关闭

关闭

关闭

封号提示

内容

首页 中心极限定理探讨及应用 数学与应用数学毕业论文.doc

中心极限定理探讨及应用 数学与应用数学毕业论文.doc

中心极限定理探讨及应用 数学与应用数学毕业论文.doc

上传者: 心无法再痛7 2017-10-13 评分 0 0 0 0 0 0 暂无简介 简介 举报

简介:本文档为《中心极限定理探讨及应用 数学与应用数学毕业论文doc》,可适用于综合领域,主题内容包含中心极限定理探讨及应用数学与应用数学毕业论文目录摘要II绪论(课题的研究意义(国内外研究现状(研究目标关于独立分布的中心极限定理的探讨(中心极限定理符等。

中心极限定理探讨及应用数学与应用数学毕业论文目录摘要II绪论(课题的研究意义(国内外研究现状(研究目标关于独立分布的中心极限定理的探讨(中心极限定理的提法(独立同分布情形的两个定理(((林德伯格勒维中心极限定理((隶莫弗拉普拉斯定理(独立不同分布情形下的中心极限定理((林德贝格中心极限定理((李雅普诺夫中心极限定理(本章小结中心极限定理在商业管理中的应用(水房拥挤问题(设座问题(盈利问题(抽样检验问题(供应问题结语参考文献附录第I页中心极限定理探讨及应用摘要:本文从随机变量序列的各种收敛与它们间的关系谈起~通过对概率论的经典定理中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述~揭示了随机现象最根本的性质平均结果的稳定性(经过对中心极限定理的讨论~给出了独立随机变量之和的分布可以用正态分布来表示的理论依据(同样中心极限定理的内容也从独立同分布与独立不同分布两个角度来进行讨论最后给出了一些中心极限定理在数理统计、管理决策、近似计算、以及保险业等方面的应用~来进一步地阐明了中心极限定理在各分支学科中的重要作用和应用价值(关键词:弱收敛独立随机变量特征函数中心极限定理(第II页级数学与应用数学专业毕业论文绪论(课题的研究意义概率统计学是一门研究随机现象统计规律性的数学学科它的应用十分广泛涉及自然科学、社会经济学科、工程技术及军事科学、农医学科、企业管理部门等(而大数定律和中心极限定理是概率论中最重要的内容之一甚至可以说概率论的真正历史开始于极限定理的研究在这以前概率论还仅局限于古典概率的直接计算而且主要是赌博中的概率计算(极限定理最早的成果有:伯努利大数定律棣莫佛一拉普拉斯定理和泊松定理这些定理开辟了概率论中的重要研究方向大数定律、中心极限定理及以正态分布和泊松分布为代表的无穷可分分布的研究(概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理是概率论中最重要的一类定理有广泛的实际应用背景(在自然界与生产中一些现象受到许多相互独立的随机因素的影响如果每个因素所产生的影响都很微小时总的影响可以看作是服从正态分布的(中心极限定理就是从数学上证明了这一现象(最早的中心极限定理是讨论n重伯努利试验中某事件A出现的次数渐近于正态分布的问题(年前后棣莫佛对n重伯努利试验中每次试验事件A出现的概率为的情况进行了讨论随后拉普拉斯和李亚普诺夫等进行了推广和改进(自莱维在年系统地建立了特征函数理论起中心极限定理的研究得到了很快的发展先后产生了普遍极限定理和局部极限定理等(无论是在概率论的发展史上还是在现代概率论中极限定理的研究都占特别重要的地位也是数理统计学的基石之一其理论成果也比较完美(长期以来对于极限定理的研究所形成的概率论分析方法影响着概率论的发展(同时新的极限理论问题也在实际中不断产生(这样中心极限定理在概率论中占有重要的地位同时极限定理的研究引起了现代概律论的发展并且在统计分析和近似计算等方面具有一定的应用所以中心极限定理的研究具有一定的理论和实际意义((国内外研究现状中心极限定理作为概率论的重要内容其理论成果相对比较完善(这方面的文章较多它们的结果也比较完美(但是他们注重于研究单一的方向而几个定律之间的关系和应用方面的较少(出于这种现状本文通过对独立条件下的中心极限定理做系统的分析主要研究和讨论几个中心极限定理之间的关系以及中心极限定理所揭示的理论意义第页共页和他们的应用(同时对文中出现的定理和结论做系统的分析和证明所以对教学和科研方面具有一定的参考价值((研究目标通过对独立随机序列的中心极限定理做系统的分析阐明中心极限定理它们之间的关系以及举例说明中心极限定理在实际问题中的应用为教学和科研供参考(级数学与应用数学专业毕业论文关于独立分布的中心极限定理的探讨凡是在一定条件下断定随机变量之和的极限分布是正态分布的定理在概率论中统称中心极限定理(具体一点说中心极限定理回答的是(独立或弱相依)随机变量之和的极限分布在什么条件下是正态的(中心极限定理是揭示产生正态分布的源泉是应用正态分布来解决各种实际问题的理论基础((中心极限定理的提法直观上如果一随机变量决定于大量(乃至无穷多个)随机(因素的总合其中每个随机因素的单独作用微不足道而且各因素的作用相对均匀那么它就服从(或近似地服从)正态分布下面我们将按严格的数学形式来表述这一直观(X在许多情形下一随机变量可以表示为或近似地表示为大量独立随机变量之和X,,,,,,,(a)nX,这里每个直观上表示一种随机因素的效应假如式(a)包含了决定的充分多inn的随机因素的效应(即充分大)则,的分布就近似于X的分布(中心极限定理就是,ii,要说明在什么条件下大量独立随机变量之和近似地服从正态分布即在什么条件下当时独立随机变量之和的极限分布是正态分布的(n,,中心极限定理的名称最早是由仆里耶(年)提出来的中心极限定理的一般形式最早是由切比雪夫(年年)提出来的下面我们介绍四个主要定理:)林德伯格一勒维定理)棣莫弗一拉普拉斯定理)林德伯格定理)李雅普诺夫定理(其中林德伯格定理是最一般的其它情形可以看作它的推论((独立同分布情形的两个定理(中心极限定理有多种不同的形式它们的结论相同区别仅在于加在各被加项,,,,,,,上的条件不同(独立同分布随机变量列的中心极限定理是中心极限定理最简单又最常用(特别在数理统计中)的一种形式通常称做林德伯格勒维定理(历史上最早的中心极限定理一棣莫弗一拉普拉斯(积分)定理是它的特殊情形(,(,,)k,,,,设的方差大于令D,k第页共页n()aEbDBb,,,,,,,,kkknk,k,我们说随机变数列服从中心极限定理如果关于均匀的有xR,,,ktn,x,,()Paxedt,lim(),,,,,,kk,,,,,nB,,k,,nnx()表示:随机变量数的分布函数关于均匀的趋于正态分布,,a(),kkB,kn的分布函数(N(,)独立同分布的两个定理:((林德伯格勒维中心极限定理xxx,,,,,,,,,,设相互独立服从同一分布具有数学期望和方差:nExVarx(),(),,,,,记iiXXXn,,,nY,nn,y则对任意实数有ty,,pYyyedt,,,,lim()()()n,,,n,,,*证明为证()式只须证Y的分布函数列若收敛于标准正态分布(又由定,,n*X,,理((只须证Y的特征函数列收敛于标准正态分布的特征函数(为此设,,nn*Y的特征函数为则的特征函数为,()tnnt,,()()t,*,,Ynn,EXVarX(),(),,,,,,,又因为所以有nn,,,,,(),,,(),于是特征函数有展开式,()t级数学与应用数学专业毕业论文t,,,,,,,()()()()()ttt,,,,()tt从而有nt,ttlim()lim(),te,,,*,,Yn,,,,nnnnt,e而正是分布的特征函数定理得证(N(,),,例某汽车销售点每天出售的汽车辆数服从参数为的泊松分布(若一年天都经营汽车销售,且每天出售的汽车数是相互独立的,求一年中售出辆以上汽车的概率(Yxxx,,,,解:设某汽车销售点每天出售的汽车辆数,则,为一年的总销xExVarx()(),,量(由,知(利用林德贝格勒维中心极EYVarY()(),,,ii,限定理可得,PYPY()()()(),,,,,,,,,,,,这表明一年中售出辆以上汽车的概率为(((隶莫弗拉普拉斯定理,在n重贝努里试验中事件A在每次试验中出现的概率为p(<p<)为n次n试验中事件A出现的次数且记,,np,nY,nnpqy且对任意实数有ty,,pYyyedt,,,,lim()()n,,,n,,,此定理由定理马上就得出也就是说定理是定理的推论(例某保险公司多年的统计资料表明,在索赔户中被盗索赔户占,,以表示在随x意抽查的个索赔户中因被盗向保险公司索赔的户数(()写出的分布列x()求被盗户不少于户且不多于户的概率近似值(第页共页解:()服从的二项分布,即xnp,,,b(,)n,,kk,(),,,,pxkkn,,,,,,,,k,,()利用隶莫弗拉普拉斯中心极限定理,有,,pxpx()()()(),,,,,,,,,这表明,,,,,,,,,,,,()()()()被盗户不少于户且不多于户的概率近似值为(((独立不同分布情形下的中心极限定理对于独立同分布随机变量序列,,,,,,,只要它们的方差有穷中心极限定理就成立(而在实际问题中说诸,具有独立性是常见的但是很难说诸,是“同分布”的随机ii变量正如前面提到的测量误差Y的产生是由大量“微小的”相互独立的随机因素叠加nn,而成的即则间具有独立性但不一定同分布所以我们有必要讨论独立不Y,,,inii,同分布随机变量和的极限分布问题目的是给出极限分布为正态分布的条件(林德伯格(Lideberg)于年找到了独立随机变量服从中心极限定理的最一般的条件通常称做林德伯格条件(((林德贝格中心极限定理X设独立随机变量序列满足林德贝格条件则对任意的有x,,ntn,x,,PXxedt,lim(),,,,,,ii,,,,,nB,,i,,n为证此先证下列三个不等式:对任意实数有aiaea,,()aia()eia,,,!级数学与应用数学专业毕业论文aaia()eia,,,!实际上对a,上三式明显(设a,则aiaixeedxa,,,,aaaiaix()eiaedxxdx,,,,,,,,!aaiaix()eiaeixdx,,,,,,aaxaix,,,,,eixdxdx,,!!iaa,利用可见()()()方都是的偶函数故他们对也aeaia,cossin成立(定理三的证明先把记号简化(令,,akk(),,nkBnfF,以、分别表的特征函数与分布函数因而nkt()nkx()nkFPBxaFBxa,,,()(),,()nkxknkknk(),D,k(),,,ExdFD,,()nknkxnk,,,Bnnnn,()DxdFD,,,,,,,,()nknkxk,,,B,,,kkkn在这些记号下由()xa,k()()xadFdF,,,xaknkxkx()()k,,,,,,,xaBknBBBnnn,ydFnky(),yB,,n,,故林德贝格条件可化为:对任意nlimxdF,(),()nkx,,,,,xn,k而()式化为:对均匀的有,第页共页tny,,,Pxedt,lim,,,,,nk,,,,,n,,k,,()n如果在条件()下能够证明的特征函数,,nkk,tn,,()()tfen,,,,亦即,()nnkt,kntlog()log,(),,,,,,tfn,nnkt(),k()那么根据定理((()成立再由定理((()中收敛对xR,还是均匀的于是定理得以证明(现在也就是只要证出()成立则问题得证为了证明()分两步((甲)先证log(),t可展开为nn()log()()(),tfRt,,,()nnktn,k其中函数Rt()在任意有穷区间内趋于tn实际上由()中前一式,itxfeitxdF,,,,()()()()nktnkx,,,根据(),tt,,,fxdFxdFxdFnktnkxnkxnkx()()()(),,,,,xx,,,,,,t,,xdFnkx(),,,x,,((),,xdFkn,,,,()其中任意(由()对一切充分大的有从而关nnkx(),,,x于,TT,及任何有限区间中的同时有tkkn(),,,,fTfT,,,,max,,nktnkt()(),,kntTT,,,因而对任意均匀的有,,级数学与应用数学专业毕业论文(()limmaxf,,nkt(),,n,,kntTT,,,特别当时对一切充分大的下式成立:n,,f,,()nkt(),TT,因此在中有展开式,,nnlog()loglog(),tff,,,,,()()nnktnkt,,kkn,,()()fRt,()nktn,k()其中s,n,(),sRtf()(),,,,nnkt()sks,,由()nn,f,snkt()Rtf(),,,,,,nnkt(),,fksk,,,nkt()nn,,f,,,maxff,,()()()nktnktnkt,,kn,,kk但由()中第一个不等式及()nn,tt,,,fxdF,,nktnkx()(),,,,,kk故t()max,,Rtfnnkt(),,kn,TT,由()可见当时关于任意有穷区间中的均匀的有tn,,,,Rt(),()n(乙)令n,titx,()(),,,teitxdF,nnkx(),,,k,由()得第页共页nt(()()(),,,,ft,nktn(),k,TT,如果能够证明:对任意有穷区间中的均匀的有t,,(()lim(),t,n,,n那么以()代入()并联合(甲)中的结论即得证(),而且()中的收敛对任意有穷区间内的均匀从而定理得以完全证明(t今证()由()n,titx(),,dF,nkx(),,,k,,,对任意n()itxitx,()teitxdF,,,,,nnkx(),,,,,x,kntxitx,,eitxdF,nkx(),,,,,x,k由()()得nnt,(),txdFtxdF,,nnkxnkx()(),,,,,,xx,,kknnt,,xdFtxdF,,nkxnkx()(),,,,,,xx,,kktT,由()可见:对有nT,,(),tTxdF(),nnkx(),,,x,k,,对任意可选使,,T,,,nN,又由()存在正整数使对此及有NNT,(,,),,,n,xdF,(),()nkx,,,xT,ktTT,,,nN,于是当时对一切有,,级数学与应用数学专业毕业论文,,()t,n((李雅普诺夫中心极限定理,存在常数,,使当时有如对独立随机变数列n,,,,k,n()Ea,,,kk,Bk,n则()对均匀的成立(x证(只要验证林德贝格条件满足由()nxadFx,()(),kk,,,,xaBknB,knn,,,xadFx(),kk,,,,xaB,kn,BB(),kn,n,,,,Ean,,(),kk,,B,k,n例一份考卷由个题目组成,并按由易到难顺序排列(某学生答对第题的概率i为(答对第题的概率为(一般地他答对第题的概率为(加,,,,,ii入该学生回答各题目是相互独立的并且要正确回答其中个题目以上(包括个)才算通过考试(试计算该学生通过考试的可能性多大,解设若学生答对第i题,X,,i若学生答错第i题,X于是相互独立且服从不同的二点分布:ipXpipXpi(),(),,,,,,,,,i,,,,iiii而我们要求的是pX(),(,i,iXX为使用中心极限定理我们可以设想从开始的随机变量都与同分布(且X,,相互独立(下面我们用来验证随机变量序列满足李雅普诺夫条件()因为,,n第页共页nnBVarXppn,,,,,,,()(),(),,niii,,iiEXppppppp()()()(),,,,,,iiiiiiii于是nEXp,,,()()n,,,iinB,inpp,(),ii,,,iX即满足李雅普诺夫条件()所以可以使用中心极限定理(,,n又因为i()(),,,,EXp,,,ii,,,iiiii,,,,()()()BVarX,,i,,ii所以该学生通过考试的可能性为,,X,,i,,,,,,ipXp(),,,,,,i,i,,,,,,(,,,,()由此看出:此学生通过考试的可能性很小大约只有千分之五((本章小结这一章从独随机变量之和的极限分布为正态分布的定理引入了中心极限定理的内容可分为分独立同分布和不同分布两种情况下讨论随机变量的分布趋于正态分布的情况(由于极限定理的研究直接联系到大n场合的二项分布的计算所以我们也通过一些例子来讨论二项分别的近似计算问题(最后通过举出反例以及在相同条件下比较大数定律与中心极限定理说明了中心极限定理在近似计算中更精确(至于中心极限定理名称的得来是由于随机变量和的分布收敛于正态分布的极限定理的研究在长达两个世纪的时间内成了概率论研究的中心课题因此也得到了中心极限定理的名称(级数学与应用数学专业毕业论文中心极限定理在商业管理中的应用(水房拥挤问题假设某高校有学生人只有一个开水房由于每天傍晚打开水的人较多经常出现同学排长队的现象为此校学生会特向学校后勤集团公司提议增设水龙头(假设后勤集团公司经过调查发现每个学生在傍晚一般有,的时间要占用一个水龙头现有水龙头数量为个现在总务处遇到的问题是:()未新装水龙头前拥挤的概率是多少,()需至少要装多少个水龙头才能以,以上的概率保证不拥挤,解:X()设同一时刻个学生中占用水龙头的人数为则X,B(()拥挤的概率是kkk,ppC()(),,,,,,,,,,k,直接计算相当麻烦我们利用隶莫佛拉普拉斯定理(已知n=,p=(q=(np,,npq,故,,,,,,P(,,,),,,,,,,,,,,,,,,,,,,从而(怪不得同学们有不少的抱怨(拥挤的概率竟p(),,,,,达到((()欲求m使得P(,,,),m,,,,,,,,,,,,,,,,,,即,,,,,,,,,,,,由于第页共页m,,,,,,,,,即m,,查标准正态分布表得即m,故需要装个水龙头(问题的变形:()需至少安装多少个水龙头才能以以上的概率保证不拥挤,解:欲求m使得P(,,,),m,,,,,,即,,,,,,,,,,,,,,,由于(,,,,,,,,,m,,,即,,,,,,m,,查标准正态分布表得m,即故需要装个水龙头(()若条件中已有水龙头数量改为个其余的条件不变,,两问题结果如何,,,解:()p()()(),,,,,,,,(()同上(()若条件中的每个学生占用由提高到(其余的条件不变则()()两问题结果如何X解:()设同一时刻个学生中占用水龙头的人数为则X,B(()np,,npq,已知n=,p=(q=(,,,P(,,),,,,,,,,拥挤的概率是,,,,级数学与应用数学专业毕业论文拥挤的概率竟达到(()欲求m使得P(,,,),m,,,,,,即,,,,,,,,,,,,,,,由于,,,,,,m,,,即,,,,,,m,,查标准正态分布表得m,即故需要装个水龙头((设座问题甲、乙两戏院在竞争名观众假设每个观众完全随意地选择一个戏院且观众之间选择戏院是彼此独立的问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于(解:由于两个戏院的情况相同故只需考虑甲戏院即可(设甲戏院需设m个座位设,第i个观众选择甲电影院,X,i,,,,?,,i,否则,P(X,),P(X,),,i,,,?,则ii若用X表示选择甲戏院的观众总数则X,X,i,i问题化为求m使P(X,m),即P(X,m),因为E(X),D(X),ii第页共页由隶莫佛拉普拉斯中心极限定理,,m,P(X,m),,,,,,,,,m,查标准正态分布表知,从而解得m,即每个戏院至少应该设个座位((盈利问题盈利问题:假设一家保险公司有个人参加保险每人每年付元保险费在一年内一个人死亡的概率为(死亡时家属可向保险公司领得元问()保险公司亏本的概率有多少,()保险公司一年的利润不少于元元元的概率各为多少,X解:设为一年内死亡的人数则即X~B(,)由德莫佛,拉普拉斯中心极限定理(),,(),AAA,,()设分别表示一年的利润不少于元元元的事件则,,X,,pApX(){},,,P,,,,,,,(),pApX(){},,级数学与应用数学专业毕业论文,,X,,,P,,,,,,,(),pApX(){},,,,X,,,P,,,,,,,,(),(抽样检验问题抽样检验问题:某药厂断言该厂生产的某药品对医治一种疑难的血液病治愈率为((医院检验员任取个服用此药的病人如果其中多于个治愈就接受这一断言否则就拒绝这一断言(()若实际上此药对这种病的治愈是(问接受这一断言的概率是多少,()若实际上此药对这种病的治愈率是(问接受这一断言的概率是多少,解:引入随机变量表示抽查的个人中被治愈的人数则,,,,,,,()PXPX,,,ii,,,,,X,,,,,i,,p,,,,,,,,,,,,,,,,,,,第页共页实际治愈率为(时接受这一断言的概率为((()实际治愈率为(时接受这一断言的概率为(((供应问题假设某车间有台车床独立地工作着开工率各为(开工时耗电各为瓦问供电所至少要给该车间多少电力才能使(,的概率保证这个车间不会因供电不足而影响生产,XX解:设任一时刻工作着的机床数为则服从参数为的二项n,,p,Xk分布该时刻的耗电量为千瓦如果用表示供电所给该车间的最少电力则此题所k求即为:取何值时有,,,,k,,,,P,X,k,,,,,,,,,,,,,,,,,查表得解之得即只要给该车间千瓦的电力就能以(,的概率保证该车间不会因电力不足而影响生产(级数学与应用数学专业毕业论文结语概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理(概率论中最重要的一类定理有广泛的实际应用背景(在自然界与生产中一些现象受到许多相互独立的随机因素的影响如果每个因素所产生的影响都很微小时总的影响可以看作是服从正态分布的(中心极限定理就是从数学上证明了这一现象(本文主要问题和研究方向即系统的阐明两种分布的极限定理及进行详尽的证明及对中心极限定理的简单应用可以使读者轻松牢固的掌握中心极限定理(中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理(这组定理是数理统计学和误差分析的理论基础指出了大量随机变量近似服从正态分布的条件(中心极限定理是刻画有些即使原来并不服从正态分布的一些独立的随机变量但它们的总和渐进地服从正态分布(本文通过实例介绍了中心极限定理在商业管理中的应用化抽象的理论概念为身边的实际例子(利于大家对这一定理的理解及对数理统计方法的掌握(这是我们数理统计教学中要重视与探索的问题之一(第页共页参考文献王梓坤(概率论基础及其应用M(北京:科学出版社((卯诗松(程依明(概率论与数理统计教程M(北京:高等教育出版社((刘光祖(概率论与应用数理统计M(北京:高等教育出版社((盛骤(概率论与数理统计习题全解指南M(第四版(浙江:浙江大学((孙荣恒(概率论和数理统计M(重庆:重庆大学出版社((盛聚(概率论与数理统计习题全解指南M(二、三版(浙江:浙江大学((YS(ChowH(Teieher(ProbabilityTheoryM(((周概容(概率论与数理统计M(北京:高等教育出版社((朱学军(中心极限定理在管理中的简单应用问题研究J(北京:高等教育出版社((魏宗舒(概率论与数理统计教程M(北京:高等教育出版社((((美)E勒克斯著(概率论与数理统计(引论)A(北京:人民教育出版((范恩贵(中心极限定理在抽样推断中的应用N(张家口师专学报(((自然科学版)(杨维权邓集贤(概率统计教学参考书M(北京:高等教育出版社((姜炳麟(概率与数理统计习题解析M(北京:北京邮电大学出版社,(W(费勒胡迪鹤(林向清译(概率论及其应用(上册)M(北京:科学出版社((丁正生(概率论与数理统计简明教程,M,(北京:高等教育出版社((盛骤谢式千潘承毅(概率论与数理统计,M,(北京:高等教育出版社((级数学与应用数学专业毕业论文附录林德贝格条件:设{}X是一个相互独立随机变量序列它们具有有限的数学期望和方差:nVarX(),,EX(),,(BY,,()i,,,,,,iiiinn其中Y是独立随机变量序列和(n,,则只要对任意的有n(xpxdx,,,lim()(),ii,,,,,xB,,ninB,,in第页共页

用户评论(0)

0/200

精彩专题

上传我的资料

每篇奖励 +2积分

资料评价:

/24
0下载券 下载 加入VIP, 送下载券

意见
反馈

立即扫码关注

爱问共享资料微信公众号

返回
顶部