首页 34三相异步电动机的启动、反转和制动

34三相异步电动机的启动、反转和制动

举报
开通vip

34三相异步电动机的启动、反转和制动教案(首页)授课班级机电咼职1002授课日期课题序号3.4授课形式讲授授课时数2课题名称三相异步电动机的启动、反转和制动教学目标1•了解异步电动机启动时存在的问题。2•熟悉异步电动机常用的启动方法。3•了解异步电动机的反转方法。4•了解异步电动机的制动方法。教学重点熟悉异步电动机常用的启动方法。了解异步电动机的反转方法教学难点熟悉异步电动机常用的启动方法。了解异步电动机的反转方法教材内容更新、补充及删减无课外作业课后习题教学后记实物展示,多媒体课件...

34三相异步电动机的启动、反转和制动
教案 中职数学基础模块教案 下载北师大版¥1.2次方程的根与系数的关系的教案关于坚持的教案初中数学教案下载电子教案下载 (首页)授课班级机电咼职1002授课日期课题序号3.4授课形式讲授授课时数2课题名称三相异步电动机的启动、反转和制动教学目标1•了解异步电动机启动时存在的问题。2•熟悉异步电动机常用的启动方法。3•了解异步电动机的反转方法。4•了解异步电动机的制动方法。教学重点熟悉异步电动机常用的启动方法。了解异步电动机的反转方法教学难点熟悉异步电动机常用的启动方法。了解异步电动机的反转方法教材 内容 财务内部控制制度的内容财务内部控制制度的内容人员招聘与配置的内容项目成本控制的内容消防安全演练内容 更新、补充及删减无课外作业课后习题教学后记实物展示,多媒体课件送审记录盐城生物工程高等职业技术学校课堂时间安排和板 关于书的成语关于读书的排比句社区图书漂流公约怎么写关于读书的小报汉书pdf 设计复习5导入5新授60练习15小结5―、三相异步电机的起动二、笼型转子异步电机的起动方法1、直接起动2、降压起动(1)定子电路串接电阻起动(2)星形-三角形降压起动自耦变压器降压起动延边三角形降压起动三、绕线型转子异步电机的起动方法1、转子电路串接起动电阻器2、转子串接频敏变阻器四、深槽型和双笼型异步电机起动1、深槽型异步电机2、双笼型异步电机五、三相异步电机的反转六、三相异步电机的制动1、反接制动2、回馈制动3、能耗制动课堂教学安排导入新授三相异步电动机启动时与直谎电动机一样,启动电流大,对电源有较大的冲击,因此容量较大的电动机不允许直接启动。需要在三相异步电动机的各种启动方法中选择一种对电源、对负载最合适的方法。异步电动机驱动的生产机械,也经常要改变运动方向,如电梯的上下、刨床的来回运动,这就需要电动机能快速地正反转。某些生产机械除了需要电动机提供驱动力矩外,还要异步电动机在必要时,提供制动力矩,以便迅速反转、停车或限制转速,例如起重机下放重物时,机床反向运动开始时,都需要电动机进行制动。因此掌握三相异步电动机启动、反转和制动的知识及技能,对电气技术人员是很重要的。一、三相异步电动机的启动异步电动机接入三相电源后,如果电磁转矩T大于负载转矩Tc,电动机就可以从静止状态过渡到稳定运转状态,这个过程叫做启动。电动机启动时由于旋转磁场对静止的转子相对运动速度很大,转子导体切割磁力线的速度也很快,所以电动机的启动电流很大,一般约为额定电流的5〜7倍。由于启动后转子的速度不断增加,所以电流将迅速下降。若电动机启动不频繁,则短时间的启动过程对电动机本身的影响并不大。但当电网的容量较小时,这么大的启动电流会使电网电压显著降低,从而影响电网上其它设备的正常工作。另外,电动机的启动转矩Tq对启动过程也有一定的影响,若启动转矩太小,即使电动机能够启动,加速也将必然较慢,启动时间较长。考虑到上述原因,因此必须根据具体的情况选择不同的启动方法。三相异步电动机的启动方法与电动机转子的结构有关。异步电动机的转子有笼型和绕线型两种结构形式,这两种结构的电动机启动方法有所不同。二、笼型转子异步电动机的启动方法直接启动直接启动,就是利用刀开关或接触器将电动机定子绕组直接接到额定工作电压上的启动方式,故又叫全压启动,这是异步电动机最简单最常用的启动方式,一般电动机容量在14kW以下,并且小于供电变压器容量的20%时,可采用这种启动方式。线路如图3-28所示。1L]JL2mni图3-28简单全压启动线路图2•降压启动笼型电动机若直接启动时电流太大,为了降低启动电流,则在空载或轻载的情况下,可采用降压启动。所谓降压启动:就是在启动时降低加在电动机定子绕组上的电压,待电动机转速升高到接近额定值时,再将电源恢复到额定值,转入正常运行的方法。由于降压启动同时也减小了电动机的启动转矩,所以这种方法只适用于对启动转矩要求不高的生产机械。下面介绍几种常用的降压启动方法。(1)定子电路串接电阻启动兰定子电路中串接电阻启动线路如图3-29所示。启动时,先合上电源隔离开关Ql,将Q2扳向“启动”位置,电动机即串入电阻RQ启动。待转速接近稳定值时,将Q2扳向“运行”位置,RQ被切除,使电动机恢复正常工作情况。由于启动时,启动电流在RQ上产生一定电压降,使得加在定子绕组端的电压降低了,因此限制了启动电流。调节电阻RQ的大小可以将启动电流限制在允许的范围内。采用定子串电阻降压启动时,虽然降低了启动电流,但也使启动转矩大大减小。所以这种启动方法只适用于空载或轻载启动,同时由于采用电阻降压启动时损耗较大,它一般用于低压电动机启动中。图3-29定子串电阻降压启动2)星形-三角形降压启动若电动机在正常工作时其定子绕组是联结成三角形的,那么在启动时可以将定子绕组联结成星形,通电后电动机运转,当转速升高到接近额定转速时再换接成三角形联结。根据三相交流电路的理论,用星形三角形换接启动可以使电动机的启动电流降低到全压启动时的1/3。但要引起注意的是,由于电动机的启动转矩与电压的平方成正比,所以,用星形-三角形换接启动时电动机的启动转矩也是直接启动时的1/3。这种启动方法适合于电动机正常运行时定子绕组为三角形联结的空载或轻载启动。其接线原理线路如图3-30所示。(3)自耦变压器降压启动对于有些三相异步电动机来说,在正常运转时要求其转子绕组必须接成星形,这样一来就不能采用星形-三角形换接启动方式,我们可以用三相自耦变压器将电动机在启动过程中的端电压降低,同样达到减小启动电流的作用。自耦变压器降压启动是利用自耦变压器将电网电压降低后再加到电动机定子绕组上,待转速接近稳定值时,再将电动机直接接到电网上。原理图如图3-31所示。自耦变压器备有40%、60%、80%等多种抽头,使用时可根据电动机启动转矩的要求具体选择。LIL2L3fop图3-30星形-三角形降压启动原理图图3-31自耦变压器降压启动原理图⑷延边三角形降压启动这种电机的每相绕组都带有中心抽头,抽头比例可按启动要求在制造电机前确定。启动时的接法如图3-32(a)所示,部分绕组作△连接,其余绕组向外延伸,所以称为延边三角形启动。启动中降压比例取决于抽头比例,绕组延伸部分越多则降压比越大。启动结束后,将电机的三相中心抽头断开并便绕组依次首尾相接以△接法运行,如图3-32(b)所示。延边三角形降压启动主要用于专用电机上。5〉延边三角形启动三角形运行图3-32延过三角形启动原理三、绕线型转子异步电动机的启动方法对于笼型异步电动机,无论采用哪一种降压启动方法来减小启动电流,电动机的启动转矩都随着减小。所以,对某些重载下启动的生产机械(如起重机、带运输机等)不仅要限制启动电流,而且还要求有足够大的启动转矩,在这种情况下就基本上排除了采用笼型转子异步电动机的可能性,而采用启动性能较好的绕线式异步电动机。通常绕线转子异步电动机用转子电路串接电阻或串接频敏变阻器的方法实现启动。1•转子电路串接启动电阻器绕线转子异步电动机的转子回路串入适当的电阻,既可降低启动电流,又可提高启动转矩;改善电动机的启动性能。其原理图如图3-33所示。图3-33绕线转子异步电动机串电阻启动a>444[][][]图3-34绕线转子异步电动机串)频率变0阻器启动a)频率变阻器的结构示意图b)启动线路图绕线转子异步电动机不仅能在转子回路串入电阻减小启动电流,增大启动转矩,而且还可以在小范围内进行调速,因此,广泛地应用于启动较困难的机械(如起重吊车、卷扬机等)上。但它在结构上比笼型异步电动机复杂,造价高,效率也稍低。在启动过程中,当切除电阻时,转矩突然增大,会在机械部件上产生冲击。当电动机容量较大时,转子电流很大,启动设备也将变得庞大,操作和维护工作量大。为了克服这些缺点,目前多采用频敏变阻器作为启动电阻。2•转子串接频敏变阻器频敏变阻器是一个三相铁心绕组(三相绕组接成星形),铁心一般做成三柱式,由几片或十几片较厚(30〜50mm)的E形钢板或铁板迭装制成,其结构和启动线路如图3-34所示。电动机启动时,转子绕组中的三相交流电通过频敏变阻器,在铁心中便产生交变磁通,该磁通在铁心中产生很强的涡流,使铁心发热,产生涡流损耗,频敏变阻器线圈的等效电阻随着频率的增大而增加,由于涡流损耗与频率的平方成正比,当电动机启动时(s=l),转子电流(即频敏变阻器线圈中通过的电流)频率最高(ff),因此频敏变阻器的电阻和感抗最大。启动后,随着转子21转速的逐渐升高,转子电流频率(f二sf)便逐渐降低,于是频敏变阻器铁心中的涡流损耗及等效电阻也随之减小。实际上频敏变阻器就相当于一个电抗器,它的电阻是随交变电流的频率而变化的,故称频敏变阻器,它正好满足绕线转子异步电动机启动的要求。由于频敏变阻器在工作时总存在着一定的阻抗,使得机械特性比固有机械特性软一些,因此,在启动完毕后,可用接触器将频敏变配器短接,使电动机在固有特性上运行。敏变阻器是一种静止的无触点变阻器,它具有结构简单、启动平滑、运行可靠、成本低廉、维护方便等优点。四、深槽型和双笼型异步电动机启动深槽型和双笼型异步电动机采用特殊的转子笼型绕组结构来改善启动性能,它们都利用电流的集肤效应使电动机启动时转子绕组的电阻变大,从而降低启动电流、增大启动转矩。深槽型异步电动机深槽型电动机的转子槽型深而窄,深宽比是普通电动机的2〜4倍。转子电流产生的漏磁通与槽底部分交链多而槽口部分较少,故槽口部分漏磁通很小,电流主要从槽口部分流(电流趋于表面),这就是所谓的“集肤效应”深槽型电动机的转子槽型、漏磁通、转子电流分布及机械特性集肤效应使导条的有效截面积减小,导条电阻增大。由于转子漏电抗正比于转子电流频率,启动时,s=1,f二f,集肤效应最明显,转子电阻显著增大,机械特性临界点下移导致启动转矩增大,同时启动电流减小。启动结束后电机进入高速运行状态,f2二sfi,f2很小,集肤效应基本消失,转子电流近似均匀分布,机械特性基本不受影响,特性如图中曲线2所示(普通异步电机的特性如曲线1所示)。双笼型异步电动机双笼型电动机的转子有内、外两套笼型绕组(分别称为工作笼和启动笼)。外笼导条截面小且以电阻率较大的黄铜 材料 关于××同志的政审材料调查表环保先进个人材料国家普通话测试材料农民专业合作社注销四查四问剖析材料 制造;内笼导条截面大并由导电性好的紫铜材料制成。启动时,强烈的集肤效应使转子电流流过电阻较大的外笼(启动笼),启动转矩大且启动电流小,外笼对电动机的启动性能影响大。高速运行时,电流主要流经电阻很小的内笼(工作笼),电动机的运行特性受内笼影响大。双笼型电动机机械特性由启动笼特性和工作笼特性合成,图3-36所示分别为双笼型电动机的转子结构、漏磁通分布及机械特性。特性图中,曲线1、2、3分别为启动笼特性、工作笼特性和合成的机械特性。深槽型和双笼型异步电动机正常工作时的转子电流远离转子铁心表面,转子漏电抗比普通笼型电动机大,电动机运行时的功率因数、过载能力偏低并且结构复杂、价格偏高。五、三相异步电动机的反转某些生产机械在工作中经常要改变运动方向,例如车床的主轴需要正反转、吊车需要上下运动等等。虽然也可以用机械方法改变机器的旋转方向,但是在某些场合机械方法有一定的困难,这时,我们可以通过用电气的方法来改变电动机的旋转方向,从而达到改变机器运动方向的目的。前面分析过三相异步电动机的转动方向是由旋转磁场的方向决定的,而旋转磁场的转向取决于定子绕组中通入三相电流的相序。因此,要改变三相异步电动机的转动方向非常容易,只要将电动机三相供电电源中的任意两相对调,这时接到电动机定子绕组的电流相序被改变,旋转磁场的方向也被改变,电动机就实现了反转。六、三相异步电动机的制动当异步电动机的电磁转矩T与转速n的方向相反时,电磁转矩将成为电动机旋转的阻力矩,电动机就处在制动状态。制动的目的主要是利用电磁转矩的制动作用使电动机迅速停车(刹车)或者稳定工作在某些有特殊要求的状态。三相异步电动机的电气制动方式包括反接制动、回馈制动和能耗制动三大类。1•反接制动当异步电动机的旋转磁场方向与转动方向相反时,电动机进入反接制动状态。这时,s二叫-(-n)]/nQ>1。根据电机的功率平衡关系可知,电机仍从电源吸取电功率,同时电机又从转轴获得机械功率。这些功率全部以转子铜耗形式被消耗于转子绕组中,能量损耗大,如果不采取措施将可能导致电机温升过高造成损害。反接制动包括倒拉反转制动和电源反接制动。1)倒拉反转制动起重设备工作中常需要绕线式异步电动机拖动位能性负载(负载转矩方向恒定,与电机转向无关。如起重机吊钩连同重物、电梯等)低速下放,此时可以采取倒拉反转制动,其制动过程及机械特性如图3-37所示。假设制动前绕线式电机拖动负载处于正向电动状态(T>0,n>0),对应运行于机械特性上的A点。制动时,转子外接大阻值的制动电阻导致机械特性的临界点大幅度下移。由于新特性对应于A点转速的转矩很小,因此必然不能维持在A点存在的平衡。电机在惯性作用下以转速nA切换至新特性上运行并开始减速。直到转速降至nB后才能与负载平衡,电机运行于B点。这时nB<0,电机反转且BB转速值较低,但特性软,运行稳定性偏差。(2)电源反接制动针对电动运行的电机,将三相电源的任意两相对调构成反相序电源,贝y旋转磁场也反向,电机进入电源反接制动状态,制动过程与机械特性如图3-38所示。电源反接后,电机因惯性作用由反向机械特性上的A点同转速切换至B点。在反向电磁转矩作用下,电机沿反向机械特性迅速减速。如果制动的目的是使拖动反抗性负埶负载转矩方向始终与电机转向相反)的电机刹车,则需要在电机状态接近C点时及时切断电源,否则电机会很快进入反向电动状态并在D点平衡。如果电机拖动的是位能性负载,电机将迅速越过反向电动特性直至E点才能重新平衡,这时电机的转速超过其反向同步转速,电机进入反向回馈制动状态。电源反接制动时,冲击电流相当大,为了提高制动转矩并降低制动电流,对绕线式电机常采取转子外接(分段)电阻的电源反接制动,制动过程为A-B、-C、(a)制动示意图3-38异步电机电源反接制动2•回馈制动回馈制动常用于起重设备高速下放位能性负载场合,其特点是电机转向与旋转磁场方向相同但转速却大于同步转速。如图3-39(a)所示,在回馈制动方式下,电机自转轴输入机械功率,相当于被“负载”拖动,扣除少部分功率消耗于转子外,其余机械功率以电能形式回送给电网,电机处于发电状态。回馈制动机械特性如图3-39(b)所示,制动过程为A—B若负载拖动的转矩超过回馈制动最大转矩,则制动转矩反而下降,电机转速急剧升高并失控,产生“飞车”等严重事故。(b)机植特性图3-39异步电机回馈制动原理盐城生物工程高等职业技术学校课堂教学安排
本文档为【34三相异步电动机的启动、反转和制动】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_072127
暂无简介~
格式:doc
大小:145KB
软件:Word
页数:11
分类:
上传时间:2020-07-18
浏览量:0