控制振荡器,在开关管的每个导通周期进行电压和电流的控制,一旦负载过流,D911漏电击穿;若蓄电池端子短路,第3脚电压必将高于1V,驱动脉冲将立即停止输出;若第2脚取样电压由于输出电压升高超过2.5V,则使第1脚电压低于1V,驱动脉冲也将被关断。多年来,MC3942被广泛用于电脑显示器开关电源驱动器,无论任何情况下(其本身损坏或外围元件故障),都不会引起输出电压升高,只是无输出或输出电压降低,此特点使开关电源的负载电路极其安全。在该充电器中MC3842及其外电路都与市电输入部分无关,加之用蓄电池电压经降压、稳压后对其供电,使其故障率几乎为零。 该充电器中唯一与市电输入有关的电路是T901初级和T902次级之间的开关电路,常见开关管损坏的原因无非两方面:一是采用双极型开关管时,由于温度升高导致热击穿。这点对Q901的负温度系数特性来说是不存在的,场效应管的漏源极导通的电阻特性本身具有平衡其导通电流的能力。此外,由于开关管的反压过高,当开关管截止时,反向脉冲的尖峰极易击穿开关管。为此,该电路中通过减小C905的容量,以在开关管导通的大电流状态下适当降低整流电压。二是采用中心柱为圆型的铁氧体磁芯,其漏感相对小于矩形截面磁芯,而且气隙预留于中心柱,而不在两侧旁柱上,进一步减小了漏感。在此条件下选用VDS较高的开关管是比较安全的。图 ,其VDS为900V,IDS为10A,功率为150W。也可以用规格近似的其它型2中Q901为2SK1539 号MOS FET管代用。如果担心尖峰脉冲击穿开关管,可以在T901的初级接入通常的C、D、R吸收回路。 由于该充电器的初始充电电流、最高充电电压设计均在较低值,且充满电后涓流充电电流极小,基本可以认为是定时充电。如一只12AH的铅酸蓄电池,7小时即可充满电,且充满电后,是否断电对蓄电池、充电器影响均极小。试用中,晚上8点接入电源充电,第二天早7点断电,手摸蓄电池、充电器的外壳温度均未超过室温。 么修电动车充电器,手把手教你 2008年05月26日 星期一 11:28 相关文章 电动车充电器怎么修,,成志电子制作网手把手来教你,,图文实例2 2008/05/07 04:01 首页 基础知识 电子元器件资料 器件应用 单元电路 资料下载 小制作 仪器仪表 家用电器 灯光控制 音响电路 报警电路 无线收发电路/遥控 充电器电路 mp3电路 其它电路 默认分类 电源专栏 电动车相关 电脑相关 开关电源/逆变专题 休闲小站 生活 情感 在上一期里,我们是以一个UC3842,LM324为核心的单端反激式充电器,这次, 我们就以TL494构成的一款充电器的维修。 充电器总览图:如图1,图2(背视图)所示。 从图1中我们明显的看到保险管严重损坏,因此还是按上一期介绍的从电源输入端入手: 首先检查由4只二极管构成的全桥整流电路。如图3所示: 图中的测试数值表示二极管已击穿损坏,四个均要测量. 接着检查两只大功率三极管.一般使用的是13007,常见的还有C2625,13009等. 测量时一般测量它的两个PN结的好坏,基本上就可以测量出它的好坏,图示已击 穿,正常数值在0.5-0.8之间. 然后测量两只三极管对应的驱动电阻,绝大都数厂家用的是2.2欧1瓦的电阻. 图中数值,左图元件完好,右图已击穿损坏,需要更换. 检查两只高效率整流二极管是否击穿损坏,图示数值正常,击穿显示为 .0XX 测量两只1815三极管的好坏.图示为完好. 更换掉损坏的元件,换上新元件,通电测试,充电器正常指示,经测量参数正常,这样这个充电器就修好了. 此篇文章更新完毕 让我们先看一下充电器的各个部分名称,见下图: 让我们再看一下其电路图(与上图的实物不是完全对应 电动自行车智能充电器 2007/05/09 00:41 用,,,,,,的电动自行车智能充电器 ,,,,,,是一种高性能、单端输出的电流型,,,控制电路,最大优点是外接元件少,不用独立辅助电源,外电路装配简单,成本低廉。用它作反激式控制的电动自行车智能充电器,在市场上极具竞争力。 全电路原理如图,所示,图,是,,,,,,的内部框图,,,,,,,各引脚的功能见附表。本电路的新颖之处为打破常规地将,,,内部的误差放大器空着不用(照理应将?脚即反相端接地),而直接用二次侧的精密稳压,,, ,,,,,调控,下面试 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 之。 市电经简单的交流滤波、一次整流并滤波得到约,,,,的直流高压后,分成二路:一路经启动电阻,,,Ω向,,,μ,的电解充电,当电容上的电压高于,,,,时,,,,的?脚得电,内部的振荡器工作,并通过?脚送到,,,,管,,,,的栅极,同时,,,,的高压直流经过变压器,的原边, ,送到,,,,的漏极,?脚的振荡信号控制,,,,的导通与关断。这时,,的副边,,、,,均感应到高频电压,,,的电压经整流后给,,,供电;,,的电压经快恢复二极管整流、滤波后,所得到的直流电压可给蓄电池组供电。 为确保此充电器具有恒流恒压特性,必须根据蓄电池的充放电曲线作闭环控制: ,( 恒压(限压)控制:充电器输出端得到的电压必须严格控制在蓄电池组标称电压的,(,倍左右,本例为,,,。这部分主要由精密可调稳压,, ,,,,,承担。比如当充电器的输出电压偏高时,,,,,,的控制端电压也偏高,当高到某一点时,根据,,,,,的特性可知,会使它的输出端控制的信号幅度下降?光耦,,,中的发光二极管增亮?光敏三极管集电极控制信号下降,即?脚的电位降低。根据,,,,,,的工作特性可知,?脚的电位下降意味着?脚的调制脉宽变窄,最终使输出电压回落到原来的数值(即相对恒压)。 ,( 恒流控制:蓄电池组放电完毕,此时处于欠压状态,再充电时,初充电流会很大,如不加限制,对电池组及充电器均不利。本充电器的恒流控制巧妙地利用,,,,管源极电阻上的压降控制,,,的?脚(电流敏感端),当输出端的电流过大时,源极限流电阻压降增大,送给?脚的电压也增大,当?脚的电压达到,,时,会迫使?脚的脉宽变窄,最终使输出电流降下来,达到原先设定值,也即达到恒流目的。必须指出,当输出端短路或极性反接时,源极的限流电阻压降会远超过,,,这时?脚的输出脉宽会变得极窄,最终会使输出电压、电流均处在最小值,保护了充电器本身。 本电路的精华部分是精心设计了一小模块,,,,用它实施智能化(恒流转恒压)的控制,并用一廉价的双色发光管显示充电和充满状态,直观而实用。其原理为:正常充电时,,,,,亮,,,,,的红灯亮,绿灯不亮,当蓄电池充电基本完成时,电压已基本达到设定值,但如果充电电流只有原来初始值的,,,弱,这时可调整,,,?脚的,,,Ω精密多圈电位器,使,,,,的绿灯亮,红灯灭,以显示蓄电池基本充满,同时,,,的?脚再发出一个低电平信号到,,,(光耦),控制光电三极管导通,根据,,,,,,的工作原理可知,这时的,,,?脚电位拉低,?脚脉宽变窄,输出端电压处于恒定状态,此时的数值比最高限压值(本例为,,,)稍低,电路处于浮充状态,具体充电曲线见图,。 如何使电动车电池寿命更长(原因篇) 2007/05/07 12:47 在前一期里,我们介绍了铅酸电池的工作原理,那么在这一期里我将介绍一下,导制铅酸电池寿命短的原因: 第一个原因:电池本身引起的 为什么这么说呢~在前一期里我们知道了铅酸电池的工作原理,铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免硫化。 第二个原因:电池生产的原因 针对电动自行车用铅酸蓄电池的特殊性,各个电池制造商采取了多种方法。最典型的方法如下: ?增加极板数量。 把原设计的单格5片6片制改为6片7片制,7片8片制,甚至8片9片制。靠减薄极板厚度和隔板,增加极板数量来提高电池容量。 ?提高电池的硫酸比重。 原来浮充电池的硫酸比重一般都在1.21~1.28之间,而电动自行车的电池的硫酸比重一般都在1.36,1.38左右,这样可以提供较大的电流,提升电池的初期容量。 ?增加正极板活性物质氧化铅的用量和比例。 增加氧化铅就增加了参与放电的电化学反应物质,也就增加了放电时间,增加了电池容量。 通过这些措施,电池的初期容量满足了电动自行车的容量要求,特别是改善了电池的大电流放电的特性。但是,极板增加了,硫酸的容量就减少了,电池发热导致大量失水,同时,电池的微短路和铅枝搭桥的概率增加了。提高硫酸比重增加了电池的初期容量,但是,硫化现象就更严重。密封电池的最基本原理之一就是正极板析氧以后,氧气直接到负极板,被负极板吸收而还原为水,考核电池这个技术指标的参数叫做“密封反应效率”,这种现象叫做“氧循环”。这样,电池的失水很少,实现了“免维护”,就是免加水。为此,都要求负极板容量做的比正极板容量大一些,又称为负极过渡。增加正极板活性物质必然使得,负极过渡减少了,氧循环变差了,失水增加了,又会造成硫化。这些措施虽然提升了电池的初期容量,但是却会造成失水和硫化,而失水和硫化又会相互促成,最终结果却是牺牲电池的寿命。 ?还有就是极群组装虚焊问题。容易产生虚焊的地方是极板。而每个电池的单格 有15片极板,就是15个焊点,一个电池有6个单格,就有90个焊点,一组电池由3个12V电池组成,就有270个焊点。如果一个焊点存在虚焊,该单格容量就下降,进而该单格形成电池落后,造成整个电池都落后,电池就会形成严重的不均衡,使这组电池提前失效。就算虚焊控制在万分之一,平均每37组电池就会有一组电池存在虚焊,这是绝对不能够允许的。而铅钙合金板栅的电池,在焊接的时候会析出钙而掩盖虚焊问题,这样,很多电池制造商宁愿采用低锑合金的板栅而没有采用铅钙合金。而低锑合金的板栅析氧析氢电压更低,电池出气量大,失水相对严重,电池更容易硫化。 从以上我们可以看出:为什么电池有好有坏,有的厂家生长的电池相同使用条件下寿命会更长。 第三个原因:电动车使用环境本身引起的原因 只要是铅蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电池却比电动自行车上使用的铅酸电池有着更长的寿命,这是因为电动自行车的铅酸电池有着一个更容易硫化的工作环境。 ?深度放电 用在汽车上的铅蓄电池只是在点火时单向放电,点火后发电机会对电池自动充电,不造成电池深度放电。而电动自行车在骑行时不可能充电,经常会超过60%的深度放电,深放电时,硫酸铅浓度增加,硫化就会相当严重。 ?大电流放电 电动车20公里巡航电流一般是4A,这个值已经高于其它领域的电池工作电流,而超速超载的电动车的工作电流就更大。电池制造商都进行过1C充电70,,2C放电60,的循环寿命试验。经过这样的寿命试验,可达到充放电循环350次寿命的电池很多,但是实际在用的效果就相差甚远了。这是因为大电流工作增加了50%的放电深度,电池会加速硫化。所以,电动摩托车的电池寿命更短,因为电动摩托车的车身太重,电机功率大,在巡航时工作电流达8A以上。有的甚到达到10A. ?充放电频率高 用在后备供电领域的电池,只有在停电时才会放电,如果一年停8次电,要达到10年的寿命,只用做到80次循环充电寿命,而电动车一年充放电循环300次以上很常见。甚到有的人可能一天充好几次 ,充的时间很短,没有充饱就使用了。 ?短时充电 由于电动自行车是交通工具,可充电的时间不多,要在8小时内完成36伏或48伏的20安时充电,这就必须提高充电电压(一般为单节2.7~2.9伏),当充电电压超过单节电池的析氧电压(2.35伏)或析氢电压(2.42伏)时,电池就会因过度析氧而开阀排气,造成失水,使电解液浓度增加,电池的硫化现象加重。 。 ?放电后不能及时充电 作为交通工具,电动自行车的充电及放电被完全分离开来,放电后很难有条件及时充电,而放电后形成的大量硫酸铅如果超过半小时不充电还原为氧化铅,就会硫化结晶。 第四个原因:电动自行车生产方面的原因 大多数车的控制器都留了一个限速插头,一些车厂干脆就去掉限速器出厂,既可以吸引看重车速的客户,也能降低成本,这样的车在高速行驶时电流非常大,会严重缩短电池寿命。 12V铅酸电池的最低保护电压为10.5V,如果是36V电池组,最低保留电压就是31.5V,目前大多数车厂采用的控制器欠压保护电压也都是31.5V。表面上看这是正确的,但是,实际当36V电池组只剩下31.5V电压时,由于电池存在容量差,肯定就会有一个电池电压低于10.5V,该电池就处于过放电状态。这时候,过放电的电池容量急剧下降,这时对电池的损伤影响不仅仅是该单只电池,而是影响整组电池的寿命。其实,在电池电压低于32V以后一直到27V,所增加的续行能力不到2公里,而对电池的损伤却非常大。只要出现这样的情况10次,电池的容量就会低于标称容量的70%。另外,一些用户发现电池在欠压以后,过10分钟,电池又不欠压了,就又采取给电行驶,这对电池破坏更大,而大多数车的说明 关于书的成语关于读书的排比句社区图书漂流公约怎么写关于读书的小报汉书pdf 没有给用户以警示。目前多数控制器内部都有可调的电位器,而这个可调的电位器的振动漂移是比较严重的。在价格竞争中,面对更注重车外表的用户群,很少有产品采用抗振动的精密多圈电位器,这样的控制器发生振动后漂移也不奇怪。 第五个原因:充电设备的原因 业界广为流传的一句话就是:电池不是用坏的,而是充坏的。为了满足电动自行车电池的短时高容量充电,在三段式恒压限流充电中,不得不通过提高恒压值到2.47V,2.49V。这样,大大超过电池正极板析氧电压和负极板析氢电压。一些充电器制造商的产品为了降低充电时间的指示,提高了恒压转浮充的电流,而使得充电指示充满电以后,还没有充满电,就靠提高浮充电压来弥补。这样,很多充电器的浮充电压超过单格电压2.35V,这样在浮充阶段还在大量析氧。而电池的氧循环又不好,这样在浮充阶段也在不断的排气。恒压值高了,保证了充电时间,但是牺牲的是失水和硫化。恒压值低了,充电时间和充入电量又难以保证。在改善电池的电池板栅合金、提高析气电位、改善氧循环性能,提高密封反应效率的基础上,控制充电最高充电电压在2.42V以下,也就是在析氢电位以下。这样做必然会导致充电时间的延长,这就必须在大电流充电(限流充电)的状态下,加入去极化的负脉冲,改善电池的充电接受能力,在大电流充电的时候多充入一些电量,缩短充电时间。70,的2C电流充电,是电池在充电接受能力比较大的时候,对电池采用大电流充电,对电池的损伤比较小。电池基本上没有高于严重析氢电压。一旦高于析氢电压,电池也会快速的失水。使用这类充电器,必须采用连续充放电,如果中途停止几天充电,电池就会产生比较严重的硫化而提前失效。而用户使用电池,是无法保证每次使用以后,都能够及时充电的,一年以内发生数次没有及时充电的情况,电池的硫化就会积累。一些充电器制造商把某些功能夸大,成品的功效其实没有其宣传的那样好。 其它原因 不少电池在单体测试中,可以获得比较好的结果,但是,对于串连电池组来说, 由于容量、开路电压、荷电状态、硫化程度各不相同,这个差异会在串连电池组被扩大,状态差的单体会影响整组电池,其寿命明显下降。 从电池在生产线上充电,到用户购车后配车使用这段时间要经过很多环节,间隔时间甚至会长达数月,在这期间,由于没对电池进行补充电,自放电产生的硫酸铅大量堆积结晶,用户刚买到的新电池可能是已经老化甚至报费的电池。 电池厂家在执行质保时,对回收电池并不是完全的淘汰。电池返退以后,电池制造商重新进行充放电检验,在检验中往往会发现有60,以上的单体电池是不符合返退条件的电池。其原因也就是在串连电池组中,个别的电池落后形成整组电池功能下降而引起整组返退。不少电池制造商对返退电池采取配组、补水、除硫、包装后,又重新提供给用户,以提高电池的有效使用寿命,降低报废率,减少电池制造商的部分理索赔的损失,所以,很多经销商已经感觉到厂家提供的电池明显“一代不如一代”。 电动车上比较少见的一些图片(电池,电机,充电器) 2008/09/09 08:33 首页 基础知识 电子元器件资料 器件应用 单元电路 资料下载 小制作 仪器仪表 家用电器 灯光控制 音响电路 报警电路 无线收发电路/遥控 充电器电路 mp3电路 其它电路 默认分类 电源专栏 电动车相关 电脑相关 开关电源/逆变专题 休闲小站 生活 情感 输入关键字搜索本站 给我留言 热门文章 电动车专题经典推荐 网易163邮箱 这个电池像不像怀孕了------电池膨胀. 电池膨胀并不奇怪,只是上面还加有均衡电路.这不多见.照理说应该比较不会膨胀.看来电池不能单看外表及厂家的鼓吹.最重要还是看内在品质.而什么才是品质好的电池,很简单口碑好且占大多数人的电池品质才叫好. 电机进水 电机进水也算长见,但进成这种情况的我是见到不少,不知大家...... 如果下大雨,人骑电动车从积水较深的地方驶过,很大一部分电机都有可能进水,所以下雨天尽量不从超过1/4个轮子高度的积水中驶过,不得已下请加快速度驶过,这样可减小进水的可能性,慢了反而容易进水.但注意水不要超过半个轮子高度,而且距离不要太长.超过半个轮子高度的请绕道. 线圈是定子的有刷电机. 一般我们常见的有刷电机,线圈是与车轮一体作为转子,但以下这种电机,线圈却是定子 少见的充电器(TL494+IRF740*2+LM58/LM324+3变压+1电感+场效应管反极保护) 这种充电器要插上电池先启动一下,充电器才有输出. 上次有个网友说没见过这种类型的充电器,而我恰巧在2天内发现了两个,一个 36V的,一个48V的,拍了有一段时间,现在一起传上来. 电动车充电器36V/48V 2008-07-12 17:31 一、CD-L-36型电动自行车电池充电器 这是一种脉冲调制(PWM)式开关电源充电器,具有恒流充电、充电电压监测防过充和涓流充电等功能。 1(主要技术参数: (1)输入电源电压为175,266V(50Hz,60Hz)。(2)输出电压:44.3V?0.3V。输出电流(视电池容量不同):1.8—2A。若被充电池容量为12Ah,则充电时间约为9小时(充电效率约为88%。 2(电路原理 测绘电路原理图见附图1所示。 市电经C1、L共轭抗干扰电路、D1,D4整流、BT扼流、C3滤波后形成310V左右直流电压,经启动电阻R1、R2加至脉宽调制IC1(TL3842F)?脚,IC1起振,从?脚输出激励脉冲,激励V1(ZRFP750)场效应管,T初级线圈N1有脉冲电流,N2产生感应电流经D5、R4回授给IC1?脚供电,使IC1建立稳定的振荡脉冲输出。同时,在N3感生的电流经D7(BYW29)整流、C16滤波后输出44V?0.3V充电电压。 当输出端接上被充电池(残余电压为32V左右)时,将输出1.8A,2A的充电电流,在充电限流/恒流取样电阻R8(1.5Ω)上的压降大于(TC431)中2.5V基准比较电压,使V3 K极电位降低,LED2(红)发光,表示正在充电。 V5、R28、R26、R18等构成电压监测电路,以保证不过充。由于开始充电时,被充电池电压较低,而且在R18上的恒流充电电压降较大,所以V5(TC431)的R端电压远低于2.5V,V5 K极电位较高,LED2(绿)不亮,IC2?、?脚间电压很小,其?、?脚间内阻呈高阻抗,使IC1?脚(误差放大器反相输入端)的电位较低;?脚电位保持不变,所以?脚保持输出脉宽较宽且较稳定的激励脉冲,使T次级持续输出额定充电电流。随着充电电压上升,当将要达到额定电压(44V)时,由于V5的反馈作用(充电电流也有所下降,V5 R极取样电压高于2.5V,V5 K极电压立即下降,使IC2?、?脚间电压升高,?、?脚间内阻下降,IC1?、?脚电压均上升,使?脚输出脉冲宽度变窄,T次级输出电流大大减小。此时(因R18上的电流减小,压降变低,V3 K极电位升高,LED1熄灭;与此同时LED2因V5 K极电位降低而点亮,表示电池已充足,恒流充电阶段结束,进入浮充(涓流)阶段。此时,在浮充阶段(约2小时)内随时都可取用电池。 3(故障检修 (1)故障现象:无充电电压输出。 首先查C3上有无310V直流电压,若无且BX未熔断,多数是电源电路(如L、D1,D4、RT等)有开路故障。而BX熔断,可能为电源电路有短路情况或V1击穿所致。 如果有310V电压,故障原因就较多,如IC1未起振等(应查IC1的工作状态。先查IC1?脚有无20V左右的电压、?脚有无5V基准电压;然后查其余各脚在空载情况下的电压,正常时?脚为0V、?脚为2V、?脚为0.5V。而?、?脚受控于IC2?脚电压,在空载时?脚为3.8V、?脚为1V左右。若上述相符(则IC1等基本正常。应查T次级N3、D7有无开路等。 (2)故障现象:电池长时间充不满。 此时两个指示灯之一亮,应查电池本身及输出插头接触是否良好。若指示灯部不亮,而输出电压较低,可能是IC1工作不正常或V1不良,可在空载情况下测IC1各脚电压,若正常查输出部分。如R26虚焊(似通非通),使V5取样电压时高时低,IC2?、?脚电压时高时低(此时脉宽也时宽时窄,导致输出电流不恒定,因而电池久充不满。 二、快达DZ-2-48型智能全自动充电器 这款自激/他激式半桥驱动脉宽调制充电器,适用于电摩和电三轮。采用恒压、限流和在浮充时采取变压、变流保持的方式,提高充电效率。具有过充、过流、短路保护等功能,电池充满后自动转入浮充状态。 1(主要技术参数: (1)输入电压:AC220V?10%。(2)输出电压:DC59V?0.2V。(2)输出电流:?2.5A。 2(电路原理 测绘电路原理图如图2所示。 220V市电经L1、C11、C10高频抑制,D13-D16整流、C12滤波,建立约310V直流电压。V3、V4、T1等组成半桥式变换器,开始通电即形成较弱的自激振荡,V3、V4交替导通和截止。这样,T1的N3和T2的N1,经隔直电容C9,在V3、V4交替导通和截止的过程中感生电磁势,一方面通过T1N3的回授维持变换器的振荡;另一方面经T2N1将电磁能耦合至T2的N2和N3,经D9、D10全波整流得到20V电压。此电压给IC1(TL494CN)12脚Vcc端供电;同时,LED1(红色)亮;12V风扇电机旋转,给机内风冷。并在IC1内部建立起5V基准电压,此电压经C3给IC1?脚以高电平,当C3充电结束,使?脚复位为低电平时,由IC1?、?脚和C1、R29组成的振荡电路起振。从?、11脚分别输出相位相差180?的激励脉冲,分别激励V1、V2导通和截止,经T1的N4、N5中建立的高频电磁势,耦合到T1的N1、N2进一步增强了对V3、V4的激励,形成强烈的他激振荡。进而经T1的N3、T2的N1形成强电磁势,在T2的N2、N1感应稳定的电压,T2 的N4、N5输出的电压经高频对管V5全波整流,经L2高频扼流、二极管(6A10)输出。此时,对在X2输出插接件上的被充电电池组(48V)进行恒流充电。电路中R20(100kΩ)和R28(10kΩ)分压,加至IC1?脚,设置了一个死区控制电位,以设定占空比。也可以说使?脚、11脚输出的激励脉冲之间形成一段静止区,以使V1、V2在导通/截止的交越瞬间不致发生同时导通。图中D1、D2用以抬高V1、V2射极的电位,以使其截止可靠。 (1)充电指示和过流保护在恒流充电期间,充电电流在取样电阻R37上形成负极性电流取样电压(视电池容量不同约-2V——3V),此负电压一路经R30加至IC2?脚,使?脚输出高电平,使双色LED2的红色指示灯亮,表示正在恒流充电;另一路经R16传输至IC1 15脚(控制放大器反相输入端)。一旦过流(甚至发生短路),在R37上产生较大的负电压,将使IC1输出的激励脉冲宽度大大减小,使输出电压大大降低(甚至无输出)而保护充电器和被充电池。 (2)过压保护 当充电电池电压逐渐升高到接近设定的59V额定电压时,在R25(2kΩ)上的取样电压,使IC1?脚电压超过由IC1 14脚输出的5V基准电压,并经R19、R27分压设定的?脚电压(3V)时,将使IC1输出的脉冲宽度大大减小。这时,T2的N4、N5输出电流转为涓流,维持浮充电,在R37上的压降(负电压)减小,IC1的基准电压使IC2?脚呈正电位,使?脚输出低电平(LED2熄灭),并使?脚输出高电平,LED2亮,表示恒流充电阶段结束(进行浮充电阶段。在2小时内随时都可取用电池。 应注意,取下已充满的电池前应先切断充电器输入端的市电;而充电时应先接上被充池再接通市电。 3(常见故障检修 (1)故障现象:无充电电压输出,连空载时也无输出。 此故障的检修重点在电源输入和变换部分。首先测C12上有无310V直流电压,如有,多数为V3、V4变换部分未起振。若用数字万用表测V3、V4基极对发射极之间应有-0.3V左右的电压,否则未起振。此时,应查T1的N1、N2及偏置电路元件有无虚焊、脱焊、失效等;若已起振,则为T1的N3、T2的N1、C9回路开路。 若无310V电压、且FVl熔断,多数为V3、V4、C12或D13-D16之一短路。而FV1未熔断,多为电源回路的L1、D13-D16开路。 (2)故障现象:充电无电压(或很低),但空载有电压输出。 此现象表明电源输入和变换部分正常,故障在他激部分。此时测C5有无20V电压,若无是D10、D9及N2、N3回路不通,或D10、D9之一短路。如有20V电压,可能为IC1不良不起振;过流、过压取样电路失去取样电压;C3漏电严重等导致他激脉冲很窄甚至无他激脉冲。 这是一种脉冲调制(PWM)式开关电源充电器,具有恒流充电、充电电压监测防过充和涓流充电等功能。 1(主要技术参数: (1)输入电源电压为175,266V(50Hz,60Hz)。(2)输出电压:44.3V?0.3V。输出电流(视电池容量不同):1.8—2A。若被充电池容量为12Ah,则充电时间约 为9小时(充电效率约为88%。 2(电路原理 测绘电路原理图见附图1所示。市电经C1、L共轭抗干扰电路、D1,D4整流、BT扼流、C3滤波后形成310V左右直流电压,经启动电阻R1、R2加至脉宽调制IC1(TL3842F)?脚,IC1起振,从?脚输出激励脉冲,激励V1(ZRFP750)场效应管,T初级线圈N1有脉冲电流,N2产生感应电流经D5、R4回授给IC1?脚供电,使IC1建立稳定的振荡脉冲输出。同时,在N3感生的电流经D7(BYW29)整流、C16滤波后输出44V?0.3V充电电压。 当输出端接上被充电池(残余电压为32V左右)时,将输出1.8A,2A的充电电流,在充电限流/恒流取样电阻R8(1.5Ω)上的压降大于(TC431)中2.5V基准比较电压,使V3 K极电位降低,LED2(红)发光,表示正在充电。 V5、R28、R26、R18等构成电压监测电路,以保证不过充。由于开始充电时,被充电池电压较低,而且在R18上的恒流充电电压降较大,所以V5(TC431)的R端电压远低于2.5V,V5 K极电位较高,LED2(绿)不亮,IC2?、?脚间电压很小,其?、?脚间内阻呈高阻抗,使IC1?脚(误差放大器反相输入端)的电位较低;?脚电位保持不变,所以?脚保持输出脉宽较宽且较稳定的激励脉冲,使T次级持续输出额定充电电流。随着充电电压上升,当将要达到额定电压(44V)时,由于V5的反馈作用(充电电流也有所下降,V5 R极取样电压高于2.5V,V5 K极电压立即下降,使IC2?、?脚间电压升高,?、?脚间内阻下降,IC1?、?脚电压均上升,使?脚输出脉冲宽度变窄,T次级输出电流大大减小。此时(因R18上的电流减小,压降变低,V3 K极电位升高,LED1熄灭;与此同时LED2因V5 K极电位降低而点亮,表示电池已充足,恒流充电阶段结束,进入浮充(涓流)阶段。此时,在浮充阶段(约2小时)内随时都可取用电池。 3(故障检修 (1)故障现象:无充电电压输出。 首先查C3上有无310V直流电压,若无且BX未熔断,多数是电源电路(如L、D1,D4、RT等)有开路故障。而BX熔断,可能为电源电路有短路情况或V1击穿所致。 如果有310V电压,故障原因就较多,如IC1未起振等(应查IC1的工作状态。先查IC1?脚有无20V左右的电压、?脚有无5V基准电压;然后查其余各脚在空载情况下的电压,正常时?脚为0V、?脚为2V、?脚为0.5V。而?、?脚受控于IC2?脚电压,在空载时?脚为3.8V、?脚为1V左右。若上述相符(则IC1等基本正常。应查T次级N3、D7有无开路等。 (2)故障现象:电池长时间充不满。 此时两个指示灯之一亮,应查电池本身及输出插头接触是否良好。若指示灯部不亮,而输出电压较低,可能是IC1工作不正常或V1不良,可在空载情况下测IC1各脚电压,若正常查输出部分。如R26虚焊(似通非通),使V5取样电压时高时低,IC2?、?脚电压时高时低(此时脉宽也时宽时窄,导致输出电流不恒定,因而电池久充不满。 二、快达DZ-2-48型智能全自动充电器 这款自激/他激式半桥驱动脉宽调制充电器,适用于电摩和电三轮。采用恒 压、限流和在浮充时采取变压、变流保持的方式,提高充电效率。具有过充、过流、短路保护等功能,电池充满后自动转入浮充状态。 1(主要技术参数: (1)输入电压:AC220V?10%。(2)输出电压:DC59V?0.2V。(2)输出电流:?2.5A。 2(电路原理 测绘电路原理图如图2所示。220V市电经L1、C11、C10高频抑制,D13-D16整流、C12滤波,建立约310V直流电压。V3、V4、T1等组成半桥式变换器,开始通电即形成较弱的自激振荡,V3、V4交替导通和截止。这样,T1的N3和T2的N1,经隔直电容C9,在V3、V4交替导通和截止的过程中感生电磁势,一方面通过T1N3的回授维持变换器的振荡;另一方面经T2N1将电磁能耦合至T2的N2和N3,经D9、D10全波整流得到20V电压。此电压给IC1(TL494CN)12脚Vcc端供电;同时,LED1(红色)亮;12V风扇电机旋转,给机内风冷。并在IC1内部建立起5V基准电压,此电压经C3给IC1?脚以高电平,当C3充电结束,使?脚复位为低电平时,由IC1?、?脚和C1、R29组成的振荡电路起振。从?、11脚分别输出相位相差180?的激励脉冲,分别激励V1、V2导通和截止,经T1的N4、N5中建立的高频电磁势,耦合到T1的N1、N2进一步增强了对V3、V4的激励,形成强烈的他激振荡。进而经T1的N3、T2的N1形成强电磁势,在T2的N2、N1感应稳定的电压,T2的N4、N5输出的电压经高频对管V5全波整流,经L2高频扼流、二极管(6A10)输出。此时,对在X2输出插接件上的被充电电池组(48V)进行恒流充电。电路中R20(100kΩ)和R28(10kΩ)分压,加至IC1?脚,设置了一个死区控制电位,以设定占空比。也可以说使?脚、11脚输出的激励脉冲之间形成一段静止区,以使V1、V2在导通/截止的交越瞬间不致发生同时导通。图中D1、D2用以抬高V1、V2射极的电位,以使其截止可靠。 (1)充电指示和过流保护在恒流充电期间,充电电流在取样电阻R37上形成负极性电流取样电压(视电池容量不同约-2V——3V),此负电压一路经R30加至IC2?脚,使?脚输出高电平,使双色LED2的红色指示灯亮,表示正在恒流充电;另一路经R16传输至IC1 15脚(控制放大器反相输入端)。一旦过流(甚至发生短路),在R37上产生较大的负电压,将使IC1输出的激励脉冲宽度大大减小,使输出电压大大降低(甚至无输出)而保护充电器和被充电池。 (2)过压保护 当充电电池电压逐渐升高到接近设定的59V额定电压时,在R25(2kΩ)上的取样电压,使IC1?脚电压超过由IC1 14脚输出的5V基准电压,并经R19、R27分压设定的?脚电压(3V)时,将使IC1输出的脉冲宽度大大减小。这时,T2的N4、N5输出电流转为涓流,维持浮充电,在R37上的压降(负电压)减小,IC1的基准电压使IC2?脚呈正电位,使?脚输出低电平(LED2熄灭),并使?脚输出高电平,LED2亮,表示恒流充电阶段结束(进行浮充电阶段。在2小时内随时都可取用电池。 应注意,取下已充满的电池前应先切断充电器输入端的市电;而充电时应先接上被充池再接通市电。 3(常见故障检修 (1)故障现象:无充电电压输出,连空载时也无输出。 此故障的检修重点在电源输入和变换部分。首先测C12上有无310V直流电 压,如有,多数为V3、V4变换部分未起振。若用数字万用表测V3、V4基极对发射极之间应有-0.3V左右的电压,否则未起振。此时,应查T1的N1、N2及偏置电路元件有无虚焊、脱焊、失效等;若已起振,则为T1的N3、T2的N1、C9回路开路。 若无310V电压、且FVl熔断,多数为V3、V4、C12或D13-D16之一短路。而FV1未熔断,多为电源回路的L1、D13-D16开路。 (2)故障现象:充电无电压(或很低),但空载有电压输出。 此现象表明电源输入和变换部分正常,故障在他激部分。此时测C5有无20V电压,若无是D10、D9及N2、N3回路不通,或D10、D9之一短路。如有20V电压,可能为IC1不良不起振;过流、过压取样电路失去取样电压;C3漏电严重等导致他激脉冲很窄甚至无他激脉冲。
本文档为【电动车充电器电路实例】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_036899
暂无简介~
格式:doc
大小:825KB
软件:Word
页数:49
分类:互联网
上传时间:2017-09-01
浏览量:52