首页 台达开关电源培训内部资料

台达开关电源培训内部资料

举报
开通vip

台达开关电源培训内部资料 1 Delta Power Electronics Center Basic Control for Power Electronics --1-- • Andrew Zhang • Dr. Jianping Ying DPEC Shanghai 2003-06-06 Basic Control for Power Electronics Delta Power Electronics Center Basic Control for Power Electronics --2-- Cont...

台达开关电源培训内部资料
1 Delta Power Electronics Center Basic Control for Power Electronics --1-- • Andrew Zhang • Dr. Jianping Ying DPEC Shanghai 2003-06-06 Basic Control for Power Electronics Delta Power Electronics Center Basic Control for Power Electronics --2-- Contents 1) Basic concepts and classifications 9 State Space Method 9 PWM Switching Method 9 CCM 9 DCM 2) Design methods 9 Voltage loop 9 Peak current 9 Average current 2 Delta Power Electronics Center Basic Control for Power Electronics --3-- Benefits of modeling technology 9 help to catch on the inherent essence. 9 help to guide the design of close-loop. Delta Power Electronics Center Basic Control for Power Electronics --4-- Basic Model of Power Electronics System sL sC 1 V0 I0 i∆ DTs v∆v i Little ripple approximation 000 IiIiII <<∆≅∆+= VDDVDV ⋅=⋅−+⋅= 0)1( 000 VvVvVV <<∆≅∆+= Weighting & Averaging IDDIDI ⋅−=⋅+⋅−= )1(0)1( Inductor and Capacitor determine the n-order. CCMCCM 3 Delta Power Electronics Center Basic Control for Power Electronics --5-- 1. SSM(StateState--Space Method)Space Method): commonly and widely used. Classifications of Modeling 3. SIMSIM(Switch Inductor Model): (Switch Inductor Model): can be implemented uscan be implemented using ing PspicePspice.(ignored here).(ignored here) 4. HFNM(High Frequency Network Method): High Frequency Network Method): can be implemented uscan be implemented using ing PspicePspice.(ignored here).(ignored here) 5. Others 2. PWM SwitchPWM Switch: Suits for : Suits for PspicePspice simulation directly.simulation directly. Delta Power Electronics Center Basic Control for Power Electronics --6-- ?? How to model the topology of PE Weighting & Averagingare the right ways to implement. Causes: ¾ the PE topologies generally belong to non-linear system. ¾ hard to model that kinds of topologies. ¾ linear extension at ONE point is ok. D V 4 Delta Power Electronics Center Basic Control for Power Electronics --7-- 1) Basic SSM(StateState--Space Method)Space Method) Overview: There are two groups of state equations in CCM mode. uBxAx 11 +=& uBxAx 22 +=& Weighting Averaging d 1-d uBxAx ** +=& 21 * )1( AddAA −+= 21 * )1( BddBB −+= Where: Step 1 Delta Power Electronics Center Basic Control for Power Electronics --8-- Xxx += ˆDdd += ˆUuu += ˆ Add the disturbances at steady state. ¶ Ignore the high order. 0=+ BUAX dUBBXAAuBxAxs ˆ])()[(ˆˆˆ 2121 −+−++= [ ]UBBXAAAsI d x u )()()(ˆ ˆ 2121 1 0ˆ −+−−= −= steady equations: Output to Duty: BAsI u x d 1 0ˆ )( ˆ ˆ − = −=Output to Input: ¶ partial difference. AC transfer functions: 21 )1( ADDAA −+= 21 )1( BDDBB −+=where: Step 2 1) Basic SSM(StateState--Space Method) (cont.)Space Method) (cont.) 5 Delta Power Electronics Center Basic Control for Power Electronics --9-- We use Buck for example. L C R M D Vin L C R Vin L C R Vin 0<=d<=Don Don> Delta Power Electronics Center Basic Control for Power Electronics --30-- Summary of Basic topology -Transfer function 2 211 /1 ˆ ˆ )( oo zco ss Q ssVin d vsGvd ωω ++ +== 2 2 2 11 /1 ˆ ˆ )( oo zo ss Q ss R Vin d isGid ωω ++ +== 2 211 /1 ˆ ˆ )( oo zc in o ss Q ssD v vsGvv ωω ++ +== 2 211 )/1( ˆ ˆ )( oo zc o o ss Q sssL i vsZo ωω ++ +== 2 2 2 2 /1 11 ˆ ˆ )( z oo o in ss ss Q D R i vsZin + ++ == ωω C zc CR s 1= )( 1 2 C z RRC s += LCRRLC R C o 1 )( ≈+=ω R L R LCR Q o C o 1111 ωω ≈+ = 1 D L C RdIc ˆ d D VD ˆ RC aiˆ ciˆ invˆ ovˆ Buck-type converter 16 Delta Power Electronics Center Basic Control for Power Electronics --31-- Summary of Basic topology -Transfer function(cont.) 2 22 11 )/1)(/1( 'ˆ ˆ )( oo zRHPzco ss Q ssss D Vin d vsGvd ωω ++ −+== 2 2 3 2 11 /1 ' 2 ˆ ˆ )( oo ZOo ss Q ss RD V d isGid ωω ++ +== 2 211 /1 ' 1 ˆ ˆ )( oo zc in o ss Q ss Dv vsGvv ωω ++ +== 2 211 )/1( ˆ ˆ )( oo zc o o ss Q sssL i vsZo ωω ++ +== 3 2 2 2 /1 11 'ˆ ˆ )( p oo o in ss ss QRD i vsZin + ++ == ωω C zc CR s 1= L RDszRHP 2'= LC D RRLC RD C o ' )( '2 ≈+=ω CRRRCQ oCo ωω 1)(1 ≈+= Boost-type converter )( 1 3 RRC s C P += CR sZ 2 3 = L C R RC dIinˆ d D VD ˆ− invˆ ovˆD 1 Delta Power Electronics Center Basic Control for Power Electronics --32-- 3) DCM PWM Switch (cont.) Vin L C R Buck a c p ia ip Active Passive acV cpV ai pi + −+ − d 1d Common dTs d1Ts d2Ts L VV oin − L V o− inV inV oV Vcp Vac ip ia oin VV − 17 Delta Power Electronics Center Basic Control for Power Electronics --33-- 3) DCM PWM Switch (cont.) ac s a vLf di 2 2 = p ac s cp i v Lf dv 22 2 = d i i pka 2 = 12 d i i pkp = pa id di 1 = s pk ac dT i Lv = s pk cp Td i Lv 1 = accp vd dv 1 = s ac pk dTL vi = 1 2 d i i ppk = ac ps v i d Lfd 21 = dTs d1Ts d2Ts L VV oin − L V o− inV inV oV Vcp Vac ip ia oin VV − Active Passive acV cpV ai pi + −+ − d 1d Common Delta Power Electronics Center Basic Control for Power Electronics --34-- 3) DCM PWM Switch (cont.) ac s a vLf di 2 2 = p ac s cp i v Lf dv 22 2 = e s a ac R d Lf i v == 22 e e ac pcp PR viv == 2 + − + − eR ePacV cpV ai pi Loss-Free Resistor (LFR) Active Passive acV cpV ai pi + −+ − d 1d Common 18 Delta Power Electronics Center Basic Control for Power Electronics --35-- ac s a vLf di 2 2 = p ac s cp i v Lf dv 22 2 = 3) DCM PWM Switch (cont.) ppp cpcpcp acacac aaa iIi vVv vVv iIi dDd ˆ ˆ ˆ ˆ ˆ += += += += += ac s a VLf DI 2 2 = dkvgi iacia ˆˆˆ += p ac s cp I V Lf DV 22 2 = cpooacfp vgdkvgi ˆˆˆˆ −+= ac a s i V I Lf Dg == 2 2 D I Lf DVk a s ac i 2== ac p cps ac f V I VLf VDg 212 == D I VLf DVk p cps ac o 212 == cp p o V I g = Delta Power Electronics Center Basic Control for Power Electronics --36-- 3) DCM PWM Switch (cont.) – BUCK dkvgi iacia ˆˆˆ += cpooacfp vgdkvgi ˆˆˆˆ −+= Active Passive apvˆ cpvˆ Common ig dki ˆ + −+ − og acf vg ˆ dko ˆ piˆ 19 Delta Power Electronics Center Basic Control for Power Electronics --37-- Vin L C R buck a c p ia ic 3) DCM PWM Switch (cont.) – BUCK Active Passive apvˆ cpvˆ Common ig dki ˆ + −+ − og acfvg ˆ dkoˆ piˆ A Passive cpvˆ C ig dki ˆ + − og acfvg ˆ dko ˆ piˆ L C R invˆ + Rc Rc Delta Power Electronics Center Basic Control for Power Electronics --38-- A i g dki ˆ og acfvg ˆ dko ˆ L C R invˆ + P C 3) DCM PWM Switch (cont.) – BUCK )1( 2 MR M VV I V Ig oin in ac a i −=−== DR MV D I D Ik oinai 222 === R M VV II V I g oin ino ac p f 2)(22 =− −== DR MV D II D I k oinopo )1(2)(22 −=−== R M V II V I g o ino cp p o −=−== 1 o in in o I I V VM == ina II = oinac VVV −= M KMD −= 1 R LfK s2= Rc 20 Delta Power Electronics Center Basic Control for Power Electronics --39-- A i g dki ˆ og acfvg ˆ dko ˆ L C R invˆ + P C 3) DCM PWM Switch (cont.) – BUCK r foi gggr ++=1L C R Rc Rc dKd ˆ oid kkk += CLL CL CLLdvd ZRZ ZRZRZrKsG || ||)]||(||[)( ++= Delta Power Electronics Center Basic Control for Power Electronics --40-- 3) DCM PWM Switch (cont.) – BUCK )1)(1( 1 )( 21 pp zc vdvd ss s KsG ωω ω ++ + = ππ ω ωπω ω ω sp p sp p c zc ff M L R M M RC CR ≥= ≥−= − −= = 2 1)1( 1 21 1 2 2 2 1 fp1 fzc fp2 fp2>> fp1 Therefore, DCM is similar to single-pole system. 21 Delta Power Electronics Center Basic Control for Power Electronics --41-- Summary 1. The Steady equations and AC transferring functions can be deduced by SSM & PWM Switching Method. 2. SSM can be used in DC/DC, PFC and so on to analyze. 3 . SSM deduction is lightly complicated and boring. 4. SSM can be deduced by MATHEMATICA MATHEMATICA software(symbol calculation). 5. PWM Switching Method can be integrated into Pspice-like simulations. Delta Power Electronics Center Basic Control for Power Electronics --42-- Any comments & suggestions? 22 Delta Power Electronics Center Basic Control for Power Electronics --43-- Voltage Loop Design Delta Power Electronics Center Basic Control for Power Electronics --44-- Voltage Loop Design )()()()( sFsGHsGsG MCdvL ⋅⋅⋅= Gdv(s) GC(s) H )(ˆ svo _ + )(ˆ svref FM(s))(ˆ svi )(ˆ svG dˆ GL(s) eˆ Gdv(s): transfer function H : voltage divider FM(s) : saw-wave gain. GC(s) : added compensation. 23 Delta Power Electronics Center Basic Control for Power Electronics --45-- K e∆ K Ts e Tsd =∆ ⋅∆ Voltage Loop Design –parameters Fm(s) )()()()( sFsGHsGsG MCdvL ⋅⋅⋅= For saw-waveform Ke dsFM 1)( =∆ ∆= dTs∆ e∆dTs∆ Delta Power Electronics Center Basic Control for Power Electronics --46-- Basic regulators - + Z2 Z1 IN OUT)(1 )(2)( sZ sZsF −= )(: )(lg20)(: )()( )( ϖϕ ϖϖ ϖϖ ϖϕ Phase AjLAmplitude eAjF j = = Voltage Loop Design –parameters Gc(s) 24 Delta Power Electronics Center Basic Control for Power Electronics --47-- - + R2 R1 IN OUT - + R1 IN OUT - + R1 IN OUT C1 C1 P I D 1 2)( R RsGC −= 11 1)( CsR sGC −= 11)( CsRsGC −= 20lgK1 w L(w)/dB w P(w) 0 0 -20db/dec w L(w)/dB w P(w) 0 0 -90 0 20db/dec w L(w)/dB w P(w) 90 0 P I D Voltage Loop Design –parameters Gc(s)(cont.) Delta Power Electronics Center Basic Control for Power Electronics --48-- - + R2 IN OUT Cz R1 Cp )1( 1 )( 2 1 1 + + = τ τ ss s KsF )( 1 2 1 ZP CCR K += where ZCR 1 1 1=τ eCR 1 2 1=τ pz pz e CC CC C += common regulator Voltage Loop Design –parameters Gc(s)(cont.) 25 Delta Power Electronics Center Basic Control for Power Electronics --49-- - + R2 IN OUT Cz R1 Cp When Cp >> Cz (10 times is enough) Ze CC ≅ s Kss s KsF 1 )1( 1 )( 1 2 1 1 ≅+ + = τ τ The regulator equals Integration regulator. - + R2 IN OUT Cp I 21 ττ = Voltage Loop Design –parameters Gc(s)(cont.) Delta Power Electronics Center Basic Control for Power Electronics --50-- When Cp << Cz (10 times is enough) pe CC ≅ )1( 1 )( 2 1 1 + + = τ τ ss s KsF ZCR 1 1 1=τ pCR 1 2 1=τ Zero Pole Properties: 9 Zero is determined by Cz & R1, independent on Cp & R2. 9 Pole is determined by Cp & R1, independent on Cz & R2. 9 Gain K1 is determined by Cz & Cp & R2, independent on R1. Lead-Lag - + R2 IN OUT Cz R1 Cp Voltage Loop Design –parameters Gc(s)(cont.) 26 Delta Power Electronics Center Basic Control for Power Electronics --51-- )1( 1 )( 2 1 1 + + = τ τ ss s KsF Voltage Loop Design –parameters Gc(s)(cont.) 1 1 τ 2 1 τ -900 -1 -1 )(ωM )(ωΦ ω ω Delta Power Electronics Center Basic Control for Power Electronics --52-- Voltage Loop Design –compensation consideration Gdv(s) GC(s) H )(ˆ svo _ + 0)(ˆ =sv ref FM(s) dˆ GL(s) eˆ [ ] )()()()( sGsFHsGsG CMdvL ⋅⋅⋅= Initial system compensation )()()( ' sGsGsG CdvL ⋅= )()()(' sFHsGsG Mdvdv ⋅⋅= 27 Delta Power Electronics Center Basic Control for Power Electronics --53-- How to judge the stability of the system?How to judge the stability of the system? - frequency domain analysis • Hurwitz Criterion • Nyquist Criterion • Bode plot • Nichols Chart Delta Power Electronics Center Basic Control for Power Electronics --54-- HurwitzHurwitz CriterionCriterion Standard format: 0asa...sasasa n1n 2n 2 1n 1 n 0 =+++++ −−− Conditions: 0 ... 0 0 0a n 2 1 0 > > > > ∆ ∆ ∆ system is stable n 34567 12345 0123 01 n a00000 .................. ...aaaaa ...aaaaa ...0aaaa ...000aa =∆ 28 Delta Power Electronics Center Basic Control for Power Electronics --55-- -1 X jY γ gK 1 Stability margins:Stability margins:γ : 450 ~ 600 gK > 6 dB Bode PlotNyquist Criterion ω ω GHlg20 )(ωϕ -900 -1800 0dB γ gK 1 Nichols Chart )(ωϕ GHlg20 -1800 -900-2700 0 + - γ gK 1 "s" domain CriterionsCriterions Delta Power Electronics Center Basic Control for Power Electronics --56-- The requirements of system stability: 1. In order to keep the stability of system, p(w) must be left about 60degree when M(w)=0. 2. Sometimes the system is steady, However, for some other characteristics, Such as FAST, ANTI-Disturbance etc, the regulator has to be added. 20lgK 1/t1 1/t2 -180 0 -90 0 0 0 Voltage Loop Design –purpose ω ω )(ωM )( cP ω )(ωΦ 29 Delta Power Electronics Center Basic Control for Power Electronics --57-- Voltage Loop Design –purpose(cont.) Delta Power Electronics Center Basic Control for Power Electronics --58-- Voltage Loop Design –compensation consideration )(' sGdv -900 -1800 -2 -00 -2700 Critical Zone: 1) Phase changes 0o ~ -180o oω cω ω ω )(ωM )(ωΦ 30 Delta Power Electronics Center Basic Control for Power Electronics --59-- Voltage Loop Design –compensation consideration (cont.) fo is high enough -900 -1800 -00 -2700 -2 -3-1 -1 oω cω ω ω )( cP ω )(ωM )(ωΦ )( 0180ωM Delta Power Electronics Center Basic Control for Power Electronics --60-- Voltage Loop Design –compensation consideration (cont.) fo is NOT high enough -900 -1800 -00 -2700 -1 -2 -1 -1 -3 900 )( cP ω oω cω )(ωM ω ω )(ωΦ 31 Delta Power Electronics Center Basic Control for Power Electronics --61-- Delta Power Electronics Center Basic Control for Power Electronics --62-- Ggv(s) Gdv(s) GC(s) H )(ˆ svo _ + 0)(ˆ =sv ref FM(s)0)(ˆ =svi )(ˆ svG dˆ
本文档为【台达开关电源培训内部资料】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_479617
暂无简介~
格式:pdf
大小:815KB
软件:PDF阅读器
页数:48
分类:
上传时间:2012-04-21
浏览量:113