关闭

关闭

关闭

封号提示

内容

首页 Multiscale_Analysis_of_Deformation_and_Failure_…

Multiscale_Analysis_of_Deformation_and_Failure_of_Materials-Jinghong_Fan.pdf

Multiscale_Analysis_of_Deformat…

上传者: z12379655 2012-06-28 评分 0 0 0 0 0 0 暂无简介 简介 举报

简介:本文档为《Multiscale_Analysis_of_Deformation_and_Failure_of_Materials-Jinghong_Fanpdf》,可适用于工程科技领域,主题内容包含MULTISCALEANALYSISOFDEFORMATIONANDFAILUREOFMATERIALSJinghongFanKazuoInamor符等。

MULTISCALEANALYSISOFDEFORMATIONANDFAILUREOFMATERIALSJinghongFanKazuoInamoriSchoolofEngineering,AlfredUniversity,NewYork,USAMULTISCALEANALYSISOFDEFORMATIONANDFAILUREOFMATERIALSMicrosystemandNanotechnologySeriesSeriesEditors–RonaldPethigandHoratioDanteEspinosaFluidPropertiesatNanoMesoScaleDysonetalSeptemberIntroductiontoMicrosystemTechnologyGerlachMarchACElectrokinetics:ColloidsandNanoparticlesMorganGreenJanuaryMicrofluidicTechnologyandApplicationsKochetalNovemberMULTISCALEANALYSISOFDEFORMATIONANDFAILUREOFMATERIALSJinghongFanKazuoInamoriSchoolofEngineering,AlfredUniversity,NewYork,USAThiseditionfirstpublished,JohnWileySons,LtdRegisteredofficeJohnWileySonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,POSQ,UnitedKingdomFordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwwwwileycomTherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,DesignsandPatentsActAllrightsreservedNopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct,withoutthepriorpermissionofthepublisherWileyalsopublishesitsbooksinavarietyofelectronicformatsSomecontentthatappearsinprintmaynotbeavailableinelectronicbooksDesignationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarksAllbrandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveownersThepublisherisnotassociatedwithanyproductorvendormentionedinthisbookThispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmattercoveredItissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesIfprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetentprofessionalshouldbesoughtLibraryofCongressCataloguinginPublicationDataFan,JinghongMultiscaleanalysisofdeformationandfailureofmaterialsJinghongFanpcmIncludesbibliographicalreferencesandindexISBN(cloth)Deformations(Mechanics)Materials–Analysis–DataprocessingMultivariateanalysisITitleTAF’–dcAcataloguerecordforthisbookisavailablefromtheBritishLibraryPrintISBN:ePDFISBN:oBookISBN:Setinpt,TimesRomanbyThomsonDigital,Noida(India)Tomywife,ZhengYingDaughterYingFanandSonQiangFanforinspirationandlovingsupportContentsAbouttheAuthorxxiSeriesPrefacexxiiiPrefacexxvAbbreviationsxxviiIntroductionMaterialPropertiesBasedonHierarchyofMaterialStructurePropertystructureRelationshipatFundamentalScalePropertystructureRelationshipatDifferentScalesUpgradingProductsBasedonMaterialStructurepropertyRelationshipsExplorationofIndepthMechanismsforDeformationandFailurebyMultiscaleModelingandSimulationOverviewofMultiscaleAnalysisObjectives,ContentsandSignificanceofMultiscaleAnalysisClassificationBasedonMultiscaleModelingSchemesClassificationBasedontheLinkageFeatureattheInterfaceBetweenDifferentScalesFrameworkofMultiscaleAnalysisCoveringaLargeRangeofSpatialScalesTwoClassesofSpatialMultiscaleAnalysisLinksBetweentheTwoClassesofMultiscaleAnalysisDifferentCharacteristicsofTwoClassesofMultiscaleAnalysisMinimumSizeofContinuumExamplesinFormulatingMultiscaleModelsfromPracticeCyclicCreep(Ratcheting)AnalysisofPearliticSteelAcrossMicromesomacroscopicScalesMultiscaleAnalysisforBrittleductileTransitionofMaterialFailureConcludingRemarksReferencesBasicsofAtomisticSimulationTheRoleofAtomisticSimulationCharacteristics,HistoryandTrendsApplicationAreasofAtomisticSimulationAnOutlineofAtomisticSimulationProcessAnExpressionofAtomisticSystemInteratomicForceandPotentialFunctionTheRelationBetweenInteratomicForceandPotentialFunctionPhysicalBackgroundandClassificationsofPotentialFunctionsPairPotentialLennardJones(LJ)PotentialThePairPotentialMorsePotentialUnitsforAtomisticAnalysisandAtomicUnits(au)NumericalAlgorithmsforIntegrationandErrorEstimationMotionEquationofParticlesVerletNumericalAlgorithmVelocityVerlet(VV)AlgorithmOtherAlgorithmsGeometricModelDevelopmentofAtomisticSystemBoundaryConditionsPeriodicBoundaryConditions(PBC)NonPBCandMixedBoundaryConditionsStatisticalEnsemblesNveEnsembleNvtEnsembleNptEnsembleEnergyMinimizationforPreprocessingandStatisticalMechanicsDataAnalysesEnergyMinimizationDataAnalysisBasedonStatisticalMechanicsStatisticalSimulationUsingMonteCarloMethodsIntroductionofStatisticalMethodMetropolisHastingsAlgorithmforStaticsProblemDynamicalMonteCarloSimulationsAdsorptiondesorptionEquilibriumConcludingRemarksReferencesApplicationsofAtomisticSimulationinCeramicsandMetalsPartApplicationsinCeramicsandMaterialswithIonicandCovalentBondsCovalentandIonicPotentialsandAtomisticSimulationforCeramicsApplicationsofHighperformanceCeramicsCeramicAtomicBondsinTermsofElectronegativityBornSolidModelforIonicbondingMaterialsBornModelBornMayerandBuckinghamPotentialsviiiContentsShellModelDeterminationofParametersofShortdistancePotentialforOxidesBasicAssumptionsGeneralMethodsinDeterminingPotentialParametersThreeBasicMethodsforPotentialParameterDeterminationbyExperimentsApplicationsinCeramics:DefectStructureinScandiumDopedCeriaUsingStaticLatticeCalculationApplicationsinCeramics:CombinedStudyofAtomisticSimulationwithXRDforNonstoichiometryMechanismsinYAlO(YAG)GarnetsBackgroundStructureandDefectMechanismsofYAGGarnetsSimulationMethodandResultsApplicationsinCeramics:ConductivityoftheYSZOxideFuelElectrolyteandDomainSwitchingofFerroelectricCeramicsUsingMDMDSimulationoftheMotionofOxygenIonsinSOFCTersoffandBrennerPotentialsforCovalentMaterialsIntroductionoftheAbellTersoffBonderorderApproachTersoffandBrennerPotentialTheAtomisticStressandAtomisticbasedStressMeasureTheVirialStressMeasureTheComputationFormfortheVirialStressTheAtomisticbasedStressMeasureforContinuumPartApplicationsinMetallicMaterialsandAlloysMetallicPotentialsandAtomisticSimulationforMetalsEmbeddedAtomMethodsEAMandMEAMBasicEAMFormulationEAMPhysicalBackgroundEAMApplicationforHydrogenEmbrittlementModifiedEmbeddedAtomMethod(MEAM)SummaryandDiscussionsConstructingBinaryandHighOrderPotentialsfromMonoatomicPotentialsDeterminationofParametersinLJPairFunctionforUnlikeAtomsbyLorentzBertheletMixingRuleDeterminationofParametersinMorseandExponentialPotentialsforUnlikeAtomsDeterminationofParametersinEAMPotentialsforAlloysDeterminationofParametersinMEAMPotentialsforAlloysApplicationExamplesofMetals:MDSimulationRevealsYieldMechanismofMetallicNanowiresCollectingDataofAtomisticPotentialsfromtheInternetBasedonaSpecificTechnicalRequirementBackgroundAboutGalvanicCorrosionofMagnesiumandNanoCeramicsCoatingonSteelPhysicalandChemicalVaporDepositiontoProduceCeramicsThinCoatingLayersonSteelSubstrateContentsixTechnicalRequirementforPotentialsandSearchingResultsUsingObtainedDataforPotentialDevelopmentandAtomisticSimulationAppendixAPotentialTablesforOxidesandThinFilmCoatingLayersReferencesQuantumMechanicsandItsEnergyLinkagewithAtomisticAnalysisDeterminationofUraniumDioxideAtomisticPotentialandtheSignificanceofQMSomeBasicConceptsofQMPostulatesofQMTheSteadyStateSchrodingerEquationofaSingleParticleExampleSolution:SquarePotentialWellwithInfiniteDepthObservationsandDiscussionsSchrodingerEquationofMultibodySystemsandCharacteristicsofitsEigenvaluesandGroundStateEnergyGeneralExpressionoftheSchrodingerEquationandExpectationValueofMultibodySystemsExample:SchrodingerEquationforHydrogenAtomSystemsVariationPrincipletoDetermineApproximateGroundStateEnergyThreeBasicSolutionMethodsforMultibodyProblemsinQMFirstprincipleorabinitioMethodsAnApproximateMethodTightBindingMethodHartreeFock(HF)MethodsHartreeMethodforaMultibodyProblemHartreeFock(HF)MethodfortheMultibodyProblemElectronicDensityFunctionalTheory(DFT)BriefIntroductiononDevelopingInteratomicPotentialsbyDFTCalculationsEnergyLinkageBetweenQMandAtomisticSimulationMoreInformationaboutBasisSetandPlanewavePseudopotentialMethodforDeterminingAtomisticPotentialUsingSplineFunctionstoExpressPotentialEnergyFunctionsASystematicMethodtoDeterminePotentialFunctionsbyFirstprincipleCalculationsandExperimentalDataConcludingRemarksAppendixASolutiontoIsolatedHydrogenAtomReferencesConcurrentMultiscaleAnalysisbyGeneralizedParticleDynamicsMethodsIntroductionExistingNeedsforConcurrentMultiscaleModelingExpandingModelSizebyConcurrentMultiscaleMethodsApplicationstoNanotechnologyandBiotechnologyPlanforStudyofConcurrentMultiscaleMethodsxContentsTheGeometricModeloftheGPMethodDevelopingNaturalBoundariesBetweenDomainsofDifferentScalesTwoImaginaryDomainsNexttotheScaleBoundaryNeighborlinkCells(NLC)ofImaginaryParticlesMechanismsforSeamlessTransitionLinkageofPositionVectorsatDifferentScalesbySpatialandTemporalAveragingDiscussionsVerificationofSeamlessTransitionviaDModelAnInverseMappingMethodforDynamicsAnalysisofGeneralizedParticlesApplicationsofGPMethodValidationbyComparisonofDislocationInitiationandEvolutionPredictedbyMDandGPValidationbyComparisonofSlipPatternsPredictedbyMDandGPSummaryandDiscussionsStatesofArtofConcurrentMultiscaleAnalysisMAADConcurrentMultiscaleMethodIncompatibilityProblemsatScaleBoundaryIllustratedwiththeMAADMethodQuasicontinuum(QC)MethodCouplingAtomisticAnalysiswithDiscreteDislocation(CADD)MethodExistingEffortstoEliminateArtificialPhenomenaattheBoundaryEmbeddedStatisticalCouplingMethod(ESCM)withCommentsonDirectCoupling(DC)MethodsConclusionConcludingRemarksReferencesQuasicontinuumConcurrentandSemianalyticalHierarchicalMultiscaleMethodsAcrossAtomsContinuumIntroductionPartBasicEnergyPrincipleandNumericalSolutionTechniquesinSolidMechanicsPrincipleofMinimumPotentialEnergyofSolidsandStructuresStrainEnergyDensityCWorkPotentialEssentialPointsofFiniteElementMethodsDiscretizationofContinuumDomainBCintoFiniteElementsUsingGaussianQuadraturetoCalculateElementEnergyWorkPotentialExpressedbyNodeDisplacementMatrixTotalPotentialEnergyPExpressedbyNodeDisplacementMatrixDevelopingSimultaneousAlgebraicEquationsforNodalDisplacementMatrixContentsxiPartQuasicontinuum(QC)ConcurrentMethodofMultiscaleAnalysisTheIdeaandFeaturesoftheQCMethodFormulationofRepresentativeAtomsandTotalPotentialEnergyintheQCMethodUsingInterpolationFunctionstoReduceDegreesofFreedomModelDivisionUsingtheCauchyBornRuletoCalculateEnergyDensityFunctionWfromInteratomicPotentialEnergyTheSolutionSchemeoftheQCMethodSubroutinetoDetermineEnergyDensityWforEachElementTreatmentoftheInterfaceGhostForceFullyNonlocalizedQCMethodEnergybasedNonlocalQCModel(CQC(m)E)DeadGhostForceCorrectioninEnergybasedNonlocalQCApplicationsoftheQCMethodNanoindentationCracktipDeformationDeformationandFractureofGrainBoundariesDislocationInteractionsPolarizationsSwitchinginFerroelectricsShortDiscussionabouttheQCMethodPartAnalyticalandSemianalyticalMultiscaleMethodsAcrossAtomicContinuumScalesMoreDiscussionsaboutDeformationGradientandtheCauchyBornRuleMathematicalDefinitionofDeformationGradientF(X)DeterminationofLatticeVectorsandAtomPositionsbytheCauchyBornRulethroughDeformationGradientFPhysicalExplanationsofComponentsofDeformationGradientExpressionsofFandeComponentsinTermsofDisplacementVectorTheRelationshipBetweenDeformationGradient,StrainandStressTensorsAnalyticalSemianalyticalMethodsAcrossAtomContinuumScalesBasedontheCauchyBornRuleApplicationoftheCauchyBornRuleinaCentrosymmetricStructureDeterminationofInteratomicLengthrijandAngleyijkoftheCrystalafterDeformationbytheCauchyBornRuleAShortDiscussiononthePrecisionoftheCauchyBornRuleAtomisticbasedContinuumModelofHydrogenStoragewithCarbonNanotubesIntroductionofTechnicalBackgroundandThreeTypesofNanotubesInteratomicPotentialsUsedforAtomContinuumTransitionTheAtomisticbasedContinuumTheoryofHydrogenStoragexiiContentsAtomisticbasedContinuumModelingtoDeterminetheHydrogenDensityandPressurepContinuumModelofInteractionsBetweentheCNTandHydrogenMoleculesandConcentrationofHydrogenAnalyticalSolutionfortheConcentrationofHydrogenMoleculesTheDoubleWallEffectsonHydrogenStorageAtomisticbasedModelforMechanical,ElectricalandThermalPropertiesofNanotubesHighlightsoftheMethodsMechanicalPropertiesElectricalPropertyChangeinDeformableConductorsThermalPropertiesOtherWorkinAtomisticbasedContinuumModelAProofofDInverseMappingRuleoftheGPMethodConcludingRemarksReferencesFurtherIntroductiontoConcurrentMultiscaleMethodsGeneralFeatureinGeometryofConcurrentMultiscaleModelingInterfaceDesignoftheDCMultiscaleModelsConnectionandCompatibilityBetweenAtomContinuumattheInterfacePhysicalFeaturesofConcurrentMultiscaleModelsEnergybasedandForcebasedFormulationConstitutiveLawsintheFormulationMAADMethodforAnalysisAcrossabinitio,AtomicandMacroscopicScalesPartitioningandCouplingofModelRegionSystemEnergyandHamiltonianinDifferentRegionsHandshakeRegionDesignShortDiscussionontheMAADMethodForcebasedFormulationofConcurrentMultiscaleModelingCoupledAtomDiscreteDislocationDynamics(CADD)MultiscaleMethodRealizationofForcebasedFormulationforCADDFEAtBasicModelforCADDSolutionScheme:ASuperpositionofThreeTypesofBoundaryValueProblemsDModelforaMultiscaleDynamicAnalysisTheInternalForceandEquivalentMassofaDynamicSystemDerivationoftheFEMDCoupledMotionEquationNumericalExampleoftheCouplingBetweenMDandFEResultsandDiscussionBridgingDomainsMethodDBenchmarkTestsofInterfaceCompatibilityforDCMethodsSystematicPerformanceBenchmarkofMostDCAtomisticContinuumCouplingMethodsContentsxiiiTheBenchmarkComputationTestSummaryandConclusionoftheBenchmarkTestTheEmbeddedStatisticalCouplingMethod(ESCM)WhyDoesESCMUseStatisticalAveragingtoReplaceDC’sDirectLinkageTheESCMModelMDFEInterfaceSurfaceMDRegionValidationReferencesHierarchicalMultiscaleMethodsforPlasticityAMethodologyofHierarchicalMultiscaleAnalysisAcrossMicromesomacroscopicScalesandInformationTransformationBetweenTheseScalesSchematicViewofHierarchicalMultiscaleAnalysisUsingTwofaceFeatureofMesocelltoLinkBothMicroscopicandMacroscopicScalesQuantitativeMesomacroBridgingBasedonSelfconsistentSchemesBasicAssumptionIntroductiontoSelfconsistentSchemes(SCS)WeakeningConstraintEffectofAggregateonInclusionwithIncreaseofPlasticDeformationQuantitativeLinkageofVariablesBetweenMesoscopicandMacroscopicScalesBasicsofContinuumPlasticityTheorySeveralBasicElementsofContinuumPlasticityTheoryDescriptionofContinuumPlasticityTheoryWithinDeviatoricStressSpaceInternalVariableTheory,BackStressandElastoplasticConstitutiveEquationsInternalVariableTheoryExpressedbyaMechanicalModelCalculationofBackStressRijinTermsofPlasticStrainExpressingElastoplasticConstitutiveEquationsforEachConstituentPhaseQuantitativeMicromesoBridgingbyDevelopingMesocellConstitutiveEquationsBasedonMicroscopicAnalysisDevelopingMesocell(Inclusion)ConstitutiveEquationsBridgingMicroandMacroscopicVariablesviatheMesocellConstitutiveEquationSolutionTechniqueDeterminingSizeEffectonYieldS

用户评论(0)

0/200

精彩专题

上传我的资料

每篇奖励 +2积分

资料评价:

/49
仅支持在线阅读

意见
反馈

立即扫码关注

爱问共享资料微信公众号

返回
顶部