首页 常用电气控制

常用电气控制

举报
开通vip

常用电气控制 鼠笼式异步电动机Y-△启动电路(时间继电器自动切换)                鼠笼式异步电动机Y-△自动启动电路(时间继电器自动切换) 该电路电动机启动过程的Y-△转换是靠时间继电器自动完成的。  控制电路分析如下:     1、合上空气开关QF引入三相电源。     2、按下启动按钮SB2,交流接触器KM1线圈回路通电吸合并通过自己的辅助常开触点自锁,其主触头闭合接通电动机三相电源,时间继电器KT线圈也通电吸合并开始计时,交流接触器KM3线圈通过时间继电器的延时断开接点通电吸合,KM3的主触头...

常用电气控制
鼠笼式异步电动机Y-△启动电路(时间继电器自动切换)                鼠笼式异步电动机Y-△自动启动电路(时间继电器自动切换) 该电路电动机启动过程的Y-△转换是靠时间继电器自动完成的。  控制电路分析如下:     1、合上空气开关QF引入三相电源。     2、按下启动按钮SB2,交流接触器KM1线圈回路通电吸合并通过自己的辅助常开触点自锁,其主触头闭合接通电动机三相电源,时间继电器KT线圈也通电吸合并开始计时,交流接触器KM3线圈通过时间继电器的延时断开接点通电吸合,KM3的主触头闭合将电动机的尾端连接,电动机定子绕组成Y形连接,这是电动机在Y形接法下降压启动。     3、当时间继电器KT整定时间到时后,其延时常开触点打开,交流接触器KM3线圈回路断电,主触点打开定子绕组尾端的接线,KM3的辅助常闭触点闭合为KM2线圈的通电做好准备。     4、时间继电器KT动作使,其延时常开触点闭合,接通KM2线圈回路,使得KM2通电吸合并通过自己的辅助常开触点自锁,KM2主触头闭合将定子绕组接成三角形,电动机在△接法下运行。     5、电动机的过载保护由热继电器FR完成     6、线路中的互锁环节有:KM2常闭触点接入KM3线圈回路。                            KM3常闭触点接入KM2线圈回路。     7、空气开关下面的电流互感器和电流表,是为了测量电动机电流,便于监视电动机的运行情况。 安装注意事项: 1、Y-△降压启动电路,只适用于△形接线,380V的鼠笼异步电动机。不可用于Y形接线的电动机应为启动时已是Y形接线,电动机全压启动,当转入△形运行时,电动机绕组会应电压过高而烧毁。 2、接线时应先将电动机接线盒的连接片拆除。 3、接线时应特别注意电动机的首尾端接线相序不可有错,如果接线有错,在通电运行会出现启动时电动机左转,运行时电动机右转,应为电动机突然反转电流剧增烧毁电动机或造成掉闸事故。     4、如果需要调换电动机旋转方向,应在电源开关负荷侧调电源线为好,这样操作不容易造成电动机首尾端接线错误。     5、起动时间;     起动时间过短;起动时间过短电动机的转速还为提起来,这时如果切换到运行,电动机的启动电流还会很大,造成电压波动。     起动时间过长;起动时间过长电动机的转速随以转起来,但因起动时间过长,电动机会应低电压大电流电动机发热烧毁。     起动时间调整;为了防止起动时间过短或过长,时间继电器的初步时间确定一般按电动机功率1KW约0.6~0.8秒整定。     6、电动机Y-△降压启动电路,由于启动力矩只有原来的  ,所以只适用于轻载或空载的电动机。 常见故障:     1、Y启动过程正常,但按下SB3后电动机发出异常声音转速也急剧下降,这是为什么?  分析现象:接触器切换动作正常,表明控制电路接线无误。问题出现在接上电动机后,从故障现象分析,很可能是电动机主回路接线有误,使电路由Y接转到△接时,送入电动机的电源顺序改变了,电动机由正常启动突然变成了反序电源制动,强大的反向制动电流造成了电动机转速急剧下降和异常声音。     处理故障:核查主回路接触器及电动机接线端子的接线顺序。     2、线路空载试验工作正常,接上电动机试车时,一起动电动机,电动机就发出异常声音,转子左右颤动,立即按SB1停止,停止时KM2和KM3的灭弧罩内有强烈的电弧现象。这是为什么? 分析现象:空载试验时接触器切换动作正常,表明控制电路接线无误。问题出现在接上电动机后,从故障现象分析是由于电动机缺相所引起的。电动机在Y起动时有一相绕组为接入电路,电动机造成单相启动,由于缺相绕组不能形成旋转磁场,使电动机转轴的转向不定而左右颤动。     处理故障:检查接触器接点闭合是否良好,接触器及电动机端子的接线是否紧固。     3、空载试验时,一按起动按钮SB2,KM2合KM3就噼叭噼把切换不能吸合。这是为什什么? 分析故障:以启动KM2和KM3就反复切换动作, 说明 关于失联党员情况说明岗位说明总经理岗位说明书会计岗位说明书行政主管岗位说明书 时间继电器没有延时动作,一按SB2起动按钮,时间继电器线圈得电吸合,接点也立即动作,造成了KM2和KM3的相互切换,不能正常启动。分析问题出现在时间继电器的接点上。 处理故障;检查时间继电器的接线,发现时间继电器的接点使用错误,接到时间继电器的瞬动接点上了,所以一通电接点就动作,将线路改接到时间继电器的延时接点上故障排除。 (时间继电器往往有一对延时动作接点,还有一对瞬时动作接点,接线前应认真检查时间继电器的接点的使用要求。)  如图所示为接触器联锁正反转控制线路。图中采用了两个接触器,即正转用的接触器ZC和反转用的接触器FC,由于接触器的主触点接线的相序不同,所以当两个接触器分别单独工作时,电动机的旋转方向相反。线路要求接触器线圈不能同时通电。为此,在正转与反转控制电路中线圈分别交叉串联了FC和ZC的常闭触点,以保证ZC和FC不会同时通电。该触点称互锁触点,或联锁触点。 电动机两地控制电路原理图       为了操作方便,一台设备有几个操纵盘或按钮站,各处都可以进行操作控制。要实现多地点控制则在控制线路中将启动按钮并联使用,而将停止按钮串联使用。     上图是以两地点控制为例分析电动机多地点控制线路。两地启动按钮SB12、SB22并联,两地停止按钮SB11、SB21串联。     操作过程如下: 一、电动机起动; 1、合上空气开关QF接通三相电源。     2、按下启动按钮SB12或SB22(以操作方便为原则)交流接触器KM线圈通电吸合,主触头闭合,电动机运行。同时KM辅助常开触点自锁。 二、电动机停止; 1、按下停止按钮SB11或SB21(以方便操作为原则)接触器KM线圈失电,KM的触点全部释放,电动机停止。 三、电动机的过载保护由热继电器FR完成。   电动机两地控制接线示意图 电线载流量表 2009-06-18 20:07 序号 铜电线型号 单心载流量 (25。C)(A) 电压降mv/M 品字型电压降mv/M 紧挨一字型电压降mv/M 间距一字型电压降mv/M 两心载流量(25。C)(A) 电压降mv/M 三心载流量(25。C)(A) 电压降mv/M 四心载流量(25。C(A) 电压降mv/M 0.95 0.85 0.7 VV YJV VV YJV VV YJV VV YJV 1 1.5mm 2 /c 20 25 30.86 26.73 26.73 26.73 16 16 13 18 30.86 13 13 30.86 2 2.5mm 2 /c 28 35 18.9 18.9 18.9 18.9 23 35 18.9 18 22 18.9 18 30 18.9 3 4mm 2 /c 38 50 11.76 11.76 11.76 11.76 34 38 11.76 23 34 11.76 28 40 11.76 4 6mm 2 /c 48 60 7.86 7.86 7.86 7.86 40 55 7.86 32 40 7.86 35 55 7.86 5 10mm 2 /c 65 85 4.67 4.04 4.04 4.05 55 75 4.67 45 55 4.67 48 80 4.67 6 16mm 2 /c 90 110 2.95 2.55 2.56 2.55 70 108 2.9 60 75 2.6 65 65 2.6 7 25mm 2 /c 115 150 1.87 1.62 1.62 1.63 100 140 1.9 80 100 1.6 86 105 1.6 8 35mm 2 /c 145 180 1.35 1.17 1.17 1.19 125 175 1.3 105 130 1.2 108 130 1.2 9 50mm 2 /c 170 230 1.01 0.87 0.88 0.9 145 210 1 130 160 0.87 138 165 0.87 10 70mm 2 /c 220 285 0.71 0.61 0.62 0.65 190 265 0.7 165 210 0.61 175 210 0.61 11 95mm 2 /c 260 350 0.52 0.45 0.45 0.5 230 330 0.52 200 260 0.45 220 260 0.45 12 120mm 2 /c 300 410 0.43 0.37 0.38 0.42 270 410 0.42 235 300 0.36 255 300 0.36 13 150mm 2 /c 350 480 0.36 0.32 0.33 0.37 310 470 0.35 275 350 0.3 340 360 0.3 14 185mm 2 /c 410 540 0.3 0.26 0.28 0.33 360 570 0.29 320 410 0.25 400 415 0.25 15 240mm 2 /c 480 640 0.25 0.22 0.24 0.29 430 650 0.24 390 485 0.21 470 495 0.21 16 300mm 2 /c 560 740 0.22 0.2 0.21 0.28 500 700 0.21 450 560 0.19 500 580 0.19 17 400mm 2 /c 650 880 0.2 0.17 0.2 0.26 600 820 0.19 18 500mm 2 /c 750 1000 0.19 0.16 0.18 0.25 19 630mm 2 /c 880 1100 0.18 0.15 0.17 0.25 20 800mm 2 /c 1100 1300 0.17 0.15 0.17 0.24 21 1000mm 2 /c 1300 1400 0.16 0.14 0.16 0.24 绕线式电动机转子回路串频敏变阻器启动电路原理图 一、频敏变阻器的工作原理: 频敏变阻器实际上是一个特殊的三相铁芯电抗器,它有一个三柱铁芯,每个柱上有一个绕组,三相绕组一般接成星形。频敏变阻器的阻抗随着电流频率的变化而有明显的变化电流频率高时,阻抗值也高,电流频率低时,阻抗值也低。频敏变阻器的这一频率特性非常适合于控制异步电动机的启动过程。启动时,转子电流频率fz 最大。Rf 与Xd 最大,电动机可以获得较大起动转矩。启动后,随着转速的提高转子电流频率逐渐降低,Rf 和Xf 都自动减小,所以电动机可以近似地得到恒转矩特性,实现了电动机的无级启动。启动完毕后,频敏变阻器应短路切除。 二、启动电路原理: 启动过程可分为自动控制和手动控制。由转换开关SA完成。 1、自动控制 ㈠ 合上空气开关QF接通三相电源。 ㈡ 将SA板向自动位置,按SB2交流接触器KM1线圈得电并自锁,主触头闭合,动机定子接入三相电源开始启动。(此时频敏变阻器串入转子回路)。 ㈢ 此时时间继电器KT也通电并开始计时,达到整定时间后KT的延时闭合的常开接点闭合,接通了中间继电器KA线圈回路,KA其常开接点闭合,使接触器KM2 线圈回路得电,KM2的常开触点闭合,将频敏变阻器短路切除,启动过程结束。 ㈣ 线路过载保护的热继电器接在电流互感器二次侧,这是因为电动机容量大。为了提高热继电器的灵敏的度和可靠性,故接入电流互感器的二次侧。 ㈤ 另外在启动期间,中间继电器KA的常闭接点将继电器的热元件短接,是为了防止启动电流大引起热元件误动作。在进入运行期间KA常闭触点断开,热元件接入电流互感器二次回路进行过载保护, 2、手动控制 ㈠ 合上空气开关QF接通三相电源 ㈡ 将SA搬至手动位置 ㈢ 按下启动按钮SB2, 接触器KM1线圈得电,吸合并自锁,主触头闭合电动机带频敏变阻器启动。 ㈣ 待转速接近额定转速或观察电流表接近额定电流时,按下按钮SB3中间继电器KA线圈得电吸合并自锁,KA的常开触点闭合接通KM2线圈回路,KM2的常开触点闭合将频敏变阻器短路切除。 ㈤ KA的常闭触点断开,将热元件接入电流互感器二次回路进行过载保护 绕线式电动机转子回路串频敏变阻器启动接线示意图 绕线式电动机转子回路串频敏变阻器启动接线示意图 双速电动机自动加速控制线路如图所示。当速度选择开关K放在“0”位置时,电动机不加电处于停止状态;当将K旋到“I”位置时,接触器C动作,电动机按Δ接法与电源连接.三相电源由D1、D2、D3三个接点接人。当开关旋到“Ⅱ”位置时,电动机则由低速转动,经过时间继电器SJ延时后自动切换到高速。这时接触器lC、2C动作,三相电源从D4、D5、D6接入,为Y形接法,转速增加一倍。 在定子绕组供电电源断开的同时,将定子绕组短接,由于转子存在剩磁,形成了转子旋转磁场,此磁场切割定子绕组,在定子绕组中产生感应电动势。因定子绕组己被C常闭触点短接.所以在定子绕组回路中有感应电流,该电流又与旋转磁场相互作用,产生制动转矩,迫使转子减速停转。见图所示。     这种制动方法,适用于小容量的高速异步电动机及制动要求不高的场合。短接制动的优点是无需特殊的控制设备,简单易行。 鼠笼式电动机自耦降压启动手动控制电路         自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头(例如:65%)接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入运转状态。     1、合上空气开关QF接通电源.     2、按下启动按钮SB2,交流接触器KM3线圈回路通电,主触头闭合,自耦变压器接成星形。 KM1线圈通电其主触头闭合,由自耦变压器的65%抽头端将电源接入电动机,电动机在低电压下启动。     3、KM1常开辅助触点闭合接通中间继电器KA的线圈回路,KA通电并自锁KA的常开触点闭合为KM2线圈回路通电做准备。     4、当电动机转速接近额定转速时,松开按钮SB2,按下按钮SB3,KM1、KM3线圈断电将自耦变压器切除,KM2线圈得电并自锁,将电源直接接入电动机,电动机在全压下运行。     5、电动机运行中的过载保护由热继电器FR完成.     6、互锁环节;     接触器互锁: KM2常闭触点接入KM3、KM1线圈回路                  KM1常闭触点接入KM2线圈回路     按纽互锁:   按纽SB2常开触点接入KM3、KM1线圈回路                  按纽SB2常闭触点接入KM2线圈回路                  按纽SB3常开触点接入KM2线圈回路                  按纽SB3常闭触点接入KM3、KM1线圈回路     鼠笼式电动机自耦降压启动手动控制电路接线示意图 安装与调试     1、电动机自耦降压电路,适用于任何接法的三相鼠笼式异步电动机。     2、自耦变压器的功率应予电动机的功率一致,如果小于电动机的功率,自耦变压器会因起动电流大发热损坏绝缘烧毁绕组。   3、对照原理图核对接线,要逐相的检查核对线号。防止接错线和漏接线。   4、由于启动电流很大,应认真检查主回路端子接线的压接是否牢固,无虚接现象。   5、空载试验;拆下热继电器FR与电动机端子的联接线,接通电源,按下SB2起动KM1与KM3动作吸合,KM2与KA不动作。再按下SB3运行按钮,KM1和KM3释放,KA和KM2动作吸合切换正常,反复试验几次检查线路的可靠性。     6、带电动机试验;经空载试验无误后,恢复与电动机的接线。再带电动机试验中应注意启动与运行的接换过程,注意电动机的声音及电流的变化,电动机起动是否困难有无异常情况,如有异常情况应立即停车处理。     7、再次启动;自耦降压起动电路不能频繁操作,如果启动不成功的话,第二次起动应间隔4分钟以上,入在60秒连续两次起动后,应停电4小时再次启动运行,这是为了防止自耦变压器绕组内启动电流太大而发热损坏自耦变压器的绝缘。   常见故障    1、带负荷起动时,电动机声音异常,转速低不能接近额定转速,接换到运行时有很大的冲击电流,这是为什么?     分析现象;电动机声音异常,转速低不能接近额定转速,说明电动机起动困难,怀疑是自耦变压器的抽头选择不合理,电动机绕组电压低,起动力矩小脱动的负载大所造成的。     处理;将自耦变压器的抽头改接在80%位置后,在试车故障排除。     2、电动机由启动转换到运行时,仍有很大的冲击电流,甚至掉闸。 分析现象;这是电动机起动和运行的接换时间太短所造成的,时间太短电动机的起动电流还未下降转速为接近额定转速就切换到全压运行状态所至。 处理;延长起动时间现象排除。 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安或几十安时,则不必算到小数点以后。可以四舍而五不入,只取整数,这样既简单又不影响实用。对于较小的电流也只要算到一位小数即可。 *测知电流求容量 测知无铭牌电动机的空载电流,估算其额定容量 口诀: 无牌电机的容量,测得空载电流值, 乘十除以八求算,近靠等级千瓦数。 说明:口诀是对无铭牌的三相异步电动机,不知其容量千瓦数是多少,可按通过测量电动机空载电流值,估算电动机容量千瓦数的方法。 测知电力变压器二次侧电流,求算其所载负荷容量 口诀: 已知配变二次压,测得电流求千瓦。 电压等级四百伏,一安零点六千瓦。 电压等级三千伏,一安四点五千瓦。 电压等级六千伏,一安整数九千瓦。 电压等级十千伏,一安一十五千瓦。 电压等级三万五,一安五十五千瓦。 说明: (1)电工在日常工作中,常会遇到上级部门,管理人员等问及电力变压器运行情况,负荷是多少?电工本人也常常需知道变压器的负荷是多少。负荷电流易得知,直接看配电装置上设置的电流表,或用相应的钳型电流表测知,可负荷功率是多少,不能直接看到和测知。这就需靠本口诀求算,否则用常规公式来计算,既复杂又费时间。2)“电压等级四百伏,一发零点六千瓦。”当测知电力变压器二次侧(电压等级400V)负荷电流后,安培数值乘以系数0.6便得到负荷功率千瓦数。 测知白炽灯照明线路电流,求算其负荷容量 照明电压二百二,一安二百二十瓦。 说明:工矿企业的照明,多采用220V的白炽灯。照明供电线路指从配电盘向各个照明配电箱的线路,照明供电干线一般为三相四线,负荷为4kW以下时可用单相。照明配电线路指从照明配电箱接至照明器或插座等照明设施的线路。不论供电还是配电线路,只要用钳型电流表测得某相线电流值,然后乘以220系数,积数就是该相线所载负荷容量。测电流求容量数,可帮助电工迅速调整照明干线三相负荷容量不平衡问题,可帮助电工分析配电箱内保护熔体经常熔断的原因,配电导线发热的原因等等。 测知无铭牌380V单相焊接变压器的空载电流,求算基额定容量 口诀: 三百八焊机容量,空载电流乘以五。 单相交流焊接变压器实际上是一种特殊用途的降压变压器,与普通变压器相比,其基本工作原理大致相同。为满足焊接工艺的要求,焊接变压器在短路状态下工作,要求在焊接时具有一定的引弧电压。当焊接电流增大时,输出电压急剧下降,当电压降到零时(即二次侧短路),二次侧电流也不致过大等等,即焊接变压器具有陡降的外特性,焊接变压器的陡降外特性是靠电抗线圈产生的压降而获得的。空载时,由于无焊接电流通过,电抗线圈不产生压降,此时空载电压等于二次电压,也就是说焊接变压器空载时与普通变压器空载时相同。变压器的空载电流一般约为额定电流的6%~8%(国家 规定 关于下班后关闭电源的规定党章中关于入党时间的规定公务员考核规定下载规定办法文件下载宁波关于闷顶的规定 空载电流不应大于额定电流的10%)。这就是口诀和公式的理论依据。 *** 已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流 口诀: 电机过载的保护,热继电器热元件; 号流容量两倍半,两倍千瓦数整定。 说明: (1)容易过负荷的电动机,由于起动或自起动条件严重而可能起动失败,或需要限制起动时间的,应装设过载保护。长时间运行无人监视的电动机或3kW及以上的电动机,也宜装设过载保护。过载保护装置一般采用热继电器或断路器的延时过电流脱扣器。目前我国生产的热继电器适用于轻载起动,长时期工作或间断长期工作的电动机过载保护。 (2)热继电器过载保护装置,结构原理均很简单,可选调热元件却很微妙,若等级选大了就得调至低限,常造成电动机偷停,影响生产,增加了维修工作。若等级选小了,只能向高限调,往往电动机过载时不动作,甚至烧毁电机。(3)正确算选380V三相电动机的过载保护热继电器,尚需弄清同一系列型号的热继电器可装用不同额定电流的热元件。热元件整定电流按“两倍千瓦数整定”;热 元件额定电流按“号流容量两倍半”算选;热 继电器的型号规格,即其额定电流值应大于等于热元件额定电流值。 已知380V三相电动机容量,求其远控交流接触器额定电流等级 口诀: 远控电机接触器,两倍容量靠等级; 步繁起动正反转,靠级基础升一级。 说明: (1)目前常用的交流接触器有CJ10、CJ12、CJ20等系列,较适合于一般三相电动机的起动的控制。 已知小型380V三相笼型电动机容量,求其供电设备最小容量、负荷开关、保护熔体电流值 口诀: 直接起动电动机,容量不超十千瓦; 六倍千瓦选开关,五倍千瓦配熔体。 供电设备千伏安,需大三倍千瓦数。 说明: (1)口诀所述的直接起动的电动机,是小型380V鼠笼型三相电动机,电动机起动电流很大,一般是额定电流的4~7倍。用负荷开关直接起动的电动机容量最大不应超过10kW,一般以4.5kW以下为宜,且开启式负荷开关(胶盖瓷底隔离开关)一般用于5.5kW及以下的小容量电动机作不频繁的直接起动;封闭式负荷开关(铁壳开关)一般用于10kW以下的电动机作不频繁的直接起动。两者均需有熔体作短路保护,还有电动机功率不大于供电变压器容量的30%。总之,切记电动机用负荷开关直接起动是有条件的!2)负荷开关均由简易隔离开关闸刀和熔断器或熔体组成。为了避免电动机起动时的大电流,负荷开关的容量,即额定电流(A);作短路保护的熔体额定电流(A),分别按“六倍千瓦选 开关,五倍千瓦配熔件”算选,由于铁壳开关、胶盖瓷底隔离开关均按一定规格制造,用口诀算出的电流值,还需靠近开关规格。同样算选熔体,应按产品规格选用。 已知笼型电动机容量,算求星-三角起动器(QX3、QX4系列)的动作时间和热元件整定电流 口诀: 电机起动星三角,起动时间好整定; 容量开方乘以二,积数加四单位秒。 电机起动星三角,过载保护热元件; 整定电流相电流,容量乘八除以七。 说明: (1)QX3、QX4系列为自动星形-三角形起动器,由三只交流接触器、一只三相热继电器和一只时间继电器组成,外配一只起动按钮和一只停止按钮。起动器在使用前,应对时间继电器和热继电器进行适当的调整,这两项工作均在起动器安装现场进行。电工大多数只知电动机的容量,而不知电动机正常起动时间、电动机额定电流。时间继电器的动作时间就是电动机的起动时间(从起动到转速达到额定值的时间),此时间数值可用口诀来算。 (2)时间继电器调整时,暂不接入电动机进行操作,试验时间继电器的动作时间是否能与所控制的电动机的起动时间一致。如果不一致,就应再微调时间继电器的动作时间,再进行试验。但两次试验的间隔至少要在90s以上,以保证双金属时间继电器自动复位。 (3)热 继电器的调整,由于QX系列起动器的热电器中的热元件串联在电动机相电流电路中,而电动机在运行时是接成三角形的,则电动机运行时的相电流是线电流(即额定电流)的1/√3倍。所以,热继电器热元件的整定电流值应用口诀中“容量乘八除以七”计算。根据计算所得值,将热继电器的整定电流旋钮调整到相应的刻度-中线刻度左右。如果计算所得值不在热继电器热元件额定电流调节范围,即大于或小于调节机构之刻度标注高限或低限数值,则需更换适当的热继电器,或选择适当的热元件。 已知笼型电动机容量,求算控制其的断路器脱扣器整定电流 口诀: 断路器的脱扣器,整定电流容量倍; 瞬时一般是二十,较小电机二十四; 延时脱扣三倍半,热脱扣器整两倍。 说明:(1)自动断路器常用在对鼠笼型电动机供电的线路上作不经常操作的断路器。如果操作频繁,可加串一只接触器来操作。断路器利用其中的电磁脱扣器(瞬时)作短路保护,利用其中的热脱扣器(或延时脱扣器)作过载保护。断路器的脱扣器整定电流值计算是电工常遇到的问题,口诀给出了整定电流值和所控制的笼型电动机容量千瓦数之间的倍数关系。 (2)“延时脱扣三倍半,热脱扣器整两倍”说的是作为过载保护的自动断路器,其延时脱扣器的电流整定值可按所控制电动机额定电流的1.7倍选择,即3.5倍千瓦数选择。热脱扣器电流整定值,应等于或略大于电动机的额定电流,即按电动机容量千瓦数的2倍选择。 已知异步电动机容量,求算其空载电流 口诀: 电动机空载电流,容量八折左右求; 新大极数少六折,旧小极多千瓦数。 说明: (1)异步电动机空载运行时,定了三相绕组中通过的电流,称为空载电流。绝大部分的空载电流用来产生旋转磁场,称为空载激磁电流,是空载电流的无功分量。还有很小一部分空载电流用于产生电动机空载运行时的各种功率损耗(如摩擦、通风和铁芯损耗等),这一部分是空载电流的有功分量,因占的比例很小,可忽略不计。因此,空载电流可以认为都是无功电流。从这一观点来看,它越小越好,这样电动机的功率因数提高了,对电网供电是有好处的。如果空载电流大,因定子绕组的导线载面积是一定的,允许通过的电流是一定的,则允许流过导线的有功电流就只能减小,电动机所能带动的负载就要减小,电动机出力降低,带过大的负载时,绕组就容易发热。但是,空载电流也不能过小,否则又要影响到电动机的其他性能。一般小型电动机的空载电流约为额定电流的30%~70%,大中型电动机的空载电流约为额定电流的20%~40%。具体到某台电动机的空载电流是多少,在电动机的铭牌或产品说明书上,一般不标注。可电工常需知道此数值是多少,以此数值来判断电动机修理的质量好坏,能否使用。(2)口诀是现场快速求算电动机空载电流具体数值的口诀,它是众多的测试数据而得。它符合“电动机的空载电流一般是其额定电流的1/3”。同时它符合实践经验:“电动机的空载电流,不超过容量千瓦数便可使用”的原则(指检修后的旧式、小容量电动机)。口诀“容量八折左右求”是指一般电动机的空载电流值是电动机额定容量千瓦数的0.8倍左右。中型、4或6极电动机的空载电流,就是电动机容量千瓦数的0.8倍;新系列,大容量,极数偏小的2级电动机,其空载电流计算按“新大极数少六折”;对旧的、老式系列、较小容量,极数偏大的8极以上电动机,其空载电流,按“是小极多千瓦数”计算,即空载电流值近似等于容量千瓦数,但一般是小于千瓦数。运用口诀计算电动机的空载电流,算值与电动机说明书标注的、实测值有一定的误差,但口诀算值完全能满足电工日常工作所需求。 **** 已知电力变压器容量,求算其二次侧(0.4kV)出线自动断路器瞬时脱扣器整定电流值 口诀: 配变二次侧供电,最好配用断路器; 瞬时脱扣整定值,三倍容量千伏安。 说明: (1)当断路器作为电力变压器二次侧供电线路开关时,断路器脱扣器瞬时动作整定值,一般按 ***** 电工需熟知应用口诀 巧用低压验电笔 低压验电笔是电工常用的一种辅助安全用具。用于检查500V以下导体或各种用电设备的外壳是否带电。一支普通的低压验电笔,可随身携带,只要掌握验电笔的原理,结合熟知的电工原理,灵活运用技巧很多。 (1)判断交流电与直流电口诀 电笔判断交直流,交流明亮直流暗, 交流氖管通身亮,直流氖管亮一端。 说明: 首先告知读者一点,使用低压验电笔之前,必须在已确认的带电体上验测;在未确认验电笔正常之前,不得使用。判别交、直流电时,最好在“两电”之间作比较,这样就很明显。测交流电时氖管两端同时发亮,测直流电时氖管里只有一端极发亮。 (2)判断直流电正负极口诀: 电笔判断正负极,观察氖管要心细, 前端明亮是负极,后端明亮为正极。 说明: 氖管的前端指验电笔笔尖一端,氖管后端指手握的一端,前端明亮为负极,反之为正极。测试时要注意:电源电压为110V及以上;若人与大地绝缘,一只手摸电源任一极,另一只手持测民笔,电笔金属头触及被测电源另一极,氖管前端极发亮,所测触的电源是负极;若是氖管的后端极发亮,所测触的电源是正极,这是根据直流单向流动和电子由负极向正极流动的原理。 (3)判断直流电源有无接地,正负极接地的区别口诀 变电所直流系数,电笔触及不发亮; 若亮靠近笔尖端,正极有接地故障; 若亮靠近手指端,接地故障在负极。 说明: 发电厂和变电所的直流系数,是对地绝缘的,人站在地上,用验电笔去触及正极或负极,氖管是不应当发亮的,如果发亮,则说明直流系统有接地现象;如果发亮在靠近笔尖的一端,则是正极接地;如果发亮在靠近手指的一端,则是负极接地。 (4)判断同相与异相口诀 判断两线相同异,两手各持一支笔, 两脚与地相绝缘,两笔各触一要线, 用眼观看一支笔,不亮同相亮为异。 说明: 此项测试时,切记两脚与地必须绝缘。因为我国大部分是380/220V供电,且变压器普遍采用中性点直接接地,所以做测试时,人体与大地之间一定要绝缘,避免构成回路,以免误判断;测试时,两笔亮与不亮显示一样,故只看一支则可。 (5)判断380/220V三相三线制供电线路相线接地故障口诀 星形接法三相线,电笔触及两根亮, 剩余一根亮度弱,该相导线已接地; 若是几乎不见亮 ,金属接地的故障。 说明: 电力变压器的二次侧一般都接成Y形,在中性点不接地的三相三线制系统中,用验电笔触及三根相线时,有两根比通常稍亮,而另一根上的亮度要弱一些,则表示这根亮度弱的相线有接地现象,但还不太严重;如果两根很亮,而剩余一根几乎看不见亮,则是这根相线有金属接地故障。现场急救触电才人工呼吸法 触电人脱离电源后,应立即进行生理状态的判定。只有经过正确的判定,才能确定抢救方法。 (1)判定有无意识。救护人轻拍或轻摇触电人的户膀(注意不要用力过猛或摇头部,以免加重可能存在的外伤),并在耳旁大声呼叫。如无反应,立即用手指掐压人中穴。当呼之不应,刺激也毫无反应时,可判定为意识已丧失。该判定过程应在5S内完成。 当触电人意识已丧失时,应立即呼救。将触电人仰卧在坚实的平面上,头部放平,颈部不能高于胸部,双臂平放在驱干两侧,解开紧身上衣,松开裤带,取出假牙,清除口腔中的异物。若触电人面部朝下,应将头、户、驱干作为一个整体同时翻转,不能扭曲,以免加重颈部可能存在的伤情。翻转方法是:救护人跪在触电人肩旁,先把触电人的两只手举过头,拉直两腿,把一条腿放在另一条腿上。然后一只手托住触电人的颈部,一只手扶住触电人的肩部,全身同时翻转。 (2)判定有无呼吸。在保持气道开放的情况下,判定有无呼吸的方法有:用眼睛观察触电人的胸腹部有无起伏;用耳朵贴近触电人的口、鼻,聆听有无呼吸的声音;用脸或手贴近触电人的口、鼻,测试有无气体排出;用一张薄纸片放在触电人的口、鼻上,观察纸片是否动。若胸腹部无起伏、无呼气出,无气体排出,纸片不动,则可判定触电人已停止呼吸。该判定在3~5S内完成(一)熔断器类型的选择     选择熔断器类型时,所依据的主要是负载的保护待性、短路电流的大小和使用场合。例如,作电网配电用,应考虑采用一般工业用熔断器;保护硅元件,则应选择保护半导体器件熔断器;供家庭使用,则应考虑螺旋式或封闭插入式熔断器。     (二)一般工业用熔断器的选用        (1)按电网电压选用相应电压等级的熔断器。        (2)按配电系统中可能出现的最大短路电流,选择有相应分断能力的熔断器。        (3)根据被保护负载的性质和容量,选择熔体的额定电流o           1) 电动机直接起动时,熔体电流可按下式选择:     式中IfN——熔断器熔体额定电流,A;         IS——电动机的起动电流,A;         K——系数,决定于电动机的起动情况和熔断器特性,见表1。除按表1中的规定选择K 值外.还可根据起动时间来确定K值大小,见表2。     选择熔断器熔体电流时,应注意不能选得太小。如果选择过小,易造成某一相熔断而发生电动机单相运转。 表1 表2       2)  熔断器下多台电动机共用时.主熔体额定电流:      K1——考虑负载情况的系数,一般情况取 K1=0.4 ;      ISM——被保护电路中最大一台电动机(或同时起动的电动机组)的起动电流,A5      IN(n-1)——被保护电路中,除最大一台电动机(或同时起动的电动机组)以外的其他电动机额定电流之和,A;     3)  控制线路的短路保护。在交流控制线路中,熔断器接在控制变压器的二次,熔体的额定电流IfN按下式选取:     式中 SN——控制变压器的额定容量,VA;          SS——线路中最大电器的吸引线圈起动容量,或几个电器的吸引线圈同时起动容量之和,VA;          US—控制变压器二次电压,V。 (一)电动机负载时的选用     交流接触器吸引线困电压由控制电路电压而定。主触头额定电流由下面经验公式计算:     式中 Imc —— 主触头额定电流,A;          PN —— 被控制的电动机额定功率,KW;          K —— 常数,一般取1—1.4;          UN —— 电动机的额定电压,V。     实际选择时,接触器的主触头额定电流大于上式计算值。     (二)非电动机负载时的选用     非电动机负载有电阻炉、电容器、变压器、照明装置等,选配接触器时,除考虑接通容量外,还应考虑使用中可能出现的过电流.现分述如下。       1.电热设备       电流波动最大值不超过1.4IN,可按下式选用     式中 Itc —— 接触器额定发热电流,A;          IN —— 被控电热设备额定电流,A。     如接触器铭牌上未注明Itc值,可按工作电流相等原则选用。     2.电容器     用接触器控制电容器时.应考虑电容器的合闸电流、持续电流和在负载下的电寿命。现推荐采用表1的数据。对于更大容量的电容器,常串接电阻,以使接触器的接通电流减少50%。 表1     3.电焊变压器     表2为电焊变压器选配接触器参考表。经验表明,焊接时的分断电流平均比接通电流大2—4倍,而且为单相负载,因此所用接触器的3极可以并联使用。 表2     4.照明装置     由于电压增加使得工作电流增加,改选用时不得超过接触器持续电流的90%。今将常用的照明装置种类、起动电流和选用电器时的原则列表3供参考。 表3 在分析和计算由三相电源、三相负裁(也可能有单相负、以及连接这些电源和负超酌导线所组成的三相电路径常要用到相、线电压和相、线电流的概念,挠分述如为了解其概念,先介绍几个常用术语     端线(俗称火线)——连接电源和负载各相端点的导线,称为端线。     中点(中性点)——三相电源中三个绕组末端,也可以是三个绕组首端)的连接点,称为三相电源中点或中性点,三相负载星形连接点,称为负载的中点或中性点。     中线——连接电源中点和负载中点的导线, 称为中线(有时以大地作为中线,此时中线又称为地线)     线电压——端线之间的电压称为线电压。     相电压——每相绕组或每相负载上的电压,称为相电压。     线电流——流过端线的电流称为线电流。     相电流——流过各相绕组或各相负载的电流称为相电流。     下面讨论电源和负载的两种连接方式,即星形连接和三角形连接时的相、线电压和相、线电流之间的关系。     1.星形连接(丫连接) 如图1所示: 图1     图中UAB、UBC、UCA为线电压,UAN、UBN、UCN为相电压;N为电源中性点,N'为负载中性点,NN'连线称为中线。 图2     星形连接时,电源的线电压与相电压的相量图如图2。从相量图上可看出,线电压导前相电压30°电角度,即UAB导前UAN30°,UBC导前UBN30°,UCA导前UCN30°。     当星形电源各相电动势对称时,线电压也是对称的,彼此间相位差为120°。从数量关系来看,线电压有效值是相电压有效值的 倍。即:     星形连接时,线电流等于相电流。     2. 三角形连接(Δ连接) 如图3所示: 图3     三角形连接时,相电压等于线电压。     线电流滞后相电流30°,即:       IA 滞后 IAB30°;       IB 滞后于 IBC30°;       IC 滞后 ICA30°。     相量关系如图4:     从数量关系看,线电流有效值等于相电流有效值的 倍。即:     3.三相电路的功率     在三相对称电路中,不论那种连接方式都是: (一)一般方法     保护长期工作或间断长期工作的电动机时热继电器的选用计算方法是:     (1)一般情况下,按电动机的额定电流选取,使热继电器的整定值为(0.95—1.05)IN(IN为电动机的额定工作电流),或选取整定范围的中值为电动机的额定工作电流。     (2)保护Y—Δ起动电动机,当热继电器的3个热元件分别串接在Δ联结的各相绕组内,热继电器的整定电流应按电动机 的额定电流整定。     (3)保护并联电容器的补偿型电动机,只有有功电流流经热继电器,热继电器的整定电流可按下式近似进行整定:     式中 It——热继电器整定电流.A;          IN——电动机额定电流,A;          cosφ——电动机功率因数。     (二)作图法     用于保护反复短时工作电动机的热继电器,每小时允许的操作次数,与电动机的起动过渡过程、通电持续率及负载电流等因素有关。复合加热的热继电器,在反复短时工作下每小时允许的操作次数,可按图1所示的速查曲线选用。     间接加热的热继电器每小时允许的操作次数,比按图1速查曲线选用的次数稍高。当电动机每小时的操作次数较高时,可选用带速饱和电流互感器的热继电器。     图3—1及其应用方法是根据下列公式绘制和确定的。反复短时工作允许操作频率为     式中  f。——允许操作频率,次/h;           Kc——计算系数,Kc=0.8—0.9;           ts——电动机起动时间,s:           Ks——电动机起动电流倍数(即其起动电流与其额定电流之比);           KL——电动机负载电流倍数(即其负载电流与其额定电流之比):           K1——热继电器额定整定电流与电动机额定电流之比:           TD——通电持续率。 (一)交流断路器选用计算      1.选择电气参数的一般原则      (1)断路器的额定工作电压大于或等于线路额定电压。      (2)断路器的额定电流大于或等于线路计算负载电流。      (3)断路器的额定短路通断能力大于或等于线路中可能出现的最大短路电流,一般按有效值计算。     如果选用的断路器额定电流与要求相符,但额定短路通断能力小于断路器安装点的线路最大短路电流,必须提高选用断路器的额定电流,而按线路计算负载电流选择过电流脱扣器的额定电流。如果这样还不能满足要求,则可考虑下述三种 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 解决:     1)采用级联保护(或称串级保护)方式,利用上一级断路器和该断路器一起动作来提高短路分断能力。采用这种方案时,需将上一统断路器的脱扣器瞬动电流整定在下级断路器额定短路通断能力的80%左右。     2)采用限流断路器。     3)采用断路器加后备熔断器。     (4) 线路末端单相对地短路电流大于或等于1.25倍断路器瞬时(或短延时)脱扣器整定电流。这对负载电流较小,配电线路较长的情况尤为重要。因为线路较长时,末端短路电流较小,单相对地短路电流就更小。在三相四线制中相零短路时,对地短路电流还要小些,有时比道电流脱扣器整定的电流还要小,不能使过电流脱扣器动作,因而在单相对地时失去保护。在这种情况下,考虑在零线上装设电流互感器(其二次接电流继电器,对地短路时,继电器动作使断路器分断),或采用带零序电流互感器的线路(或漏电继电器)来解决。采用这些方法时,变压器中性点均应接地。     (5) 断路器欠电压脱扣器额定电压等于线路额定电压。     是否需要欠电压保护,应按使用要求而定,并非所有断路器都需要带欠电压脱扣器。在某些供电质量较差的系统,选用带欠电压保护的断路器,反而会因为电压波动造成不希望的断电。如必须带欠电压脱扣器,则应考虑有适当的延时。     (6)具有短延时的断路器,若带欠电压脱扣器,则欠电压脱扣器必须是延时的,其延时时间应大于或等于短路延时时间。     (7)断路器的分励脱扣器额定电压等于控制电源电压。     (8)电动传动机构的额定工作电压等于控制电源电压。     2.配电用断路器的选用计算     除考虑上述一般选用原则外,还需考虑把系统的故障限制在最小范围内,防止故障时扩大停电区域,为此,需增加下列选用原则:     (1)断路器的长延时动作电流整定值小于或等于导线允许载流量。对于采用电线电缆的情况,可取电线电缆容许载流量的80%。     (2)3倍长延时动作电流整定值的可返回时间大于或等于线路中最大起动电流的电动机的起动时间。     (3)短延时动作电流整定值按下式选用     式中 Isd——短延时动作电流,A;          Id——线路计算负载电流,A;          KS——电动机的起动电流倍数          IN——电动机额定电流,A。     (4)瞬时电流整定值按下式选用     式中 Iin —— 瞬时电流,A;          Kp ——电动机起动电流的冲击系数,一般取Kp=1.7—2;          INm——最大的1台电动机的额定电流,A。     (5)短延时的时间阶梯,按配电系统的分段而定,一般时间阶梯为2—3级。每级之间的短延时时差为0.1-0.2s,其可返回时间应保证各级的选择性动作。选定短延时阶梯后,最好按被保护对象的热稳定性加以校核。 3.电动机保护用断路器的选用计算     电动机保护用断路器可分为两类:     1)断路器只作保护而不负担正常操作。     2)断路器兼作保护和不频繁操作用。     选用原则:     (1) Isd = In     式中 Isd ——长延时电流整定值,A;          IN ——电动机额定电流,A。     (2)瞬时整定电流Iin       1)保护笼型异步电动机时       2)保护绕线转子异步电动
本文档为【常用电气控制】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_665546
暂无简介~
格式:doc
大小:932KB
软件:Word
页数:41
分类:
上传时间:2012-02-09
浏览量:24