关闭

关闭

关闭

封号提示

内容

首页 色谱理论总述.ppt

色谱理论总述.ppt

色谱理论总述.ppt

上传者: 缺水的海豚 2012-07-26 评分 0 0 0 0 0 0 暂无简介 简介 举报

简介:本文档为《色谱理论总述ppt》,可适用于工程科技领域,主题内容包含山东鲁南瑞虹公司气相色谱仪HP高压液相色谱仪美国气相色谱仪一、概论俄国植物学家Tswett于年发现:利用吸附原理分离植物色素年发表文章:Onanew符等。

山东鲁南瑞虹公司气相色谱仪HP高压液相色谱仪美国气相色谱仪一、概论俄国植物学家Tswett于年发现:利用吸附原理分离植物色素年发表文章:Onanewcategoryofadsorptionphenomenaandtheirapplicationtobiochemicalanalysis年Tswett创立“chromatography”“色谱法”新名词年在德国生物会议上第一次向世界公开展示显现彩色环带的柱管(一)色谱分析法的历史年RKuhn用色谱柱分离出胡萝卜素年AdamsandHolmes发明了苯酚甲醛型离子交换树脂进一步发明了离子色谱年Izmailov发明薄层色谱年MartinSynge发明了液液分配色谱年Consden,GordonMartin发明纸色谱年MartinSynge发明气液色谱年Janak发明气固色谱年Ray发明热导检测器年MartinGolay发明毛细管色谱年PorathFlodin发明凝胶色谱年液相色谱技术完善年我国研究成功第一台色谱仪(二)色谱方法的分类定义:色谱分离技术是借助色谱分离原理而使混合物中各组分分离的技术将色谱分离技术应用于分析化学称为色谱分析。色谱法的分类按物理状态分类根据流动相的物态:气相色谱法(GC)和液相色谱法(LC)根据固定相的物态:气固色谱法、气液色谱法、液固色谱法、液液色谱法按使用的形式分类()柱色谱、()纸色谱、()薄层色谱按分离机理分类()吸附色谱、()分配色谱、()离子交换色谱、()凝胶色谱色谱法的特点()高选择性、()高效能、()高灵敏度可以分析质量分数为~数量级、检出限量低至lg的物质适于微量和痕量分析、色谱法的应用()色谱分析广泛应用于极为复杂的混合物成分分析()液相色谱法在糖类、氨基酸、农药、染料、贵金属、有机金属化合物等方面得到了广泛的应用。()色谱分离是一种非常有效的提纯物质的技术常用于制备分离得到高纯样品。()色谱质谱联用仪已成为研究分子结构的重要手段。二、气相色谱分析GasChromatography,GC(一)气相色谱法的特点高效能填充柱都有几千块理论塔板毛细管柱可达块~块理论塔板可以分析沸点十分相近的组分和极为复杂的多组分混合物高选择性可分离同系物、同分异构化合物。高灵敏度可以检测出g~g物质痕量杂质分析:可以测出超纯气体、高分子单体、高纯试剂中质量分数为~数量级的杂质大气污染物分析:可以直接检出质量分数为数量级的痕量毒物农药残留物的分析:可以检出农副产品、食品、水质中质量分数为~数量级的氯、硫、磷化合物分析速度快一般分析可在几分到几十分内可以完成某些快速分析s内可以分析数个组分。(二)气相色谱法的基本概念.色谱常用术语色谱图各组分的浓度随流出时间而分布的曲线称为色谱曲线常称为色谱曲线图或色谱图。基线没有试样进入检测器时记录仪记录的是一条直线这条直线称为基线。噪音:使基线发生细小的波动的现象基线是在实验操作条件下反映检测器系统噪声随时间变化的曲线。色谱峰的高度、宽度、半峰宽度峰高(h):峰高h指色谱峰最高点到基线的距离一般用cm为单位。峰宽(Y)与半峰宽Y)从色谱峰两侧的转折点(拐点)作切线在基线上的截距叫峰底宽(y)简称峰宽峰高一半处色谱峰的宽度叫半峰宽(y)。由于色谱峰顶呈圆孤形色谱峰的半峰宽并不等于峰底宽的一半。例已知记录纸的速度是cmmin测得某色谱峰的峰底宽度为cm用时间表示的色谱峰宽度为多少解:cm(cmmin)=min答:色谱峰的宽度为min。保留值:表示被测组分从进样到色谱柱后出现浓度最大值所需要的时间(或所需载气的体积)叫做保留值。保留时间(tR):是指被测组分从进样开始到柱后出现浓度最大值时所需的时间=组分在流动相中停留的时间在固定相中所停留的时间调整保留时间(tR′):组分的保留时间与死时间的差值:tR′=tRt它表示与固定相发生作用的组分比载气在色谱柱中多滞留的时间实际上是组分在固定相中所滞留的时间。保留体积(VR):从进样开始到柱后出现浓度最大值所需要的载气体积VR=FtR调整保留体积(VR′):指扣除死体积后的保留体积VR′=t′F死体积(V):不与固定相作用的组分从进样到柱后出现浓度最大值所需要的载气体积。若载气的体积流速为F则死体积为V=Ft相对保留值()表示组分的调整保留值与组分的调整保留值之比:分配系数与分配比定义:组分在固定相和流动相之间发生的吸附与脱附或者溶解与挥发的过程叫分配过程。值越大两组分的色谱峰相距越远分离得越好分配系数(K):当组分在流动相和固定相两相中达到分配平衡时组分在两相中的浓度之比称为分配系数(K):K溶解度或吸附能力组分在固定相中的量在气相中的量。K进入固定相的组分组分在固定相中滞留的时间越长流出色谱柱所需的时间也就越长。组分在固定相中的质量浓度(gmL)组分在流动相中的质量浓度(gmL)分配比(k)定义:分配比是在一定温度、压力下组分在两相间达到分配平衡时两相间组分的质量比:k=msmm分配比又称为容量因子或容量比分配比k的大小由下式计算:k=tR`t通过实验来测定分配比k的数值k值越大保留时间越长。k=的组分其保留时间即为死时间。分配系数与分配比的关系相比:表示流动相体积与固定相体积之比(三)气相色谱法的基本理论塔板理论假设:将一根色谱柱视为一个精馏塔色谱柱是由一系列连续的、水平的塔板构成每一块塔板的高度为H组分气体以脉冲的方式进入塔板组分在每一块塔板上迅速达到分配平衡分配系数在各塔板上是常数气体的纵向扩散可以忽略不计色谱峰的形状理论上:应得到正态分布的平滑曲线混合组分的分离色谱柱的柱效能塔板高度:H=Ln理论塔板数色谱柱长同长度的色谱柱塔板数越多塔板高度H越小分离效果越好。色谱柱的理论塔板数按下式计算:保留时间越长Y或Y越小色谱峰越窄理论塔板数越多组分在两相间达到分配平衡的次数也越多分离能力越强柱效也就越高。例某色谱柱长m测得某组分的保留时间为mins在色谱纸上量得色谱峰的宽度为cm已知纸速为cmmin求塔板高度。解:将色谱峰的宽度换算成时间:答:塔板高度为cm。有效塔板数:使用调整保留时间tR′计算塔板数:有效塔板数扣除了死时间的影响较为真实地反映了柱效能的好坏。塔板理论的优点:理论直观能解释流出曲线的形状和浓度极大点(色谱峰)的位置应用广泛。缺点:理论建立在几点假设之上不能解释塔板高度量受哪些因素的影响也不能指出降低塔板高度的途径。速率理论范第姆特方程式:H=ABUCU式中:U为流动相平均线速度A为涡流扩散项BU为分子扩散项CU为传质阻力项。减少ABUCU三项的值可以降低塔板高度量减少色谱峰的扩张提高柱效。涡流扩散项(A):A的大小与填充物的平均颗粒直径dp(单位为cm)有关也与固定相填充不均匀因子有关:分子扩散项(BU)试样分子沿色谱柱纵的方向扩散系数B的大小与气体路径弯曲因子γ和组分在气体中的扩散系数Dg(单位为cms)有关:毛细管柱:γ=填充柱:γ<传质阻力项(CU)定义:被测组分由于浓度不均匀而发生物质迁移过程称为传质过程。C称为传质阻力系数。传质过程分为:气相传质过程与液相传质过程传质阻力系数C等于气相传质阻力系数Cg和液相传质阻力系数Cl之和:C=CgCABUCU越小色谱柱的塔板高度H越小柱效率越高。改善柱效率的因素:选择颗粒较小的均匀填料选用较低的柱温操作降低担体表面液层的厚度选用合适的载气及载气流速:流速较小时分子扩散项成为色谱峰扩张的主要因素宜用相对分子质量较大的载气流速较大时传质项为控制因素宜用相对分子质量较小的载气。总结:范第姆特方程H=ABUCU(四)色谱分离条件的选择分离度和影响分离的因素分离度R及的计算定义:两相邻组分保留时间之差与两峰底宽度和之半的比值:色谱柱的选择性越强两组分的色谱峰相距越远柱效能越高色谱峰越窄。R=时分离程度为R=时分离程度可达R=作为完全分开的标志若两组分分离效果较差可用半峰宽(Y)代替峰底宽(Y)计算分离度:色谱分离基本方程式由上式可知:()增加塔板数可以提高分离度()k值的最佳范围是:<k<()相对保留值γ增大能显著地提高分离度两根同种色谱柱的相互关系式:例如果柱长L为m时分离度及为要实现完全分离(R=)色谱柱Ll至少应有多长答:色谱柱至少应有m长。例用m长的填充柱得到如图所示的色谱流出曲线为了得到R=的分辨率填充柱最短需要多少米塔板高度为:代入公式得:解:分离条件的选择载气及其最佳流速的选择载气的选择热导池检测器常用氢气、氦气作载气氢火焰检测器宜用氮气作载载气流速的选择范第姆特方程式H=ABUCU中ABC与载气线速度无关。载气的最佳流速:柱温的选择柱温改变时柱效率、分离度R、选择性及色谱柱的稳定性都将产生相应的改变。汽化温度的选择比汽化室高~或:比试样组分中最高的沸点高~进样时间和进样量在s内把试样样进完液体进样量为μL~μL气体进样量为mL~mL(五)固定相及其选择.气固色谱固定相吸附物理化学过程吸附剂分类:()非极性吸附剂:如活性炭适用于低沸点的碳氢化合物的分析。()弱极性吸附剂:如氧化铝吸附剂适用于分析C~C烃类及异构体。()强极性吸附剂:如分子筛适于分析NOCOH等气体和正异构烷烃。()氢键型吸附剂:如硅胶吸附剂适用于分析有氢键或极性的化合物。气液色谱固定相气液色谱的优点:()固定液的品种繁多可选择范围大()固定液的用量可以任意变化可以根据需要选用合适的固定液用量以改善分离效果()气液色谱在通常操作条件下有良好的对称峰寿命长。担体担体的作用是提供一个很大的惰性表面使固定液以薄膜状态分布在其表面上有白色硅藻土担体和红色硅藻土担体两类担体的选择的基本原则()固定液用量在以上的采用硅藻土型担体固定液用量在以下的采用表面处理过的担体。()高沸点组分的分离由于控制的柱温(色谱柱温度)较高使用玻璃微球作担体。()对高腐蚀性的组分应选用抗腐蚀性强的聚四氮乙烯担体(氟担体)。担体的粒度常选用目~目或目~目高效柱可选用目~目。固定液对固定液的要求:()难以挥发热稳定性好。在工作柱温下固定液粘度小能均布在担体表面上形成液膜。()对被测组分有一定的溶解度且有较高的选择性。化学稳定性好在操作条件下固定液不与载气、担体、被测组分发生不可逆的化学反应。固定液的分类主要是按固定液的极性分级:“”级非极性固定液“”与“”级弱极性固定液“”级中等极性固定液“”与“”级强极性固定液固定液的选择原则:()非极性试样用非极性固定液()极性试样使用极性固定液()极性与非极性的混合物一般选用极性固定液()能形成氢键的试样选用极性或形成氢键的固定液()复杂的多组分混合试样常用两种或两种以上的混合固定液。(六)气相色谱仪气相色谱议的基本部件与作用气相色谱仪的工作过程气相色谱仪分为:载气系统、进样系统、分离系统、检测系统、记录系统共五个主要组成部分进样系统气相色谱检测器气相色谱检测器可分为浓度型检测器与质量型检测器:浓度型检测器的响应值和组分的浓度成正比质量型检测器的响应值和单位时间内进入检测器的质量成正比。常用的浓度型检测器有:热导池检测器(TCD)、电子捕获检测器(ECD)常用的质量型检测器有:氢火焰电离检测器(FID)、火焰光度检测器(FPD)热导池检测器的结构及测量原理热导检测器的依据是组分和载气分别具有不同的热导系数它的特点是结构简单稳定性好操作容易灵敏度适中对无机试样和有机试样都能响应是应用最广泛、最成熟的一种通用型检测器。氢火焰检测器的结构原理特点:灵敏度比热导池检测器高出三个数量级具有结构简单、灵敏度高、响应速度快、应用广泛适宜于痕量分析。离子化机理:有机物在氢火焰中发生化学电离火焰中的正离子以HO最多约占其他还有CHOCHOCH等。对在氢火焰中不电离的无机化合物例如COCOSON等不能进行检测。检测器的性能指标气相色谱分析对检测器的要求:测量准确响应快稳定性好灵敏度高适应范围广。衡量检测器性能的主要指标:灵敏度、检测限和检测器的线性范围。灵敏度以响应信号R对进样量Q作图得到一条通过原点的直线其斜率为:()对于质量型检测器()对于浓度型检测器质量型检测器的灵敏度与载气的流速无关检测限(敏感度)检测限D定义为某组分的峰高(mV)恰为噪音的倍时单位体积(或时间)引入检测器的试样量。浓度型检测器质量型检测器检测限D越小说明噪音越小检测器的灵敏度越高所需的试样量越少。例为到定氢焰检测器的灵敏度注入含苯(体积分数)的CS溶液μL苯的色谱峰高为cm半峰宽为cm记录纸速为cmmin记录纸的灵敏度为mVcm检测器噪音为mV。计算该检测器的灵敏度和检测限。解:氢焰检测器为质量型检测器因此应用公式:常温下苯和CS均为液体查得液体苯的密度为gmL=mgmL苯的质量为:检测器的线性范围:最大检测量与最小检测量之比如检测上限为b=检测下限为a=检测器的线性范围为:检测器的线性范围越宽越能适应不同浓度范围分析的需要越有利于准确定量。(七)气相色谱分析气相相色谱的定性方法依据:利用色谱图确定各色谱峰所代表的化合物。常用的方法:纯物质对照定性、利用保留值定性、利用检测器的选择性定性等。根据色谱保留值进行定性分析各种物质在一定的条件下(固定相、操作条件)均有确定不变的保留值利用已知成分的纯物质与未知试样的色谱峰对照进行定性分析利用保留值定性当已知某试样推测为某化合物(例如已用其他方法确定)时用相应化合物的纯物质进行比较有相同的峰形和保留值的则为同一种化合物。特点:气相色谱定性最可靠的方法混合物中丙醇的定性:在同一色谱柱中注入色谱纯丙醇注意:如果保留时间相同峰形不同仍不能认为是同一种物质时将试样与纯物质混合后注入色谱柱若色谱峰增高而半峰宽并不相应增加则两者可能是同一种物质。缺点:重复性较差利用相对保留值定性定义:相对保留值是组分i与基准物S的调整保留值之比:优点:可以消除某些操作条件的影响只要柱温、固定相不变即使柱径、柱长、填充情况及流动相的流速有所变化相对保留值γ仍然不变它是色谱定性分析的重要参数。利用检测器的选择性进行定性分析热导池检测器(FCD):对有机化合物和无机化合物均有响应但灵敏度较低氢焰检测器(FID):对有机化合物灵敏度高对无机气体、水分等响应很小电子捕获检测器(ECD):对卤素、氧、氯等电负性强的组分有很高的灵敏度对不含卤素、氧、氮等电负性强的组分灵敏度很低甚至不产生响应火焰光度检测器(FPD):只对含SP的物质有信号。利用检测器定性可以大致判断被测物的类型。气相色谱定量方法依据:在一定的条件下被测组分i的质量mi或其在载气中的浓度与检测器的响应信号(色谱上表现为峰面积Ai或峰高Hi)成正比:色谱峰面积测量方法峰高乘半峰宽法峰高乘平均峰宽法在峰高处与峰高处测量峰的宽度然后取平均值乘以峰的高度:定量校正因子原因:为了使检测器的响应信号能真实地反映物质的含量就要对色谱峰面积进行校正因此引入定量校正因子。物理意义是每单位峰面积所代表物质的多少绝对校正因子在一定的操作条件下组分i的进样量m与峰的面积Ai成正比:绝对校正因子进样量:质量m、摩尔n、体积V例某试样合有μg乙醇测得相应的色谱峰面积为mm求乙醇的fi。解:答:乙酵的绝对校正因子fi为μgmm。即每平方毫米色谱峰面积代表μg乙醇。绝对校正因子fi的大小主要由操作条件和仪器的灵敏度所决定既不容易准确测量也无统一标准当操作条件波动时fi也发生变化。故fi无法直接应用定量分析时一般采用相对校正因子。相对校正因子定义:规定某一个组分为标准物计算其他组分的绝对校正因子与此标准物绝对校正因子的比值。例准确称取一定质量的色谱纯对二甲苯、甲苯、苯及仲丁醇混合后稀释采用氢焰检测器定量进样并测量各物质所对应的峰面积数据如下:物质苯仲丁醇甲苯对二甲苯mμgAcm以仲丁醇为标准计算各物质的相对质量校正因子。法:法:同理:相对响应值(相对灵敏度)物质i与标准物质S的响应值(灵敏度)之比。当单位相同时它与相对校正因子互为倒数。相对响应值和相对校正因子只与试样、标准物质以及检测器类型有关与操作条件、柱温、载气流速、固定液浓度及载气的性质等因素无关因而是能够通用的常数。定量计算方法归一化法、内标法、内标标准曲线法、外标法等归一化法设有几个组分每个组分的质量分别为m,m,m…测得色谱峰的面积分别为:AAA…。各组分的绝对校正因子为:设以第二个组分为标准物则各组分的相对校正因子为:各组分的质量分数为:各组分的质量分数之和等于即:优点:归一化法很直观容易接受计算简便、准确当操作条件如进样量、流速等发生变化时对计算结果的影响很小是一种常用的计算方法。缺点是:必需所有组分都出峰。内标法当只需测定试样中某几个组分或试样中所有组分不可能全部出峰时可采用内标法。内标法是将一定质量的纯物质(非被测组分的纯物质)作为内标物加入到准确称取的试样中根据被测物质和内标物的质量及其在色谱图上相应峰面积之比求出被测组分的质量分数。设样品的质量为m则待测组分i的质量分数为选择内标物应遵循的原则:试样中不存在的纯物质否则会使色谱峰重叠而无法准确测定试样的色谱峰面积内标物的物理及物理化学性质应与被测物相近当操作条件发生变化时内标物与被测物均受到相应的影响两者相对校正因子基本不变色谱峰位于被测物色谱峰的附近且能与被测物色谱峰完全分离内标物的浓度应与被测物的浓度相近。例取二甲苯生产母液mg母液中合有乙苯、对二甲苯、邻二甲苯、间二甲苯及溶剂和少量苯甲酸其中苯甲酸不能出峰。以mg壬烷作内标物测得有关数据如下:物质壬烷乙苯对二甲苯间二甲苯邻二甲苯Aicmf`m求各组分的含量。解:母液中苯甲酸不能出峰所以只能用内标法计算。由各组分的绝对校正因子计算得壬烷、乙苯、对二甲苯、间二甲苯、邻二甲苯的相对校正因子分别为。根据内标法计算公式对于乙苯有:同样可以计算出对二甲苯、间二甲苯、邻二甲苯的质量分数分别为。内标法的优点:不要求各组分全部出峰无归一化法的限制即只要被测组分能出峰不和其他峰重叠不管其他组分是否出峰或是否重叠都可以用内标法进行定量分析而且定量准确受操作条件影响较小。缺点:选用合适的内标物较为困难每次都要淮确称量样品和内标物的量不宜作快速分析。内标标准曲线法从内标公式可知:如果每次称取同样量(m)的试样每次加入相等量(ms)的内标物则上式中mms均为常数计算公式可写为:三、高效液相色谱分析HighPerformenceLiquidChromatography,HPLC气相色谱法适用于分析相对分子质量较小、沸点较低、热稳定性好的物质这些物质约占有机化合物总数的~。对于稳定性差、相对分子质量大(以上)、沸点高的物质宜用高效液相色谱法进行分析。高效液相色谱法是用液体作为流动相的色谱法。现代高效液相色谱法具有下列特点:()高压:液相色谱法使用液体作为流动相(简称载液)液体流过色谱柱时所遇到的阻力很大为了使载液迅速通过色谱柱必须对载液施加高压。高效液相色谱法工作压力高达MPa~MPa。()高速:高效液相色谱法的分析时间较经典的液相色谱所需的时间要少得多分离一个样品只需几分钟至几十分钟仅为经典液相色谱的几十分之一。()高效:一般气相色谱法的色谱往是数千塔板/米高效液相色谱法的塔板数可达约万塔板米使分离效率大大提高。三、高效液相色谱分析HighPerformenceLiquidChromatography,HPLC气相色谱法适用于分析相对分子质量较小、沸点较低、热稳定性好的物质这些物质约占有机化合物总数的~。对于稳定性差、相对分子质量大(以上)、沸点高的物质宜用高效液相色谱法进行分析。高效液相色谱法是用液体作为流动相的色谱法。现代高效液相色谱法的特点:三高()高压:高效液相色谱法工作压力高达MPa~MPa。()高速:分离一个样品只需几分钟至几十分钟仅为经典液相色谱的几十分之一。()高效:一般气相色谱法的色谱往是数千塔板/米高效液相色谱法的塔板数可达约万塔板米使分离效率大大提高。()高灵敏度:紫外光度检测器的检测限可达-g荧光检测器的灵敏度可达-g。五个部分:高压输液系统、进样系统、色谱柱、检测系统、记录仪。(一)高效液相色谱仪高压输液系统高压输液系统由贮液器、高压泵、梯度洗提装置组成核心部分是高压泵。贮液器及流动相高效液相色谱的流动相应满足如列要求:()应具有足够的纯度一般选用色谱纯试剂。()流动相与固定液应互不相溶。()流动相对试样各组分应有适当的溶解度。()粘度小。()检测器对流动相不产生响应。梯度洗提装置应用梯度洗提可以提高分离效果。梯度洗提法:在分离的过程中应用梯度洗提装置按一定的程序改变两种或两种以上不同极性的溶剂之间的比例使流动相的成分和极性产生相应的变化从而改变复杂物质中不同极性的组分的相对保留值提高分离效果加快分析速度。高压泵高效液相色谱仪的重要组成部分应具备如下性能()有足够的输出压力使流动相能顺利地通过颗粒很细的色谱柱通常在MPa~MPa之间()输出流量恒定无脉动其流量精度在~之间()输出流动相的流量范围广且流速可调对分析仪器一般为mLmin制备仪器为~mLmin。()压力平稳脉动小。进样装置注射器进样装置优点:可以任意改变进样体积注射快速不易造成峰扩张缺点:重现性较差试液容易渗漏高压定量进样阀(六通阀)由阀芯、阀体、定量管组成。优点:进样量的可变范围大耐高压易于自动化缺点:容易造成色谱峰扩张色谱柱常用内壁抛光过的不锈钢制成标准柱型:内径为mm或mm长为cm~cm的直形不锈钢柱。液相色谱填充柱的填充方法:干法和湿法两种颗粒直径大于μm的可用干法填充颗粒直径μm以下的采用湿法装柱湿法装柱每米柱效可达万塔板检测器应具有:灵敏度高、噪音低、线性范围宽、定量准确、适应范围广等特点同时还应该对温度和载液流速的变化不敏感。可用的检测器有:紫外、折光、电导、荧光、极谱等常用的检测器有:紫外可见光度检测器和差示折光检测器紫外可见光度检测器一种小型的装有流动池的双光束光度计紫外可见光度检测器灵敏度很高检测限可达gmL优点:这种检测器对温度和流速不敏感适宜于梯度洗提缺点:不能用于对紫外可见光完全不吸收的试样的检测差示折光检测器一种浓度型检测器是通过连续测定测量池中溶液折射率的变化来测定组分的浓度。优点:凡与流动相折射率不同的组分都可以用差示折光检测器来检测所以差示折光检测器是一种通用型检测器。差示折光检测器的灵敏度可达gmL。缺点:对温度和流速的波动很敏感。记录仪计算机峰面积的积分、分析结果的计算、误差的分析或色谱图的输出记录的信号进行程序化、自动化处理。液固色谱法液液色谱法离子交换色谱法凝胶色谱法(二)高效液相色谱法的分类及其分离原理液固色谱法(液固吸附色谱法)固定相是固体吸附剂它是根据物质在固定相上的吸附作用不同来进行分配的。液固色谱法的作用机制吸附剂:一些多孔的固体颗粒物质其表面常存在分散的吸附中心点。流动相中的溶质分子X(液相)被流动相S带入色谱柱后在随载液流动的过程中发生如下交换反应:X(液相)nS(吸附)<==>X(吸附)nS(液相)其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。吸附反应的平衡常数K为:K值较小:溶剂分子吸附力很强被吸附的溶质分子很少先流出色谱柱。K值较大:表示该组分分子的吸附能力较强后流出色谱柱。发生在吸附剂表面上的吸附解吸平衡就是液固色谱分离的基础。液固色谱法的吸附剂和流动相常用的液固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。一般规律:对于固定相而言非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱分配比k较小保留时间较短但极性分子与极性吸附剂之间的作用力很强分配比k大保留时间长。对流动相的基本要求:试样要能够溶于流动相中流动相粘度较小流动相不能影响试样的检测常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。液固色谱法的应用常用于分离极性不同的化合物、含有不同类型或不数量官能团的有机化合物以及有机化合物的不同的异构体但液固色谱法不宜用于分离同系物因为液固色谱对不同相对分子质量的同系物选择性不高。液液色谱法(液液分配色谱法)将液体固定液涂渍在担体上作为固定相液液色谱法的作用机制溶质在两相间进行分配时在固定液中溶解度较小的组分较难进入固定液在色谱柱中向前迁移速度较快在固定液中溶解度较大的组分容易进入固定液在色谱柱中向前迁移速度较慢从而达到分离的目的。液液色谱法与液液萃取法的基本原理相同均服从分配定律:K值大的组分保留时间长后流出色谱柱。正相色谱和反相色谱正相分配色谱用极性物质作固定相非极性溶剂(如苯、正己烷等)作流动相反相分配色谱用非极性物质作固定相极性溶剂(如水、甲醇、己腈等)作流动相一般地正相色谱是固定液的极性大于流动相的极性而反相色谱是固定相的极性小于流动相的极性。正相色谱适宜于分离极性化合物反相色谱则适宜于分离非极性或弱极性化合物。液液色谱法的固定相常用的固定液为有机液体如极性的ββ′氧二丙腈(ODPN)非极性的十八烷(ODS)和异二十烷(SQ)等。缺点:涂渍固定液容易被流动相冲掉采用化学键合固定相则可以避免上述缺点使固定浓与担体之间形成化学键例如在硅胶表面利用硅烷化反应:形成SiOSiC型键把固定液的分子结合到担体表面上优点:化学键合固定相无液坑液层薄传质速度快无固定液的流失固定液上可以结合不同的官能团改善分离效能固定液不会溶于流动相有利于进行梯度洗提液液色谱法的应用液液色谱法既能分离极性化合物又能分离非极性化合物如烷烃、烯烃、芳烃、稠环、染料、留族等化合物。化合物中取代基的数目或性质不同或化合物的相对分子质量不同均可以用液液色谱进行分离。离子交换色谱法原理:离子交换色谱法是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的被测离子进行可逆交换由于被测离子在交换剂上具有不同的亲和力(作用力)而被分离。离子交换色谱法的作用机制聚合物的分子骨架上连接着活性基团如SO-N(CH)等。为了保持离子交换树脂的电中性活性基团上带有电荷数相同但正、负号相反的离子X称为反离子。活性基团上的反离子可以与流动相中具有相同电荷的被测离子发生交换:K值越大保留时间越长离子交换色谱的分配过程是交换与洗脱过程。交换达到平衡时:溶剂和固定相两种类型:多孔性树脂与薄壳型树脂多孔性树脂:极小的球型离子交换树脂能分离复杂样品进样量较大缺点是机械强度不高不能耐受压力。薄壳型离子交换树脂:在玻璃微球上涂以薄层的离子交换树脂这种树脂柱效高当流动相成分发生变化时不会膨胀或压缩缺点是但柱子容量小进样量不宜太多。离子交换色谱法的应用主要用来分离离子或可离解的化合物凡是在流动相中能够电离的物质都可以用离子交换色谱法进行分离。广泛地应用于:无机离子、有机化合物和生物物质(如氨基酸、核酸、蛋白质等)的分离。凝肤色谱法(空间排阻色谱法)凝胶是一种多孔性的高分子聚合体表面布满孔隙能被流动相浸润吸附性很小。凝胶色谱法的分离机制是根据分子的体积大小和形状不同而达到分离目的。凝胶色谱法的作用机制体积大于凝胶孔隙的分子由于不能进入孔隙而被排阻直接从表面流过先流出色谱柱小分子可以渗入大大小小的凝胶孔隙中而完全不受排阻然后又从孔隙中出来随载液流动后流出色谱柱中等体积的分子可以渗入较大的孔隙中但受到较小孔隙的排阻介乎上述两种情况之间。凝胶色谱法是一种按分子尺寸大小的顺序进行分离的一种色谱分析方法。凝胶色谱法的固定相软质凝胶、半硬质凝胶和硬质凝胶三种。凝胶色谱法的应用特点保留时间是分子尺寸的函数适宜于分离相对分子质量大的化合物相对分子质量在~的任何类型的化合物保留时间短色谱峰窄容易检测固定相与溶质分子间的作用力极弱趁于零柱的寿命长不能分辨分子大小相近的化合物分子量相差需在以上时才能得到分离(三)高效液相色谱分离的选择高效液相色谱法的运用范围气相色谱法适用于分析相对分子质量较小容易挥发成气体的物质。气相色谱法控制温度可达热稳定性差的物质在此温度下将发生分解但高沸点物质在此温度下也不能完全气化高沸点、热稳定性差的有机化合物、以及相对分子质量大(大于)的有机物(约占有机物总数的~)均不宜应用气相色谱法进行分析但可以应用高效液相色谱法进行分析。高效液相色谱法在常温下进行分离与分析不会导致被测物质的热分解其流动相是液体所以只要试样能制备成溶液原则上都可以用高效液相色谱法分离与分析如离子型化合物、不稳定天然产物以及氨基酸、蛋白质等高分子化合物均可用高效液相色谱法获得较好的分离效果。高效液相色谱分离方法的选择选择的基本依据相对分子质量的大小:对于相对分子质量在以下、易挥发、热稳定性好的化合物可采用气相色谱法相对分子质量在~的化合物可用液固色谱法、液液色谱法、离子交换色谱法相对分子质量大于的试样适宜用凝胶色谱法进行分离试样的溶解性能迅速溶于水的样品可采用反相液液色谱法若试样全部或大部分能溶于HCl或NaOH溶液表示试样属于离子型化合物可采用离子交换色谱法来分离溶于非水溶性溶剂(如己烷、异辛烷、苯、甲苯等烃类)的试样可选用液固吸附色谱法溶于二氯甲烷或三氮申烷的试祥选用常规的液液色谱(正相色谱)法和吸附色谱法溶于甲醇等溶剂的试样则可以用反相液液色谱法进行分离与分析。各类物质常用的分离方法

用户评论(0)

0/200

精彩专题

上传我的资料

每篇奖励 +2积分

资料评价:

/101
1下载券 下载 加入VIP, 送下载券

意见
反馈

立即扫码关注

爱问共享资料微信公众号

返回
顶部