关闭

关闭

关闭

封号提示

内容

首页 GTM 180-Srivastava S.M___A Course on Borel Sets…

GTM 180-Srivastava S.M___A Course on Borel Sets (Springer 1998).pdf

GTM 180-Srivastava S.M___A Cour…

上传者: 手机1651586804 2012-07-25 评分 0 0 0 0 0 0 暂无简介 简介 举报

简介:本文档为《GTM 180-Srivastava S.M___A Course on Borel Sets (Springer 1998)pdf》,可适用于人文社科领域,主题内容包含ACourseonBorelSetsSMSrivastavaSpringerAcknowledgmentsIamgratefultomanypeop符等。

ACourseonBorelSetsSMSrivastavaSpringerAcknowledgmentsIamgratefultomanypeoplewhohavesuggestedimprovementsintheoriginalmanuscriptforthisbookInparticularIwouldliketothankSCBagchi,RBarua,SGangopadhyay(neeBhattacharya),JKGhosh,MGNadkarni,andBVRaoMydeepestfeelingsofgratitudeandappreciationarereservedforHSarbadhikariwhoverypatientlyreadseveralversionsofthisbookandhelpedinallpossiblewaystobringthebooktoitspresentformItisapleasuretorecordmyappreciationforAMaitrawhoshowedthebeautyandpowerofBorelsetstoagenerationofIndianmathematiciansincludingmeIalsothankhimforhissuggestionsduringtheplanningstageofthebookIthankPBandyopadhyaywhohelpedmeimmenselytosortoutalltheLATEXproblemsThanksarealsoduetoRKarforpreparingtheLATEXfilesfortheillustrationsinthebookIamindebtedtoSBRao,DirectoroftheIndianStatisticalInstituteforextendingexcellentmoralandmaterialsupportAllmycolleaguesintheStat–MathUnitalsolentamuchneededandinvaluablemoralsupportduringthelonganddifficultperiodthatthebookwaswrittenIthankthemallItakethisopportunitytoexpressmysincerefeelingsofgratitudetomychildren,RosyandRavi,fortheirgreatunderstandingofthetaskItookontomyselfWhattheymissedduringtheperiodthebookwaswrittenwillbeknowntoonlythethreeofusFinally,Ipayhomagetomylatewife,KiranwhoreallyunderstoodwhatmathematicsmeanttomeSMSrivastavaContentsAcknowledgmentsviiIntroductionxiAboutThisBookxvCardinalandOrdinalNumbersCountableSetsOrderofInfinityTheAxiomofChoiceMoreonEquinumerosityArithmeticofCardinalNumbersWellOrderedSetsTransfiniteInductionOrdinalNumbersAlephsTreesInductiononTreesTheSouslinOperationIdempotenceoftheSouslinOperationTopologicalPreliminariesMetricSpacesPolishSpacesCompactMetricSpacesMoreExamplesxContentsTheBaireCategoryTheoremTransferTheoremsStandardBorelSpacesMeasurableSetsandFunctionsBorelGeneratedTopologiesTheBorelIsomorphismTheoremMeasuresCategoryBorelPointclassesAnalyticandCoanalyticSetsProjectiveSetsΣandΠCompleteSetsRegularityPropertiesTheFirstSeparationTheoremOnetoOneBorelFunctionsTheGeneralizedFirstSeparationTheoremBorelSetswithCompactSectionsPolishGroupsReductionTheoremsChoquetCapacitabilityTheoremTheSecondSeparationTheoremCountabletoOneBorelFunctionsSelectionandUniformizationTheoremsPreliminariesKuratowskiandRyllNardzewski’sTheoremDubins–SavageSelectionTheoremsPartitionsintoClosedSetsVonNeumann’sTheoremASelectionTheoremforGroupActionsBorelSetswithSmallSectionsBorelSetswithLargeSectionsPartitionsintoGδSetsReflectionPhenomenonComplementationinBorelStructuresBorelSetswithσCompactSectionsTopologicalVaughtConjectureUniformizingCoanalyticSetsReferencesGlossaryIndexIntroductionTherootsofBorelsetsgobacktotheworkofBaireHewastryingtocometogripswiththeabstractnotionofafunctionintroducedbyDirichletandRiemannAccordingtothem,afunctionwastobeanarbitrarycorrespondencebetweenobjectswithoutgivinganymethodorprocedurebywhichthecorrespondencecouldbeestablishedSinceallthespecificfunctionsthatonestudiedweredeterminedbysimpleanalyticexpressions,BairedelineatedthosefunctionsthatcanbeconstructedstartingfromcontinuousfunctionsanditeratingtheoperationofpointwiselimitonasequenceoffunctionsThesefunctionsarenowknownasBairefunctionsLebesgueandBorelcontinuedthisworkIn,BorelsetsweredefinedforthefirsttimeInhispaper,LebesguemadeasystematicstudyofBairefunctionsandintroducedmanytoolsandtechniquesthatareusedeventodayAmongotherresults,heshowedthatBorelfunctionscoincidewithBairefunctionsThestudyofBorelsetsgotanimpetusfromanerrorinLebesgue’spaper,whichwasspottedbySouslinLebesguewastryingtoprovethefollowing:Supposef:RRisaBairefunctionsuchthatforeveryx,theequationf(x,y)=hasauniquesolutionThenyasafunctionofxdefinedbytheaboveequationisBaireThewrongstepintheproofwashiddeninalemmastatingthatasetofrealnumbersthatistheprojectionofaBorelsetintheplaneisBorel(Lebesgueleftthisasatrivialfact!)SouslincalledtheprojectionofaBorelsetanalyticbecausesuchasetcanbeconstructedusinganalyticaloperationsofunionandintersectiononintervalsHeshowedthattherearexiiIntroductionanalyticsetsthatarenotBorelImmediatelyafterthis,SouslinandLusinmadeadeepstudyofanalyticsetsandestablishedmostofthebasicresultsaboutthemTheirresultsshowedthatanalyticsetsareoffundamentalimportancetothetheoryofBorelsetsandgiveititspowerForinstance,SouslinprovedthatBorelsetsarepreciselythoseanalyticsetswhosecomplementsarealsoanalyticLusinshowedthattheimageofaBorelsetunderaonetooneBorelmapisBorelItfollowsthatLebesgue’sthoeremthoughnottheproofwasindeedtrueAroundthesametimeAlexandrovwasworkingonthecontinuumhypothesisofCantor:EveryuncountablesetofrealnumbersisinonetoonecorrespondencewiththereallineAlexandrovshowedthateveryuncountableBorelsetofrealsisinonetoonecorrespondencewiththereallineInotherwords,aBorelsetcannotbeacounterexampletothecontinuumhypothesisUnfortunately,SouslindiedinTheworkonthisnewfoundtopicwascontinuedbyLusinandhisstudentsinMoscowandbySierpinskiandhiscollaboratorsinWarsawThenextimportantstepwastheintroductionofprojectivesetsbyLusin,,andSierpinskiin:AsetiscalledprojectiveifitcanbeconstructedstartingwithBorelsetsanditeratingtheoperationsofprojectionandcomplementationSinceBorelsetsaswellasprojectivesetsaresetsthatcanbedescribedusingsimplesetslikeintervalsandsimplesetoperations,theirtheorycametobeknownasdescriptivesettheoryItwasclearfromthebeginningthatthetheoryofprojectivesetswasriddledwithproblemsthatdidnotseemtoadmitsimplesolutionsAsitturnedout,logiciansdidshowlaterthatmostoftheregularitypropertiesofprojectivesets,eg,whethertheysatisfythecontinuumhypothesisornotorwhethertheyareLebesguemeasurableandhavethepropertyofBaireornot,areindependentoftheaxiomsofclassicalsettheoryJustasAlexandrovwastryingtodeterminethestatusofthecontinuumhypothesiswithinBorelsets,Lusinconsideredthestatusoftheaxiomofchoicewithin“Borelfamilies”HeraisedaveryfundamentalanddifficultquestiononBorelsetsthatenricheditstheorysignificantlyLetBbeasubsetoftheplaneAsubsetCofBuniformizesBifitisthegraphofafunctionsuchthatitsprojectiononthelineisthesameasthatofB(SeeFigure)Lusinasked,WhendoesaBorelsetBintheplaneadmitaBoreluniformizationByLusin’stheoremstatedearlier,ifBadmitsaBoreluniformization,itsprojectiontothelinemustbeBorelInBlackwellshowedthatthisconditionisnotsufficientSeveralauthorsconsideredthisproblemandgavesufficientconditionsunderwhichLusin’squestionhasapositiveanswerForinstance,aBorelsetadmitsaBoreluniformizationifthesectionsofBarecountable(Lusin)orcompact(Novikov)orσcompact(ArseninandKunugui)ornonmeager(KechrisandSarbadhikari)EventodaytheseresultsarerankedamongtheIntroductionxiiiYXCBFigureUniformizationfinestresultsonBorelsetsFortheuniformizationofBorelsetsingeneral,themostimportantresultprovedbeforethewarisduetoVonNeumann:ForeveryBorelsubsetBofthesquare,,,thereisasetNandaBorelfunctionf:,N,whosegraphiscontainedinBAsexpected,thisresulthasfoundimportantapplicationsinseveralbranchesofmathematicsSofarwehavemainlybeengivinganaccountofthetheorydevelopedbeforethewarie,uptoThenforsometimetherewasalull,notonlyinthetheoryofBorelsets,butinthewholeofdescriptivesettheoryThiswasmainlybecausemostofthemathematiciansworkinginthisareaatthattimeweretryingtoextendthetheorytohigherprojectiveclasses,which,asweknownow,isnotpossiblewithinZermelo–FraenkelsettheoryFortunately,aroundthesametimesignificantdevelopmentsweretakingplaceinlogicthatbroughtaboutagreatrevivalofdescriptivesettheorythatbenefitedthetheoryofBorelsetstooThefundamentalworkofGodelontheincompletenessofformalsystemsultimatelygaverisetoarichandpowerfultheoryofrecursivefunctionsAddisonestablishedastrongconnectionbetweendescriptivesettheoryandrecursivefunctiontheoryThisledtothedevelopmentofamoregeneraltheorycalledeffectivedescriptivesettheory(ThetheoryasdevelopedbyLusinandothershasbecomeknownasclassicaldescriptivesettheory)FromthebeginningitwasapparentthattheeffectivetheoryismorepowerfulthantheclassicaltheoryHowever,thefirstconcreteevidenceofthiscameinthelateseventieswhenLouveauprovedabeautifultheoremonBorelsetsinproductspacesSincethenseveralclassicalresultshavebeenprovedusingeffectivemethodsforwhichnoclassicalproofisknownyetsee,eg,Forcing,apowerfulsettheoretictechnique(inventedbyCohentoshowtheindependenceofthecontinuumhypothesisandtheaxiomofchoicefromotheraxiomsofsettheory),andothersettheoretictoolssuchasdeterminacyandconstructibility,havebeenveryeffectivelyusedtomakethetheoryofBorelsetsaverypowerfultheory(SeeBartoszynskiandJudah,Jech,Kechris,andMoschovakis)xivIntroductionMuchoftheinterestinBorelsetsalsostemsfromtheapplicationsthatitstheoryhasfoundinareassuchasprobabilitytheory,mathematicalstatistics,functionalanalysis,dynamicprogramming,harmonicanalysis,representationtheoryofgroups,andCalgebrasForinstance,BlackwellshowedtheimportanceofthesesetsinavoidingcertaininherentpathologiesinKolmogorov’sfoundationsofprobabilitytheoryinBlackwell’smodelofdynamicprogrammingtheexistenceofoptimalstrategieshasbeenshowntoberelatedtotheexistenceofmeasurableselections(Maitra)Mackeymadeuseofthesesetsinproblemsregardinggrouprepresentations,andinparticularindefiningtopologiesonmeasurablegroupsChoquet,usedthesesetsinpotentialtheoryandsoonThetheoryofBorelsetshasfoundusesindiverseappliedareassuchasoptimization,controltheory,mathematicaleconomics,andmathematicalstatistics,,,,,Theseapplications,inturn,haveenrichedthetheoryofBorelsetsitselfconsiderablyForexample,mostofthemeasurableselectiontheoremsaroseinvariousapplications,andnowthereisarichsupplyofthemSomeofthese,suchasthecrosssectiontheoremsforBorelpartitionsofPolishspacesduetoMackey,Effros,andSrivastavaarebasicresultsonBorelsetsThus,todaythetheoryofBorelsetsstandsonitsownasapowerful,deep,andbeautifultheoryThisbookisanintroductiontothistheoryAboutThisBookThisbookcanbeusedinvariouswaysItcanbeusedasasteppingstonetodescriptivesettheoryFromthispointofview,ouraudiencecanbeundergraduateorbeginninggraduatestudentswhoarestillexploringareasofmathematicsfortheirresearchInthisbooktheywillgetareasonablythoroughintroductiontoBorelsetsandmeasurableselectionsTheywillalsofindthekindofquestionsthatadescriptivesettheoristasksThoughwesticktoBorelsetsonly,wepresentquiteafewimportanttechniques,suchasuniversalsets,prewellordering,andscales,usedindescriptivesettheoryWehopethatstudentswillfindthemathematicspresentedinthisbooksolidandexcitingSecondly,thisbookisaddressedtomathematiciansrequiringBorelsets,measurableselections,etc,intheirworkTherefore,wehavetriedourbesttomakeitaconvenientreferencebookSomeapplicationsarealsogivenjusttoshowthewaythattheresultspresentedhereareusedFinally,wedesirethatthebookbeaccessibletoallmathematiciansHencethebookhasbeenmadeselfcontainedandhasbeenwritteninaneasygoingstyleWehaverefrainedfromdisplayingvariousadvancedtechniquessuchasgames,recursivefunctions,andforcingWeuseonlynaivesettheory,generaltopology,someanalysis,andsomealgebra,whicharecommonlyknownThebookisdividedintofivechaptersInthefirstchapterwegivethesettheoreticpreliminariesInthefirstpartofthischapterwepresentcardinalarithmetic,methodsoftransfiniteinduction,andordinalnumbersThenweintroducetreesandtheSouslinoperationTopologicalpreliminariesarepresentedinChapterWelaterdevelopthetheoryofBorelsetsinthexviAboutThisBookgeneralcontextofPolishspacesHencewegiveafairlycompleteaccountofPolishspacesinthischapterInthelastsectionofthischapterweproveseveraltheoremsthathelpintransferringmanyproblemsfromgeneralPolishspacestothespaceofsequencesNNortheCantorspaceNWeintroduceBorelsetsinChapterHerewedevelopthetheoryofBorelsetsasmuchaspossiblewithoutusinganalyticsetsInthelastsectionofthischapterweintroducetheusualhierarchyofBorelsetsForthefirsttime,readerswillseesomeofthestandardmethodsofdescriptivesettheory,suchasuniversalsets,reduction,andseparationprinciplesChapteriscentraltothisbook,andtheresultsprovedherebringouttheinherentpowerofBorelsetsInthischapterweintroduceanalyticandcoanalyticsetsandprovemostoftheirbasicpropertiesThattheseconceptsareoffundamentalimportancetoBorelsetsisamplydemonstratedinthischapterInChapterwepresentmostofthemajormeasurableselectionanduniformizationtheoremsTheseresultsareparticularlyimportantforapplicationsWeclosethischapterwithadiscussiononVaught’sconjectureanoutstandingopenproblemindescriptivesettheory,andwithaproofofKondoˆ’suniformizationofcoanalyticsetsTheexercisesgiveninthisbookareanintegralpartofthetheory,andreadersareadvisednottoskipthemManyexercisesarelatertreatedasprovedtheoremsSincethisbookisintendedtobeintroductoryonly,manyresultsonBorelsetsthatwewouldhavemuchlikedtoincludehavebeenomittedForinstance,Martin’sdeterminacyofBorelgames,Silver’stheoremoncountingthenumberofequivalenceclassesofaBorelequivalencerelation,andLouveau’stheoremonBorelsetsintheproducthavenotbeenincludedSimilarly,otherresultsrequiringsuchsettheoretictechniquesasconstructibility,largecardinals,andforcingarenotgivenhereInourinsistenceonstickingtoBorelsets,wehavemadeonlyapassingmentionofhigherprojectiveclassesWearesurethatthiswillleavemanydescriptivesettheoristsdissatisfiedWehavenotbeenabletogivemanyapplications,todojusticetowhichwewouldhavehadtoentermanyareasofmathematics,sometimesevendelvingdeepintothetheoriesClearly,thiswouldhaveincreasedthesizeofthebookenormouslyandmadeitunwieldyWehopethatuserswillfindthepassingremarksandreferencesgivenhelpfulenoughtoseehowresultsprovedhereareusedintheirrespectivedisciplinesCardinalandOrdinalNumbersInthischapterwepresentsomebasicsettheoreticalnotionsThefirstfivesectionsaredevotedtocardinalnumbersWeuseZorn’slemmatodevelopcardinalarithmeticOrdinalnumbersandthemethodsoftransfiniteinductiononwellorderedsetsarepresentedinthenextfoursectionsFinally,weintroducetreesandtheSouslinoperationTreesarealsousedinseveralotherbranchesofmathematicssuchasinfinitarycombinatorics,logic,computerscience,andtopologyTheSouslinoperationisofspecialimportancetodescriptivesettheory,andperhapsitwillbenewtosomereadersCountableSetsTwosetsAandBarecalledequinumerousorofthesamecardinality,writtenAB,ifthereexistsaonetoonemapffromAontoBSuchanfiscalledabijectionForsetsA,B,andCwecaneasilycheckthefollowingAA,AB=BA,and(ABBC)=ACTheseareproducedherefrommyarticlewiththepermissionoftheIndianAcademyofSciencesCardinalandOrdinalNumbersAsetAiscalledfiniteifthereisabijectionfrom{,,,n}(nanaturalnumber)ontoA(Forn=wetaketheset{,,,n}tobetheemptyset)IfAisnotfinite,wecallitinfiniteThesetAiscalledcountableifitisfiniteorifthere

热点搜索换一换

用户评论(0)

0/200

精彩专题

上传我的资料

每篇奖励 +2积分

资料评价:

/49
仅支持在线阅读

意见
反馈

立即扫码关注

爱问共享资料微信公众号

返回
顶部