首页 Packing in more bytes using salt_111011_clean (2)

Packing in more bytes using salt_111011_clean (2)

举报
开通vip

Packing in more bytes using salt_111011_clean (2) MEDIA RELEASE Packing in six times more storage density with the help of table salt Dr Joel Yang from the Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*ST...

Packing in more bytes using salt_111011_clean (2)
MEDIA RELEASE Packing in six times more storage density with the help of table salt Dr Joel Yang from the Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR), with collaborators from the National University of Singapore (NUS) and the Data Storage Institute (DSI) has developed a process that can increase the data recording density of hard disks to 3.3 Terabit/in2, six times the recording density of current models. The key ingredient in the much enhanced patterning method that he pioneered is sodium chloride, the chemical grade of regular table salt. 1. Singapore, 14 October 2011 – It’s like packing your clothes in your suitcase when you travel. The neater you pack them the more you can carry. In the same way, the team of scientists has used nanopatterning to closely pack more of the miniature structures that hold information in the form of bits, per unit area. Dr Joel Yang’s IMRE research team, working with peers from A*STAR’s DSI and NUS, has used nanopatterning to create uniform arrays of magnetic bits that can potentially store up to 3.3 Terabit/in2 of information, six times the recording density of current devices. This means that a hard disk drive that holds 1 Terabyte (TB) of data today could, in the future, hold 6 TB of information in the same size using this new technology. 2. Conventional hard disks have randomly distributed nanoscopic magnetic grains - with a few tens of grains used to form one bit – that enable the latest hard disk models to hold up to 0.5 Terabit/in2 of information. The IMRE-led team used the bit-patterned media approach, where magnetic islands are patterned in a regular fashion, with each single island able to store one bit of information. 3. “What we have shown is that bits can be patterned more densely together by reducing the number of processing steps”, said Dr Joel Yang, the IMRE scientist who heads the project. Current technology uses very tiny ‘grains’ of about 7-8 nm in size deposited on the surface of storage media. However, information or a single bit, is stored in a cluster of these ‘grains’ and not in any single ‘grain’. IMRE’s bits are about 10nm in size but store information in a single structure. 4. The method has been demonstrated to achieve data-storage capability at 1.9 Terabit/in2, though bits of up to 3.3 Terabit/in2 densities were fabricated. “In addition to making the bits, we demonstrated that they can be used to store data,” explained Dr Yang. 5. The secret of the research lies in the use of an extremely high-resolution e-beam lithography process that produces super fine nano-sized structures. Dr Yang discovered that by adding sodium chloride to a developer solution used in existing lithography processes, he was able to produce highly defined nanostructures down to 4.5 nm half pitch, without the need for expensive equipment upgrades. This ‘salty developer solution’ method was invented by Dr Yang when he was a graduate student at the Massachusetts Institute of Technology. 6. This work is the result of a collaborative effort with Prof Vivian Ng’s group at NUS, and Dr Yunjie Chen, Dr Siang Huei Leong, and Mr Tianli Huang from A*STAR DSI’s 10 Terabit/in2 Magnetic Recording programme. The researchers are now looking at increasing the storage density further. – END – Encl. Annex A: A*STAR Corporate Profiles Annex B: Image of magnetic bits at the IMRE achieved densities and reference to the published papers For media enquiries, please contact: Mr Eugene Low Manager, Corporate Communications for Institute of Materials Research and Engineering (IMRE) 3, Research Link Singapore 117602 DID +65 6874 8491 Mobile +65 9230 9235 Email loweom@scei.a-star.edu.sg Ms Melissa Koh Senior Officer, Corporate Communications for Data Storage Institute (DSI) 5 Engineering Drive 1 (Off Kent Ridge Crescent, NUS) Singapore 117608 DID +65 6874 6852 Email kohljm@scei.a-star.edu.sg For technical enquiries, please contact: Dr Joel Yang Scientist I Institute of Materials Research and Engineering (IMRE) 3, Research Link Singapore 117602 DID +65 6874 8385 Email yangkwj@imre.a-star.edu.dg Annex A - A*STAR Corporate Profiles About the Institute of Materials Research and Engineering (IMRE) The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg. About the Agency for Science, Technology and Research (A*STAR) The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners. For more information about A*STAR, please visit www.a-star.edu.sg. Annex B - Image of magnetic bits at the IMRE achieved densities and reference to the published papers Fabrication and characterization of bit-patterned media beyond 1.5 Tbit/in2 Joel K WYang, Yunjie Chen, Tianli Huang, Huigao Duan,Naganivetha Thiyagarajah, Hui Kim Hui, SiangHuei Leong and Vivian Ng Nanotechnology 22 (2011) 385301 DOI:10.1088/0957-4484/22/38/385301 Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half- pitch lithography Joel K W Yang, Karl K Berggren Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures (2007); Volume: 25, Issue: 6, Pages: 2025 DOI: 10.1116/1.2801881 Scanning electron microscopy images of magnetic bits at densities of (a) 1.9 Terabit/in2 and (b) 3.3 Terabit/in2 formed after depositing Co/Pd multilayers onto resist structures. Email kohljm@scei.a-star.edu.sg For technical enquiries, please contact: About the Institute of Materials Research and Engineering (IMRE) About the Agency for Science, Technology and Research (A*STAR) Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography
本文档为【Packing in more bytes using salt_111011_clean (2)】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_966505
暂无简介~
格式:pdf
大小:91KB
软件:PDF阅读器
页数:0
分类:互联网
上传时间:2011-10-18
浏览量:7