首页 IRF7831_IRF_175338[1]

IRF7831_IRF_175338[1]

举报
开通vip

IRF7831_IRF_175338[1] www.irf.com 1 7/9/03 IRF7831 HEXFET��Power MOSFET Notes���through � are on page 10 Benefits � Very Low RDS(on) at 4.5V VGS � Ultra-Low Gate Impedance � Fully Characterized Avalanche Voltage and Current Applications � High Frequency Point-of-Load Sync...

IRF7831_IRF_175338[1]
www.irf.com 1 7/9/03 IRF7831 HEXFET��Power MOSFET Notes���through � are on page 10 Benefits � Very Low RDS(on) at 4.5V VGS � Ultra-Low Gate Impedance � Fully Characterized Avalanche Voltage and Current Applications � High Frequency Point-of-Load Synchronous Buck Converter for Applications in Networking & Computing Systems. Top View 81 2 3 4 5 6 7 D D D DG S A S S A SO-8 ���������� VDSS RDS(on) max Qg (typ.) 30V 3.6m�@VGS = 10V 40nC Absolute Maximum Ratings Parameter Units VDS Drain-to-Source Voltage V VGS Gate-to-Source Voltage ID @ TA = 25°C Continuous Drain Current, VGS @ 10V ID @ TA = 70°C Continuous Drain Current, VGS @ 10V A IDM Pulsed Drain Current � PD @TA = 25°C Power Dissipation � W PD @TA = 70°C Power Dissipation � Linear Derating Factor W/°C TJ Operating Junction and °C TSTG Storage Temperature Range Thermal Resistance Parameter Typ. Max. Units RθJL Junction-to-Drain Lead ––– 20 °C/W RθJA Junction-to-Ambient � ––– 50 -55 to + 150 2.5 0.02 1.6 Max. 21 17 170 ± 12 30 ������� 2 www.irf.com Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– V ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.025 ––– V/°C RDS(on) Static Drain-to-Source On-Resistance 2.5 3.1 3.6 mΩ 3.0 3.7 4.4 VGS(th) Gate Threshold Voltage 1.35 ––– 2.35 V ∆VGS(th) Gate Threshold Voltage Coefficient ––– - 5.7 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 97 ––– ––– S Qg Total Gate Charge ––– 40 60 Qgs1 Pre-Vth Gate-to-Source Charge ––– 12 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 3.1 ––– nC Qgd Gate-to-Drain Charge ––– 11 ––– Qgodr Gate Charge Overdrive ––– 14 ––– See Fig. 16 Qsw Switch Charge (Qgs2 + Qgd) ––– 14 ––– Qoss Output Charge ––– 22 ––– nC td(on) Turn-On Delay Time ––– 18 ––– tr Rise Time ––– 10 ––– td(off) Turn-Off Delay Time ––– 17 ––– ns tf Fall Time ––– 5.3 ––– Ciss Input Capacitance ––– 6240 ––– Coss Output Capacitance ––– 980 ––– pF Crss Reverse Transfer Capacitance ––– 390 ––– Avalanche Characteristics Parameter Units EAS Single Pulse Avalanche Energy � mJ IAR Avalanche Current � A Diode Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 2.5 (Body Diode) A ISM Pulsed Source Current ––– ––– 170 (Body Diode)�� VSD Diode Forward Voltage ––– ––– 1.2 V trr Reverse Recovery Time ––– 42 62 ns Qrr Reverse Recovery Charge ––– 31 47 nC ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Conditions Max. 100 16 ƒ = 1.0MHz Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 20A � MOSFET symbol VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V � ID = 16A VDS = 15V VGS = 12V VGS = -12V VDS = 24V, VGS = 0V TJ = 25°C, IF = 16A, VDD = 25V di/dt = 100A/µs � TJ = 25°C, IS = 16A, VGS = 0V � showing the integral reverse p-n junction diode. VGS = 4.5V, ID = 16A � VGS = 4.5V Typ. ––– VDS = VGS, ID = 250µA Clamped Inductive Load VDS = 15V, ID = 16A VDS = 24V, VGS = 0V, TJ = 125°C ––– ID = 16A VGS = 0V VDS = 15V ������� www.irf.com 3 Fig 4. Normalized On-Resistance Vs. Temperature Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics Fig 3. Typical Transfer Characteristics 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) 0.01 0.1 1 10 100 1000 I D , D ra in - to - So u rc e Cu rr e n t (A ) 2.25V 20µs PULSE WIDTH Tj = 25°C VGS TOP 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V BOTTOM 2.25V 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) 0.1 1 10 100 1000 I D , D ra in - to - So u rc e Cu rr e n t (A ) 2.25V 20µs PULSE WIDTH Tj = 150°C VGS TOP 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V BOTTOM 2.25V 2.0 2.5 3.0 3.5 4.0 VGS, Gate-to-Source Voltage (V) 0.1 1.0 10.0 100.0 1000.0 I D , D ra in - to - So u rc e Cu rr e n t (Α ) TJ = 25°C TJ = 150°C VDS = 15V 20µs PULSE WIDTH -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) 0.5 1.0 1.5 2.0 R D S( o n ) , D ra in - to - So u rc e O n R e si st a n ce (N o rm a liz e d) ID = 20A VGS = 10V ������� 4 www.irf.com Fig 8. Maximum Safe Operating Area Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 7. Typical Source-Drain Diode Forward Voltage 1 10 100 VDS, Drain-to-Source Voltage (V) 100 1000 10000 100000 C, Ca pa ci ta n ce (pF ) Coss Crss Ciss VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd Coss = Cds + Cgd 0 20 40 60 80 100 QG Total Gate Charge (nC) 0 2 4 6 8 10 12 V G S, G a te - to - So u rc e Vo lta ge (V ) VDS= 24V VDS= 15V ID= 12A 0.2 0.4 0.6 0.8 1.0 1.2 VSD, Source-toDrain Voltage (V) 0.1 1.0 10.0 100.0 1000.0 I S D , R e ve rs e D ra in Cu rr e n t (A ) TJ = 25°C TJ = 150°C VGS = 0V 0.1 1.0 10.0 100.0 1000.0 VDS , Drain-toSource Voltage (V) 1 10 100 1000 I D , D ra in - to - So u rc e Cu rr e n t (A ) Tc = 25°C Tj = 150°C Single Pulse 1msec 10msec OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec ������� www.irf.com 5 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) 0.001 0.01 0.1 1 10 100 Th e rm a l R e sp o n se ( Z th JA ) 0.20 0.10 D = 0.50 0.02 0.01 0.05 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc τJ τJ τ1 τ1 τ2 τ2 τ3 τ3 R1 R1 R2 R2 R3 R3 C Ci= τi/Ri τC τ4 τ4 R4 R4 τ5 τ5 R5 R5 Ri (°C/W) τi (sec) 0.514 0.000182 2.445 0.030949 20.64 0.36354 17.80 6.99 8.604 109 Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Threshold Voltage Vs. Temperature -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 V G S( th ) G a te th re sh o ld Vo lta ge (V ) ID = 250µA 25 50 75 100 125 150 TJ , Junction Temperature (°C) 0 4 8 12 16 20 24 I D , D ra in Cu rr e n t (A ) ������� 6 www.irf.com D.U.T. VDS IDIG 3mA VGS .3µF 50KΩ .2µF12V Current Regulator Same Type as D.U.T. Current Sampling Resistors + - Fig 13. Gate Charge Test Circuit Fig 12b. Unclamped Inductive Waveforms Fig 12a. Unclamped Inductive Test Circuit tp V(BR)DSS IAS Fig 12c. Maximum Avalanche Energy Vs. Drain Current RG IAS 0.01Ωtp D.U.T LVDS + - VDD DRIVER A 15V 20VVGS 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) 0 100 200 300 400 500 E A S, Si n gl e Pu ls e Av a la n ch e En e rg y (m J) I D TOP 11A 13A BOTTOM 16A Fig 14a. Switching Time Test Circuit Fig 14b. Switching Time Waveforms VGS VDS 90% 10% td(on) td(off)tr tf VGS Pulse Width < 1µs Duty Factor < 0.1% VDD VDS LD D.U.T + - ������� www.irf.com 7 Fig 15. � ���� � �� � � ���������� �����������for N-Channel HEXFET��Power MOSFETs ��������� ������� ���� ���� • �������� ������� ��� �� • ��������� �� �� • ������ � ��������� ��� ���������������� � ������ P.W. Period di/dt Diode Recovery dv/dt Ripple ≤ 5% Body Diode Forward Drop Re-Applied Voltage Reverse Recovery Current Body Diode Forward Current VGS=10V VDD ISD Driver Gate Drive D.U.T. ISD Waveform D.U.T. VDS Waveform Inductor Curent D = P.W.Period ����������������� ���� ����� ��� � + - + + +- - - � � � �� ���• ������������������ ��� • ������� ���� �� ��G46"G46�G46 • ���������������� ���� �# �����$�$ • �G46"G46�G46�%��������"������� � �G46�G46� � Fig 16. Gate Charge Waveform Vds Vgs Id Vgs(th) Qgs1 Qgs2 Qgd Qgodr ������� 8 www.irf.com Control FET ������� � �� ��� �� ���� ����� � � ����� ������ �� � ��� � ��� ������ � �� � ������ � �� ��� ��G46 ����� ������ �� � �� ���� ��� � ��� ���� ������ � ��� ��� !"� ��� ����� �� �# � $������ �� � %&� !"� �� ��� ������ ��� ������ ��� ���# ���� ��� ��� �� � � �� ������G46 ����� ������ �� � ��� ��� ��� � �� ��� ����� �#' P loss = P conduction + P switching + P drive + P output This can be expanded and approximated by; Ploss = Irms 2 × Rds(on )( ) + I × Qgd ig × Vin × f       + I × Qgs 2 ig × Vin × f       + Qg × Vg × f( ) + Qoss 2 ×Vin × f     " �� ���������� ���� �(�� ��� �������� � ���� ���� ��� ���� � �� ��� ��� � ����� %&� !" �� � � �� �G46 ���� �� � ��� ������ �� ���� ����� �� �������� � ���� � �� �������� �� ��� %&� !" �� � � �� �G46 " � ����� ���� �� ���� ��� �� �� �������� � ���� �� � �� ��� ������ �� ��� ��� ����� ��� �� ���� ���� �� �)G46 ���� ������ �� � � ���� � ��� �� �������� �# � �� � ������ �� ���� � ��� � � ��� ��� ��� ��� �� ���� ���� �� ��� � ��� � ����� ���� ��� ����� � *� �� � � �� ��� � ����� ��� ��� ��� ���� � � ����G46 %�����+��� ���� �� � ��� ���� ��� �� �� �������� ��� � ��� ������ �� ��G46 ���� �� � � ���� � ��� �� �������� � � �� � �� ������ ���� �� � %&� !" ������ ����# ��� � � ��� �#���G46 ����� , � ��� �� ���� �� ������ �# � �������� ������� ��� �� � ��� ��� �������� -���� ������. ������ ����/� ��� ��� ��� � �� ��� ������ �# � ����� �����# ���� ���� ��� ���G46 Synchronous FET The power loss equation for Q2 is approximated by; Ploss = Pconduction + Pdrive + Poutput * Ploss = Irms 2 × Rds(on)( ) + Qg × Vg × f( ) + Qoss 2 × Vin × f      + Qrr × Vin × f( ) *dissipated primarily in Q1. For the synchronous MOSFET Q2, Rds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the con- trol IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and re- verse recovery charge Q rr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions be- tween ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is ca- pacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Power MOSFET Selection for Non-Isolated DC/DC Converters Figure A: Q oss Characteristic ������� www.irf.com 9 SO-8 Package Details SO-8 Part Marking e 1 D E y b A A1 H K L .189 .1497 0° .013 .050 BASIC .0532 .0040 .2284 .0099 .016 .1968 .1574 8° .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0° 1.27 BASIC 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 MIN MAX MILLIMETERSINCHES MIN MAX DIM 8° e c .0075 .0098 0.19 0.25 .025 BASIC 0.635 BASIC 8 7 5 6 5 D B E A e6X H 0.25 [.010] A 6 7 K x 45° 8X L 8X c y 0.25 [.010] C A B e1 A A18X b C 0.10 [.004] 431 2 FOOTPRINT 8X 0.72 [.028] 6.46 [.255] 3X 1.27 [.050] 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. NOTES : 1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENS ION: MILLIMETER 3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES]. 5 DIMENS ION DOES NOT INCLUDE MOLD PROTRUSIONS. 6 DIMENS ION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 7 DIMENS ION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 8X 1.78 [.070] EXAMPLE: THIS IS AN IRF7101 (MOSFET) INTERNATIONAL RECTIFIER LOGO F7101 YWW XXXX PART NUMBER LOT CODE WW = WEEK Y = LAST DIGIT OF THE YEAR DATE CODE (YWW) ������� 10 www.irf.com ���� ��Repetitive rating; pulse width limited by max. junction temperature. � �Starting TJ = 25°C, L = 0.76mH RG = 25Ω, IAS = 16A. � Pulse width ≤ 400µs; duty cycle ≤ 2%. � When mounted on 1 inch square copper board Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.7/03 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. FEED DIRECTION TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. SO-8 Tape and Reel
本文档为【IRF7831_IRF_175338[1]】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_486504
暂无简介~
格式:pdf
大小:171KB
软件:PDF阅读器
页数:0
分类:互联网
上传时间:2011-12-14
浏览量:28