首页 氮沉降

氮沉降

举报
开通vip

氮沉降See discussions, stats, and author profiles for this publication at: https:www.researchgate.netpublication229325081Low δ 18 O Values of Nitrate Produced fromNitrification in Temperate Forest SoilsArticle in Environmental Science Technology · Ju...

氮沉降
See discussions, stats, and author profiles for this publication at: https:www.researchgate.netpublication229325081Low δ 18 O Values of Nitrate Produced fromNitrification in Temperate Forest SoilsArticle in Environmental Science Technology · July 2012DOI: 10.1021es300510r · Source: PubMedCITATIONS15READS1037 authors, including:Some of the authors of this publication are also working on these related projects:nitrogen deposition View projectYunting FangInstitute of Applied Ecology, Chinese Academ91 PUBLICATIONS 1,617 CITATIONS SEE PROFILEKeisuke KobaKyoto University124 PUBLICATIONS 2,059 CITATIONS SEE PROFILEXueYan LiuTianjin University31 PUBLICATIONS 307 CITATIONS SEE PROFILEMuneoki YohUniversity of Tennessee73 PUBLICATIONS 809 CITATIONS SEE PROFILEAll content following this page was uploaded by XueYan Liu on 19 January 2014.The user has requested enhancement of the downloaded file. All intext references underlined in blue are added to the original documentand are linked to publications on ResearchGate, letting you access and read them immediately.Lowδ18OValuesofNitrateProducedfromNitrificationinTemperateForestSoilsYuntingFang,†,‡KeisukeKoba,†,AkikoMakabe,†FeifeiZhu,†,ShaoyanFan,†XueyanLiu,†andMuneokiYoh††GraduateSchoolofAgriculture,TokyoUniversityofAgricultureandTechnology,Saiwaicho358,Fuchu,Tokyo1838509,Japan‡StateKeyLaboratoryofForestandSoilEcology,InstituteofAppliedEcology,ChineseAcademyofSciences,Shenyang110164,ChinaKeyLaboratoryofVegetationRestorationandManagementofDegradedEcosystems,SouthChinaBotanicalGarden,ChineseAcademyofSciences,Guangzhou510650,ChinaSSupportingInformationABSTRACT:Analysesofδ18Oofnitrate(NO3−)havebeenwidelyusedinpartitioningNO3−sources.Howevertheδ18OvalueofNO3−producedfromnitrification(microbialNO3−)iscommonlyestimatedusingtheδ18Oofenvironmentalwaterandmolecularoxygenina2:1ratio.Hereourlaboratoryincubationofninetemperateforestsoilsacrossa1500melevationgradientdemonstratesthatmicrobialNO3−haslowerδ18Ovaluesthanthepredictedusingthe2:1ratio(by5.2−9.5‰atlowelevationsites),incontrasttopreviousreportsshowinghigherδ18Ovalues(upto+15‰)thantheirpredictedvalues.Elevatedδ18OvaluesofmicrobialNO3−wereobservedathighelevationsiteswheresoilwasmoreacidic,perhapsduetoacceleratedOexchangebetweennitrite,anintermediateproductofnitrification,andwater.Lowerδ18OofmicrobialNO3−thanthepredictedandfrompreviousobservationssuggeststhatthecontributionofanthropogenicNinputs,suchasfertilizerandatmosphericdeposition,toagivenecosystemandtheprogressofdenitrificationinnitrogenremovalaregreaterthanweknow.Morethanhalfoftheδ18OofstreamNO3−lowerthanthepredictedvaluealongtheelevationgradientalsoindicatetheimproprietyusingthe2:1ratiofordifferentiatingNO3−sources.INTRODUCTIONTheglobalnitrogen(N)cyclehasbeendisruptedbytheNreleaseassociatedwithhumanactivitiesincludingfossilfuelcombustion,agriculturalfertilization,andNfixingplantcultivation.1−3Consequently,itisimportanttoconstrainNsourcesandsinksintheenvironment.Analysisofstableisotoperatios(δ15Nandδ18O)ofnitrate(NO3−)hasbeenwidelyusedtodifferentiatesourcesofNO3−ingroundwater(e.g.,ref4)andsurfacewater(e.g.,refs5−8),andtoconstraintheoceanicNbudget.9However,theδ18OvaluesofNO3−producedfrommicrobiologicallymediatednitrification(microbialNO3−)wereoftennotmeasured,andinsteadwerecommonlyestimatedusingbiochemicalstoichiometry,thatis,reflectingtheisotopiccompositionoftheenvironmentalwater(H2O)andatmosphericmolecularoxygen(O2)ina2:1ratio,inmostofthesestudies(e.g.,refs5,10,and11).SuchestimatesarebaseduponknowledgeofthefractionalcontributionsofOsourcesduringchemolithoautotrophicnitrification.12−14Withδ18Ovaluesforwatersinthenormalrangeof−25‰(relativetoViennaStandardMeanOceanWater(VSMOW))to+4‰,andwiththeδ18OvalueforsoilO2ofabout+23.5‰(atmosphericO2),theδ18OvalueofsoilmicrobialNO3−producedfrominsitunitrificationispredictedtobebetween−10‰and+10‰.15Afewstudieshavemeasuredδ18OvaluesofsoilmicrobialNO3−,butactuallyfoundthatthemeasuredvaluesareevenmorepositive(upto+15‰)thanthevaluespredictedusingbiochemicalstoichiometry(inthe2:1ratio).Moreover,themeasuredvaluesareoftenhigherthantheδ18OvaluesofNO3−ingroundorsurfacewaters(seeref16).Theutilizationofsuchasimple2:1ratioaboveforcalculationoftheδ18Oinvolvesanassumptionthatexchangeandfractionationofoxygenisotopesduringnitrificationareminimal.Thisassumptioncontraststotherecentworksshowingthatlargekinetic18OisotopeeffectsareassociatedwiththeincorporationofO2andH2Oinlaboratorypureculturestudiesusingmarinenitrifyingbacteria.17,18Inmostcases,kineticisotopicfractionationengenderspreferentialreactionorincorporationofmoleculescontaininglightisotopes,whichwilllowertheδ18OvalueofNO3−producedReceived:February10,2012Revised:June17,2012Accepted:July19,2012Published:July19,2012Articlepubs.acs.orgest©2012AmericanChemicalSociety8723dx.doi.org10.1021es300510r|Environ.Sci.Technol.2012,46,8723−8730throughnitrificationfromthepredictedvalueusingthe2:1ratio.Inaddition,Oexchangebetweennitrite(NO2−),anintermediateproductofnitrification,andH2Oislikelytooccurduringnitrification,whichmighteliminatetheisotopiccompositionofincorporatedO2.16−19Arecentstudyusing18Olabeledwaterincubationsshowsvariabledegrees(37−88%)ofOexchangeinagriculturalandforestsoils.16Takingthesefactorsintoaccount,forexample,theδ18OvaluesofNO3−producedduringnitrificationinseawaterwithaδ18Oof0‰arecalculatedas−8.3‰to−0.7‰,beingmuchlowerthanthosepredictedbythe2:1ratio(+7.8‰to+12‰)andmuchlowerthanthoseofdeepoceanNO3−(+1.5‰to+2.5‰;18).Therefore,itisimportanttoascertainhowmuchlowerorhighertheδ18OvaluesofmicrobialNO3−arethanthepredictedvaluesinthefieldsettings.ItisalsoimportanttoelucidatetheextenttowhichOexchangeaffectsδ18OvaluesofmicrobialNO3−.ThisinformationiscrucialforevaluatingthecontributionofanthropogenicNinputsandNprocessessuchasnitrificationanddenitrification.Inthisstudy,weconductedalaboratoryincubationofarangeoftemperatesoilsalonganelevationgradientincentralJapanandusedthedenitrifiermethodforanalyzingNO3−isotopes.Wefoundmuchlowerδ18OvaluesofNO3−producedfromnitrificationintheinvestigatedsoilsthanthepredictedusingthe2:1ratioasmentionedabove.Weexamineddifferentscenariosofisotopiceffectsofoxygenatomincorporationandexchangewithanattempttointerpretthemeasuredδ18Ovalues.Inaddition,welinkedtheδ18OvaluesofsoilmicrobialNO3−totheδ18OvaluesofstreamwaterNO3−andofatmosphericallydepositedNO3−toseehowmuchthecontributionofatmosphericallydepositedNO3−couldbeunderestimatedifthe2:1ratiowasused.EXPERIMENTALSECTIONCollectionandProcessingofSoilandStreamwaterSamples.Alonganelevationgradientoverabout1500mfrom223to1688mabovethesealevelintheheadwaterareaoftheTamaRiverincentralJapan,nineforestsiteswereselectedonSeptember29,2011forsoilcollection,withthreesitesinlow,middle,andhighelevations,respectively(SupportingInformationFigureS1,Table1).Alongthisgradient,apreviousstudyshowsthatstreamNO3−concentrationvariedwitharangeofnearly100fold.20Therefore,theselectedforestsareexpectedtoencompassalargerangeofNstatus.Oftheninesites,onesite(SiteE,Table1)wasadeciduousbroadleafforest,andeightsiteswereconiferousforestwithJapanesecedar(Cryptomeriajaponica)dominantinthelowandmiddleelevations(sitesA−D,andF)andJapaneseLarch(Larixkaempferi)inthehighelevations(sitesG−H).The0−5cmmineralsoilsfromthemiddlepartofslopeateachsitewerecollected.Samplingwasperformedaweekafterastrongrainevent(220mm,datafromJapanMeteorologicalAgency,http:www.jma.go.jpjmaindexe.html).Consequently,soilshadmoderatemoisture(0.41−1.20gH2Og−1soildw.,Table1),whichwasexpectedtofacilitateNO3−productionandreducetheoccurrenceofdenitrificationinthelaboratoryincubation.Threecompositesoils(eachfrom3−5samplingpoints)ineachforestsitewereobtainedafterremovaloftheorganiclayer.Soilsampleswerekeptincoolingbags.Atthesametime,foursoilcoresfromeachsiteweretakentodeterminethesoilbulkdensityandthefractionofsoil<2mm.Inthelaboratory,soilsweresievedimmediatelybypassingthrough2mmsievesforlateranalyses.Twodayslater,10gofthesievedsoilswereextractedwith50mLdeionizedwater.Aftershakingfor1handcentrifugingfor10min,thesupernatantwasfilteredusingglassfilters(GFF;WhatmanInt.Ltd.,Maidstone,UK)thathadbeenpreviouslymuffledat450°Cfor4htoreduceNblankbeforeuse.ThesoilextractwasdeterminedforionconcentrationandtheNandOisotopesofNO3−.TheconcentrationsofNH4+andNO3−insoilextractweredeterminedusingionchromatography(DionexDX120;DionexCorp.).Subsampleswereovendriedtoconstantweightat60°Candgroundusingaballmill,andweremeasuredforconcentrationsofC,N,and15NnaturalabundanceusingEAIRMS(EA1112coupledwithDeltaXP;ThermoFisherScientificK.K.,Yokohama,Japan).Subsampleswerealsoovendriedtoconstantweightat105°Ctoobtaininitialwatercontents.Streamwaterclosetoeachsoilsamplingsite(usuallywithin200m)wassampledonthedaysoilswerecollected.Tocovertheseasonalityandtohavemorerepresentativesites,25streamwatersamplingsitesalongthesameelevationgradientincludingtheninesitesforsoilsamplingwereset(SupportingInformationFigureS1).InadditiontothesamplinginSeptember2011,streamwaterwasalsocollectedinMayandSeptemberin2009andinMarchandSeptemberin2010usingprerinsedpolypropylenesyringes.Thewaterwasthenfilteredinthefieldthrough0.45μmfiltersinto50mLbottlesprerinsedTable1.SoilProperties(0−5cmMineralSoil)andStreamNO3−ConcentrationfromNineTemperateForestsalongtheElevationGradientinCentralJapansiteselevation(m,a.s.l)bulksoildensity(gcm−3)<2mmsoildensity(gcm−3)gravimetricsoilmoisture(gH2Og−1soildw.)soilpH(H2O)soilC(%)soilN(%)soilCNasoilNO3−(mgNkg−1)bnetnitrification(mgNkg−1day−1)streamNO3−(mgNL−1)A2230.93(0.05)0.37(0.00)0.75(0.10)5.9(0.0)8.9(0.9)0.65(0.04)13.6(0.7)9.0(1.8)1.2(0.1)0.8B2490.92(0.05)0.47(0.07)0.41(0.01)5.4(0.1)5.9(1.0)0.39(0.05)14.9(0.9)6.8(0.6)1.3(0.2)1.4C2990.86(0.06)0.45(0.03)0.81(0.00)5.5(0.2)12.4(1.1)0.79(0.06)15.8(0.4)11.7(2.0)1.8(0.1)1.2D7220.67(0.08)0.34(0.05)0.84(0.13)5.7(0.3)13.8(2.5)1.02(0.15)13.4(0.6)7.7(2.1)1.4(0.3)0.3E7580.36(0.03)0.29(0.02)1.00(0.15)5.1(0.2)16.1(2.9)1.10(0.18)14.6(1.2)4.2(0.8)1.5(0.3)0.5F9000.60(0.07)0.28(0.02)0.70(0.10)5.4(0.1)11.3(1.6)0.90(0.15)12.6(0.3)3.7(1.0)1.3(0.2)0.2G12710.44(0.03)0.40(0.02)0.90(0.02)4.7(0.1)15.9(0.5)1.02(0.04)15.5(0.5)3.0(0.4)1.4(0.2)0.1H12890.42(0.03)0.38(0.03)1.20(0.08)4.4(0.0)18.0(1.0)1.09(0.06)16.6(1.4)6.0(0.5)2.9(0.2)0.2I16680.49(0.05)0.32(0.02)0.78(0.05)4.4(0.1)17.2(1.7)1.24(0.10)13.8(0.7)3.3(0.3)1.7(0.1)0.1Pc0.0070.2270.0260.002<0.001<0.0010.7630.0200.2510.003aOnaweightbasis.bBeforeincubation.cPvaluesoftheregressionsagainstelevationacrossthenineforestsites.Shownaremeansandstandarderrorsofthemeansinparentheses;n=4forsoildensityand3forothervariables.EnvironmentalScienceTechnologyArticledx.doi.org10.1021es300510r|Environ.Sci.Technol.2012,46,8723−87308724threetimeswiththefiltrate.Thesampleswerekeptincoolingbagsduringthesampling.TheconcentrationsofNH4+andNO3−instreamwaterweredeterminedusingthesamemethoddescribedaboveforsoilextract.SoilIncubation.Twodaysaftersampling,about10goffreshlysievedsoilfromeachcompositesamplewasputintoaglassjar(120mL)andincubatedataconstanttemperateof25°Cforaweek.Duringthelaboratoryincubation,thejarswereopenforabout30minevery1−2daystopreventtheoccurrenceofdenitrification.Wedidnotaddmorewatertokeepthesoilmoistureconstantduringtheincubationortoadjusttoagivenmoisturecontent(e.g.,60%ofthewaterholdingcapacity)sothattheoxygensourcefromsoil−waterwasexpectednotbegreatlyaltered.Toexaminetheinfluenceofwaterlossduringtheincubation,soilmoisturewasmeasuredimmediatelyafterincubation.Resultsshowthatonly1.9±0.1%ofthesoil−waterwaslostduringincubation.Consequently,suchatinyamountofwaterlosshadaminorinfluenceon18Oofsoil−water.Incubatedsoilswereextractedandionconcentrationsinsoilextractweredeterminedinthesamewayasdescribedabove.ThenitrificationratewascalculatedasthedifferenceinNO3−concentrationbetweenthosemeasuredbeforeandafterincubation.NitrateIsotopeAnalyses.Wechosethedenitrifiermethod21,22todeterminetheδ15N(versusairN2)andδ18O(versusVSMOW)ofNO3−insoil−waterextractandstreamwaterbecausepreconcentrationandpurificationofNO3−arenotnecessarywhenusingthismethod.TheN2OproducedbydenitrifiersfromNO3−wasintroducedintoanisotoperatiomassspectrometer(DeltaXP;ThermoFisherScientificK.K.,Yokohama,Japan)coupledwithagaschromatograph(HP6890;HewlettPackardCo.,PaloAlto,CA)equippedwithaPoraplotcolumn(25m×0.32mm)andGCinterfaceIII(ThermoFisherScientificK.K.,Yokohama,Japan).TheNandOisotopiccompositionwasmeasuredforN2O.Weranseveralstandards(USGS32,34,35andIAEANO3−)toobtainthecalibrationcurvefordrift,oxygenisotopicexchange,andblank.23Theaveragestandarddeviationsforreplicateanalysisofanindividualsamplewere±0.2‰forδ15NinNO3−and±0.5‰forδ18O.Theδ15Nandδ18OvaluesforNO3−newlyproducedfromnitrificationwerecalculatedusingthefollowingequation.δδδ=×−×−−−−−−−−EEE[(NOconcentration)(NOconcentration)](NOconcentrationNOconcentration)iiiNO3newlyproducedNO3afterincubation3afterincubationNO3beforeincubation3beforeincubation3afterincubation3beforeincubation(1)Therein,iEis15Nor18O.AsthedenitrifierusedinthedenitrifiermethodcanconvertNO2−toN2OandNO2−isreadytoexchangeOatomswithwater,thepresenceofNO2−cancauseinterferenceonisotopeanalysisofNO3−.22However,noNO2−wasfoundinsoilextracteitherbeforeorafterincubationinourstudy.ModelExerciseofIsotopicEffectsonδ18OofNO3−ProducedfromNitrification.InanattempttoseehowandtowhatextentofkineticisotopiceffectsandOexchangepotentiallyaffectδ18OvaluesofNO3−producedfromnitrification,weexaminedthreescenarios.Asdescribedinpreviousreports(e.g.,refs16−18),nitrificationoccursasatwostepprocess;oxidizingammonia(NH3)toNO2−byammoniaoxidizingbacteria(AOB)andammoniaoxidizingarchaea(AOA)asthefirststepandoxidizingNO2−toNO3−byNO2−oxidizingbacteria(NOB)asthesecondstep.O2isincorporatedduringtheoxidationofNH3tohydroxylamine(NH2OH),whereasH2OisincorporatedduringtheoxidationofbothNH2OHtoNO2−andNO2−toNO3−.12−14Duringthenitrificationprocess,fivekineticisotopeeffects(18εk=(18k16k−1)×1000)cantakeplace:(1)selectionofNH2OH(18εk,NH2OH),(2)selectionofNO2−(18εk,NO2),(3)incorporationofoxygenfromO2(18εk,O2),and(4)and(5)incorporationofoxygenfromH2OduringNH2OHoxidationandNO2−oxidation(18εk,H2O,1and18εk,H2O,2,respectively,seeref17).Inadditiontokineticisotopeeffectsduringoxygenatomincorporation,theexchangeofoxygenatomsbetweenNO2−andwatercatalyzedbyammoniaoxidizingbacteria(xAOB)andnitriteoxidizingbacteria(xNOB)islikelytoincreasethedependenceofδ18ONO3‑onδ18OH2Oandloweritsdependenceonδ18OO2.ThefirsttwokineticisotopeeffectscouldbeofminorimportanceasthereactionsofNH2OHandNO2−oxidationarenotratelimiting.17AndxNOBisshowntobeminimalinarecentstudy(<3%,18).ConsideringkineticisotopeeffectsduringOincorporation,theOexchangeinthefirststepofnitrification(xAOB),theequilibriumisotopeeffectsduringtheOexchange(18εeq),δ18ONO3‑canbedescribedbyeq2.16δδεδεδεδε=+++−++++−xxO23{[12(O)12(O)](1)(O)}13(O)kkk18NO318O2,O21818H2O,H2O,118AOB18H2Oeq18AOB18H2O,H2O,218(2)Rearrangingeq2togrouptermscontainingoxygensources,kineticisotopeeffectsandeffectsofOexchangeinordergiveseq3.δδδεεεδδεεε=+++++−+−−−xO13O23O13()13(OO2)kkkkk18NO318O218H2O18,O2,H2O,118,H2O,21818H2O18O218eq,O218,H2O,118AOB(3)IgnoringanykineticisotopeeffectsandOexchange(i.e.,the2:1ratio,Scenario1),δ18ONO3−canbecalculatedbyeq4.δδδ=+−O13O23O18NO318O218H2O(4)WhennoOexchange(i.e.,xAOB=0,Scenario2)occurs,thenδ18ONO3‑canbecalculatedusingeq5.δδδεεε=++++−O13O23O13()kkk18NO318O218H2O18,O2,H2O,118,H2O,218(5)WhencompleteOexchange(i.e.,xAOB=1,Scenario3)occurs,thenδ18ONO3‑canbecalculatedusingeq6.δδεε=++−OO1323k18NO318H2O18,H2O,218eq(6)EnvironmentalScienceTechnologyArticledx.doi.org10.1021es300510r|Environ.Sci.Technol.2012,46,8723−87308725Inthepresentstudy,theδ18Ovaluesofsoil−waterhadnotbeendetermined.Themonthlymeansofδ18OvaluesofprecipitationinsummerandautumninTokyowereobservedto−6‰to−8‰(WaterIsotopeSystemforDataAnalysis,Visualization,andElectronicRetrieval,http:wwwnaweb.iaea.orgnapcihIHSresourcesisohis.html).Usingthisrangeforsoil−water,theδ18OvaluesofmicrobialNO3−canbepredictedtobe+2.5‰to+3.8‰bythe2:1ratio(Scenario1),ifweassumethatsoilO2hasaconstantδ18Ovalusof+23.5‰.24Usingmarinenitrifyingbacteria,thecombinedisotopicfractionationforoxygenatomincorporation(18εk,O2+18εk,H2O,1)wasestimatedas−37.6‰to−17.9‰duringNH3oxidation,thefirststepofnitrification,17andtheisotopicfractionationforoxygenatomincorporation(18εk,H2O,2)wasestimatedas−18.2‰to−12.8‰duringNO2−oxidation,thesecondstepofnitrification.18The18εeqwasshownto+14.4‰(nearnaturalpHand21°C,25).Usingthesereportedfractionationfactors,thenδ18ONO3‑werecalculatedas−16.1‰to−6.4‰and−4.5‰to−0.7‰,respectively,forScenarios2and3(Figure2).RESULTSANDDISCUSSIONSoilGeneralPropertiesandNetNitrificationRates.ThesoilsforlaboratoryincubationhadalargerangeofCandNconcentrationsandrelativelyconstantC:Nratios(Table1).Aselevationincreased,soilCandNconcentrationsincreased,whereassoilbulkdensityandsoilpHdecreased(Table1).Soil−waterextractableNO3−concentrationandstreamwaterNO3−concentrationdecreasedsignificantlywithincreasingelevation(Table1),suggestingthatNcyclingwasmoreopeninlowelevationsitesthanhighelevationsites.ThenetratesofsoilNO3−production(1−3mgNkg−1day−1,Table1)showednodifferencealongtheelevation.NitrogenandOxygenIsotopicCompositionofMicrobialNO3−.Theδ15NvaluesofNO3−insoil−waterextractbeforeincubationvariedfrom−8.5‰to−3.5‰,withanaverageof−5.0‰(Figure1a).Theδ15NvaluesofNO3−newlyproducedfromnitrificationduringthelaboratoryincubation(i.e.,microbialNO3−)wassimilartothoseofsoilextractatthreelowelevationsites,butdivergedatmiddleandhighelevationsites(Figure1b).Asaresult,δ15NvaluesofNO3−newlyproducedincreasedsignificantlywithelevation(Figure1b).Wefoundthat15NabundanceofnewlyproducedNO3−largelyreliedonthatofbulksoilN,withδ15Nvaluesbeingabout5‰lowerregardlessofelevation(Figure2b).Theδ18OvaluesofNO3−newlyproducedfromnitrificationrangedfrom−9.3‰to+2.9‰,withanaverageof−4.0±0.4‰(Figure2b).ThisrangecloselyresembledtherangeforthesoilextractNO3−beforeincubation,whichwasbetween−8.7‰and−0.9‰,withanaverageof−4.1±0.4‰(Figure2a).Consequently,theδ18OvaluesofNO3−newlyproducedfromnitrificationwerecorrelatedsignificantlywiththoseofsoilextractNO3−(R2=0.65,P<0.0001).Becausethesoilsusedforwaterextractwerecollectedaweekafteraheavyrainandkeptincoolerfortwodaysaftersampling,itcanbeexpectedthat
本文档为【氮沉降】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_763532
暂无简介~
格式:pdf
大小:414KB
软件:PDF阅读器
页数:0
分类:农业
上传时间:2017-06-06
浏览量:55