首页 HA17741 - General-Purpose Operational Amplifier

HA17741 - General-Purpose Operational Amplifier

举报
开通vip

HA17741 - General-Purpose Operational Amplifier HA17741/PS General-Purpose Operational Amplifier (Frequency Compensated) Description The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and contro...

HA17741 - General-Purpose Operational Amplifier
HA17741/PS General-Purpose Operational Amplifier (Frequency Compensated) Description The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is appropriate for use in a wide range of applications in the test and control fields. Features • High voltage gain : 106 dB (Typ) • Wide output amplitude : ±13 V (Typ) (at RL ‡ 2 kW ) • Shorted output protection • Adjustable offset voltage • Internal phase compensation Ordering Information Application Type No. Package Industrial use HA17741PS DP-8 Commercial use HA17741 Pin Arrangement − + 1 2 3 4 8 7 6 5 NC VCC Vout Offset Null Offset Null Vin(−) Vin(+) VEE (Top view) HA17741/PS 2 Circuit Structure VCC Vout VEE To VCCTo VCC Offset Null Vin(+) Vin(−) Pin5Pin1 Absolute Maximum Ratings (Ta = 25°C) Ratings Item Symbol HA17741PS HA17741 Unit Power-supply voltage VCC +18 +18 V VEE –18 –18 V Input voltage Vin – 15 – 15 V Differential input voltage Vin(diff) – 30 – 30 V Allowable power dissipation PT 670 * 670 * mW Operating temperature Topr –20 to +75 –20 to +75 ° C Storage temperature Tstg –55 to +125 –55 to +125 ° C Note: These are the allowable values up to Ta = 45° C. Derate by 8.3 mW/° C above that temperature. HA17741/PS 3 Electrical Characteristics Electrical Characteristics-1 (VCC = –VEE = 15 V, Ta = 25°C) Item Symbol Min Typ Max Unit Test Condition Input offset voltage VIO — 1.0 6.0 mV RS £ 10 k W Input offset current IIO — 18 200 nA Input bias current IIB — 75 500 nA Power-supply D VIO/ D VCC — 30 150 m V/V RS £ 10 k W rejection ratio D VIO/ D VEE — 30 150 m V/V RS £ 10 k W Voltage gain AVD 86 106 — dB RL ‡ 2 k W , Vout = – 10 V Common-mode rejection ratio CMR 70 90 — dB RS £ 10 k W Common-mode input voltage range VCM – 12 – 13 — V RS £ 10 k W Maximum output VOP-P – 12 – 14 — V RL ‡ 10 k W voltage amplitude – 10 – 13 — V RL ‡ 2 k W Power dissipation Pd — 65 100 mW No load Slew rate SR — 1.0 — V/ m s RL ‡ 2 k W Rise time tr — 0.3 — m s Vin = 20 mV, RL = 2 kW , Overshoot Vover — 5.0 — % CL = 100 pF Input resistance Rin 0.3 1.0 — MW Electrical Characteristics-2 (VCC = –VEE = 15 V, Ta = –20 to +75°C) Item Symbol Min Typ Max Unit Test Condition Input offset voltage VIO — — 9.0 mV RS £ 10 k W Input offset current IIO — — 400 nA Input bias current IIB — — 1,100 nA Voltage gain AVD 80 — — dB RL ‡ 2 k W , Vout = – 10 V Maximum output voltage amplitude VOP-P – 10 — — V RL ‡ 2 k W HA17741/PS 4 IC Operational Amplifier Application Examples Multivibrator A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate the waveform. Multivibrators are widely used as the square wave source in such applications as power supplies and electronic switches. Multivibrators are classified into three types, astable multivibrators, which have no stable states, monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable states. 1. Astable Multivibrator − + R3 VCC VEE Vout R1 R2 RL Vin(−) Vin(+) C1 Figure 1 Astable Multivibrator Operating Circuit Vin(+) 0 Vin(−) 0 Vout 0 Vertical: Horizontal: Circuit constants R1 = 8 kΩ, R2 = 4 kΩ R3 = 100 kΩ, C1 = 0.1 µF RL = ∞ VCC = 15 V, VEE = −15 V 5 V/div 2 ms/div Figure 2 HA17741 Astable Multivibrator Operating Waveform HA17741/PS 5 2. Monostable Multivibrator − + R3 VCC VEE Vout RL R1R2 C2 C1 Input 0 Figure 3 Monostable Multivibrator Operating Circuit Vertical: Horizontal: Circuit constants R1 = 10 kΩ, R2 = 2 kΩ R3 = 40 kΩ, C1 = 0.47 µF C2 = 0.0068 µF RL = ∞ VCC = 15 V, VEE = −15 V Trigger input 0 Vin(+) 0 Vin(−) 0 Vout 0 Figure 4 HA17741 Monostable Multivibrator Operating Waveform 3. Bistable Multivibrator − + Vin(−) Vin(+) Input 0 C R2 RL VEE VCC R1 Vout Figure 5 Bistable Multivibrator Operating Circuit HA17741/PS 6 Trigger input 0 Vin(+) 0 Vout 0 Vertical: Horizontal: Circuit constants 5 V/div 2 ms/div R1 = 10 kΩ, R2 = 2 kΩ C = 0.0068 µF RL = ∞ VCC = 15 V, VEE = −15 V Figure 6 HA17741 Bistable Multivibrator Operating Waveform Wien Bridge Sine Wave Oscillator − + R4 470 kΩ1 MΩ 1S2074 H R3C32SK16 H 500 Ω Rin C2 R2 C1 R1 5.1 kΩ RS RL 50 kΩ Vout Figure 7 Wien Bridge Sine Wave Oscillator VCC = 15 V, VEE = −15 V C1 = C2/10 R1 = 110 kΩ, R2 = 11 kΩ VOP-P = 2 V VOP-P = 20 V 30 k 10 k 3 k 1 k 300 100 30 10 30 p 100 p 300 p 1,000 p 3,000 p 0.01 µ 0.03 µ 0.1 µ C1 Capacitance (F) O sc illa to r F re qu en cy f (H z) Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f–C Characteristics HA17741/PS 7 Vertical: Horizontal: Test circuit condition 5 V/div 0.5 ms/div VCC = 15 V, VEE = −15 V R1 = 110 kΩ, R2 = 11 kΩ C1 = 0.0015 µF, C2 = 0.015 µF Test results f = 929.7 Hz, T.H.P = 0.06% Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform Quadrature Oscillator − + A2 − + A1 V4 R11 R22 R44 R33 V8 D1 D2 Cos outSin out CT2 RT2 CT1 RT1 C1 R1 Figure 10 Quadrature Sine Wave Oscillator Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is, it also supplies the waveform delayed by 90°. The output amplitude is essentially determined by the limiter circuit. HA17741/PS 8 30 10 CT1 = 102 pF CT2 = 99 pF C1 = 106 pF VCC = −VEE = 15 V RT1 = 150 kΩ, RT2 = 150 kΩ R1 = 151.2 kΩ R11 = 15 kΩ, R22 = 10 kΩ R33 = 15 kΩ, R44 = 10 kΩ CT1, CT2, C1 → 1,000 pF Use a Mylar capacitor. With VOP-P = 21 VP-P and R22 = R44 = 10 kΩ the frequency of the sine wave will be under 10 kHz. Sin out Cos out 3 1.0 0.3 0.1 0.03 0.01 100 p 1,000 p 0.01 µ 0.1 µ CT1, CT2, C1 (F) Figure 11 HA17741 Quadrature Sine Wave Oscillator f−CT1, CT2, C1 Characteristics Vertical: Horizontal: Circuit constants 5 V/div 0.2 ms/div CT1 = 1000 pF (990), CT2 = 1000 pF (990) RT1 = 150 kΩ, RT2 = 150 kΩ C1 = 1000 pF (990), R1 = 160 kΩ R11 = 15 kΩ, R22 = 10 kΩ R33 = 16 V, R44 = 10 kΩ VCC = 15 V, VEE = −15 V ← Sin out 0 ← Cos out Figure 12 Sine and Cosine Output Waveforms Triangular Wave Generator − + A1 − + A2 D1 R3 D2 R4 C R1 R2 Vout2 VA R1/R2 Vout1 Hysteresis comparator Integrator Figure 13 Triangular Wave Generator Operating Circuit HA17741/PS 9 Vertical: Horizontal: Circuit constants 10 V/div 10 ms/div VCC = 15 V, VEE = −15 V R1 = 10 kΩ, R2 = 20 kΩ R3 = 100 kΩ, R4 = 200 kΩ C = 0.1 µF 0 0 0 Vout1 Vout2 VA Figure 14 HA17741 Triangular Wave Generator Operating Waveform Sawtooth Waveform Generator + − + − Vin R2 6 kΩ VA R4 3 kΩ VB R3 6 kΩ R1 IR5 2.7 kΩ R6 2.7 kΩ C1 Q1 VR 5 kΩ 2SC1706 H Vout R7 2.7 kΩ R8 2.7 kΩ VC Figure 15 Sawtooth Waveform Generator 0 0 VR Vout Vertical: Horizontal: Circuit constants 5 V/div 2 ms/div VCC = 15 V, VEE = −15 V R1 = 100 kΩ, C1 = 0.1 µF Vin = 10 V Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform HA17741/PS 10 Characteristic Curves 2 3 1 5 6 ±3 ±6 ±12 ±15 20 16 12 8 4 0 In pu t o ffs et c ur re nt I IO (nA ) Power-supply voltage VCC, VEE (V) Input Offset Current vs. Power-Supply Voltage Characteristics ±9 ±18 R1 R2 R2R1 R a = 100%a = 0% VEE Voltage Offset Adjustment Circuit ±3 ±6 ±12 ±15 100 80 60 40 20 0 Po w er d iss ip at io n P d (m W ) Power-supply voltage VCC, VEE (V) Power Dissipation vs. Power-Supply Voltage Characteristics ±9 ±18 ±3 ±6 ±12 ±15 120 110 100 90 80 70 Vo lta ge g ai n A VD (dB ) Power-supply voltage VCC, VEE (V) Voltage Gain vs. Power-Supply Voltage Characteristics ±9 ±18 RL ≥ 2 kΩ No load HA17741/PS 11 ±3 ±6 ±12 ±15 20 16 12 8 4 0 M ax im um o ut pu t v ol ta ge a m pl itu de ±V O P- P (V ) Power-supply voltage VCC, VEE (V) Maximum Output Voltage Amplitude vs. Power-Supply Voltage Characteristics ±9 ±18 −20 0 20 40 60 5 4 3 2 1 0 In pu t o ffs et v ol ta ge V IO (m V) Ambient temperature Ta (°C) Input Offset Voltage vs. Ambient Temperature Characteristics 80 VCC = +15 V VEE = −15 V RS ≤ 10 kΩ RL ≥ 2 kΩ − V OP -P+ V OP -P −20 0 20 40 60 20 16 12 8 4 0 In pu t o ffs et c ur re nt I IO (nA ) Ambient temperature Ta (°C) Input Offset Current vs. Ambient Temperature Characteristics 80 −20 0 20 40 60 120 100 80 60 40 20 0 In pu t b ia s cu rre nt I IB (nA ) Ambient temperature Ta (°C) Input Bias Current vs. Ambient Temperature Characteristics 80 VCC = +15 V VEE = −15 V VCC = +15 V VEE = −15 V HA17741/PS 12 −20 0 20 40 60 120 110 100 90 80 70 Vo lta ge g ai n A VD (dB ) Ambient temperature Ta (°C) Voltage Gain vs. Ambient Temperature Characteristics 80−20 0 20 40 60 90 80 70 60 50 40 Po w er d iss ip at io n P d (m W ) Power Dissipation vs. Ambient Temperature Characteristics 80 Ambient temperature Ta (°C) VCC = +15 V VEE = −15 V No load VCC = +15 V VEE = −15 V RL ≥ 2 kΩ −20 0 20 40 60 20 16 12 8 4 0 O ut pu t s ho rte d cu rre nt I O S (m A) Ambient temperature Ta (°C) Output Shorted Current vs. Ambient Temperature Characteristics 80−20 0 40 60 16 12 8 4 0 −4 −8 −12M ax im um o ut pu t v ol ta ge a m pl itu de V O P- P (V ) Maximum Output Voltage Amplitude vs. Ambient Temperature Characteristics 20 80 Ambient temperature Ta (°C) VO = VCC VCC = +15 V VEE = −15 V VCC = +15 V VEE = −15 V RL = 10 kΩ HA17741/PS 13 200 500 1 k 2 k 5 k 16 12 8 4 0 −4 −8 −12M ax im um o ut pu t v ol ta ge a m pl itu de V O P- P (V ) M ax im um o ut pu t v ol ta ge a m pl itu de V O P- P (V ) Maximum Output Voltage Amplitude vs. Load Resistance Characteristics 10 k Load resistance RL (Ω) 0 1.6 1.2 0.8 0.4 0 −0.4 −0.8 −1.2 −1.6 O ut pu t v ol ta ge V ou t (V ) 20 40 60 80 100 VCC = +15 V VEE = −15 V VCC = +15 V, VEE = −15 V R1 = 51 Ω, R2 = 5.1 kΩ See the voltage offset adjustment circuit diagram. Offset Adjustment Characteristics Resistor position a (%) R = 10 kΩ R = 5 kΩ R = 20 kΩ 500 1 k 50 k 100 k 28 24 20 16 12 8 4 Frequency f (Hz) Maximum Output Voltage Amplitude vs. Frequency Characteristics 200 2 k 5 k 10 k 20 k 200 k 500 k 100 500 1 k 50 k 100 k 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 In pu t r es ist an ce R in (M Ω ) Frequency f (Hz) Input Resistance vs. Frequency Characteristics 200 2 k 5 k 10 k 20 k 200 k 500 k 1 M 0 VCC = +15 V VEE = −15 V RL = 10 kΩ 100 HA17741/PS 14 50 200 1 k 50 k 100 k 40 0 −40 −80 −120 −160 −200 Ph as e φ (de g.) Frequency f (Hz) Phase vs. Frequency Characteristics 100 2 k 5 k 10 k 20 k 200 k 500 k −240 500 1 M 2 M 10 50 200 10 k 20 k 120 100 80 60 40 20 0 −20 Vo lta ge g ai n A VD (dB ) Frequency f (Hz) Voltage Gain vs Frequency Characteristics 20 500 1 k 2 k 5 k 50 k 100 k 40 100 500 k 2 M200 k 1 M VCC = +15 V VEE = −15 V Open loop VCC = +15 V VEE = −15 V Open loop 10 50 200 10 k 20 k 120 100 80 60 40 20 0Vo lta ge g ai n A VD (dB ) Frequency f (Hz) Voltage Gain and Phase vs. Frequency Characteristics (1) 20 500 1 k 2 k 5 k 50 k 100 k −20 100 200 k 500 k 1 M 2 M 10 50 200 10 k 20 k 120 100 80 60 40 20 0 −20 Vo lta ge g ai n A V D (dB ) Frequency f (Hz) Voltage Gain and Phase vs. Frequency Characteristics (2) 20 500 1 k 2 k 5 k 50 k 100 k −40 100 200 k 500 k 1 M 2 M VCC = +15 V VEE = −15 V Closed loop gain = 60 dB VCC = +15 V VEE = −15 V Closed loop gain = 40 dB0 −60 −120 −180 0 −60 −120 −180 Ph as e φ (de g.) Ph as e φ (de g.) AVD φ φ AVD HA17741/PS 15 10 50 200 10 k 20 k 120 100 80 60 40 20 0 −20 Vo lta ge g ai n A VD (dB ) Frequency f (Hz) Voltage Gain and Phase vs. Frequency Characteristics (3) 20 500 1 k 2 k 5 k 50 k 100 k100 200 k 500 k 1 M 2 M 0 −60 −120 −180 Ph as e φ (de g.) −40 VCC = +15 V VEE = −15 V Closed loop gain = 20 dB AVD φ 10 50 200 10 k 20 k 120 100 80 60 40 20 0 −20 Vo lta ge g ai n A VD (dB ) Frequency f (Hz) Voltage Gain and Phase vs. Frequency Characteristics (4) 20 500 1 k 2 k 5 k 50 k 100 k100 200 k 500 k 1 M 2 M 0 −60 −120 −180 Ph as e φ (de g.) −40 VCC = +15 V VEE = −15 V Closed loop gain = 0 dB AVD φ 2 3 6 ±3 ±6 ±9 ±12 ±15 0.8 0.6 0.4 0.2 0 R is e tim e t r (µs ) Power-supply voltage VCC, VEE (V) Rise time vs. Power-Supply Voltage Characteristics ±18 Impulse Response Characteristics Test Circuit Vout RLCL V290% 10% Vout tr V1 Vout = × 100 (%)V2 V1 Vin = 20 mV RL = 2 kΩ CL = 100 pF Vin HA17741/PS 16 ±3 ±6 ±9 ±12 ±15 40 30 20 10 0 O ve rs ho ot V ov er (% ) Power-supply voltage VCC, VEE (V) Overshoot vs. Power-Supply Voltage Characteristics ±18 0 0.4 0.8 1.2 40 30 20 10 0O ut pu t v ol ta ge V ou t (m V) Time t (µs) Impulse Response Characteristics 1.6 Vin = 20 mV RL = 2 kΩ CL = 100 pF VCC = +15 V VEE = −15 V RL = 2 kΩ CL = 100 pF Vin = 20 mV HA17741/PS 17 Package Dimensions Hitachi Code JEDEC EIAJ Mass (reference value) DP-8 Conforms Conforms 0.54 g Unit: mm 1 4 58 9.6 10.6 Max 0.89 1.3 6. 3 7. 4 M ax 2. 54 M in 5. 06 M ax 2.54 – 0.25 0.48 – 0.10 7.62 0.25 + 0.10 – 0.05 0° – 15° 0. 1 M in 1.27 Max HA17741/PS 18 Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail- safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan. Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HXHitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Europe GmbH Electronic components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 For further information write to:
本文档为【HA17741 - General-Purpose Operational Amplifier】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_500733
暂无简介~
格式:pdf
大小:91KB
软件:PDF阅读器
页数:18
分类:互联网
上传时间:2012-01-20
浏览量:14