首页 第十一章 曲线积分与曲面积分

第十一章 曲线积分与曲面积分

举报
开通vip

第十一章 曲线积分与曲面积分第十一章 曲线积分与曲面积分 高等数学教案 第十一章 曲线积分与曲面积分 第十一章 曲线积分与曲面积分 一、教学目的: 1. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2. 掌握计算两类曲线积分的方法。 3. 熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原 函数。 了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积4. 分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。 5. 知道散度与旋度的概念,并会计算。 6( 会用曲...

第十一章 曲线积分与曲面积分
第十一章 曲线积分与曲面积分 高等 数学 数学高考答题卡模板高考数学答题卡模板三年级数学混合运算测试卷数学作业设计案例新人教版八年级上数学教学计划 教案 第十一章 曲线积分与曲面积分 第十一章 曲线积分与曲面积分 一、教学目的: 1. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2. 掌握计算两类曲线积分的方法。 3. 熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原 函数。 了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积4. 分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。 5. 知道散度与旋度的概念,并会计算。 6( 会用曲线积分及曲面积分求一些几何量与物理量。 二、 教学重点: 1、两类曲线积分的计算方法; 、格林公式及其应用; 2 3、两类曲面积分的计算方法; 4、高斯公式、斯托克斯公式; 5、两类曲线积分与两类曲面积分的应用。 三、教学难点: 1、两类曲线积分的关系及两类曲面积分的关系; 2、对坐标的曲线积分与对坐标的曲面积分的计算; 3、应用格林公式计算对坐标的曲线积分; 4、应用高斯公式计算对坐标的曲面积分; 5、应用斯托克斯公式计算对坐标的曲线积分。 1 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11.1 对弧长的曲线积分 一、 对弧长的曲线积分的概念与性质 1.引例:曲线形构件的质量: 设一曲线形构件所占的位置在xOy面内的一段曲线弧L上~ 已 B知曲线形构件在点(x~ y)处的线密度为,(x~ y), 求曲线形构件的质量, Mk ,s (1)“大化小”: 把曲线分成n小段~ ,s~ ,s~ , , ,~ k12 Mk,1,s(,s也表示弧长), ni (2)“常代变”:任取(,~ ,),,s~ 得第i小段质量的i ii A近似值,(,~ ,),s, i ii n M,,(,,,),s (3)“求和”整个物质曲线的质量近似为, ,iiii,1 (4)“取极限”令,,max{,s~ ,s~ , , ,~ ,s},0~ 则整个物质曲线的12n 质量为 n M,lim,(,,,),s, ,iii,,0,1i 这种和的极限在研究其它问题时也会遇到, 现在引入下面定义。 2. 定义 设L为xOy面内的一条光滑曲线弧~ 函数f(x~ y)在L上有界, 在L上任意插入一点列M~ M~ , , ,~ M把L分在n个小段. 12n,1 2 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 设第i个小段的长度为,s~ 又(,~ ,)为第i个小段上任意取定的一点~ iii n 作乘积f(,~ ,),s~ (i,1~ 2~, , ,~ n )~ 并作和f(,,,),s~ 如果当各小弧,iiiiiii,1 段的长度的最大值,,0~ 这和的极限总存在~ 则称此极限为函数f(x~ y)在曲线弧L上对弧长的曲线积分或第一类曲线积分~ 记作 n ~ 即f(x,y)ds,limf(,,,),s, f(x,y)ds,iii,,LL,,0,1i 其中f(x~ y)叫做被积函数~ L 叫做积分弧段, 说明: (1)根据对弧长的曲线积分的定义~曲线形构件的质量就是曲线积分的值~ 其中,(x~ y)为线密度, ,(x,y)ds,L n (2) 对弧长的曲线积分的推广: f(x,y,z)ds,limf(,,,,,),s, ,iiii,,,,0,1i (3)如果L(或,)是分段光滑的~ 则规定函数在L(或,)上的曲线积分等于函数在光滑的各段上的曲线积分的和, 例如设L可分成两段光滑曲线弧L及L~ 则规定 12 , f(x,y)ds,f(x,y)ds,f(x,y)ds,,,L,LLL1212 (4)闭曲线积分: 如果L是闭曲线~ 那么函数f(x~ y)在闭曲线L上对弧长的曲线积分记作 , f(x,y)ds,L 3. 曲线积分的存在性: 当f(x~ y)在光滑曲线弧L上连续时~ 对弧长的曲线积分是存在的, 以后我们总假定f(x~ y)在L上是连f(x,y)ds,L 3 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 续的, 4. 对弧长的曲线积分的性质: 性质1 设c、c为常数~ 则 12 , [cf(x,y),cg(x,y)]ds,cf(x,y)ds,cg(x,y)ds1212,,,LLL 性质2 若积分弧段L可分成两段光滑曲线弧L和L~ 则 12 , f(x,y)ds,f(x,y)ds,f(x,y)ds,,,LLL12 性质3设在L上f(x~ y),g(x~ y)~ 则 f(x,y)ds,g(x,y)ds , ,,LL 特别地~ 有 |f(x,y)ds|,|f(x,y)|ds ,,LL 二、对弧长的曲线积分的计算法 定理 设f(x~ y)在曲线弧L上有定义且连续~ L的 参数 转速和进给参数表a氧化沟运行参数高温蒸汽处理医疗废物pid参数自整定算法口腔医院集中消毒供应 方程为 x,,(t)~ y,,(t) (,,t,,)~ 22其中,(t)、,(t)在[,~ ,]上具有一阶连续导数~ 且,,(t),,,(t),0~ 则曲线积分存在~ 且 f(x,y)ds,L ,22,,f(x,y)ds,f,[(t),,(t)],(t),,(t)dt (,<,), ,,L, 证明 住所证明下载场所使用证明下载诊断证明下载住所证明下载爱问住所证明下载爱问 (略) 注意: 定积分的下限,一定要小于上限,, 讨论: 4 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 (1)若曲线L的方程为y,,(x)(a,x,b)~ 则,? f(x,y)ds,L提示: L的参数方程为x,x~ y,,(x)(a,x,b)~ b2,f(x,y)ds,f[x,,(x)]1,,(x)dx , ,,La (2)若曲线L的方程为x,,(y)(c,y,d)~ 则,? f(x,y)ds,L提示: L的参数方程为x,,(y)~ y,y(c,y,d)~ d2,f(x,y)ds,f[,(y),y],(y),1dy , ,,Lc (3)若曲线L的极坐标方程为: ,=,(,),则,? f(x,y)ds,L ,22,提示: fxydsfd(,)[cos,sin],,,,,,,,, ,,L, (4)若曲,的方程为x,,(t)~ y,,(t)~ z,,(t)(,,t,,)~ 则,? f(x,y,z)ds,, ,222,,,f(x,y,z)ds,f,[(t),,(t),,(t)],(t),,(t),,(t)dt提示: , ,,,, 2 例1 计算~ 其中L是抛物线y,x上点O(0~ 0)与点B(1~ 1)yds,L 之间的一段弧, y2B(1,1) 解 曲线的方程为y,x (0,x,1)~ 因此 2 yx,L 1112222,yds,x1,(x)dx,x1,4xdx,(55,1), ,,,1xL0012o 例2 计算半径为R、中心角为2,的圆弧L对y L于它的对称轴的转动惯量I(设线密度为,,1), ,2 解 取坐标系如图所示~ 则, I,yds,oLRx 5 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 曲线L的参数方程为 x,Rcos,~ y,Rsin, (,,,,<,), ,22222,Rsin,(,Rsin,),(Rcos,)d,于是 I,yds,,,L, ,332,Rsin,d, ,R(,,sin, cos,), ,,, 222 例3 计算曲线积分~ 其中,为螺旋线x,acost、(x,y,z)ds,, y,asint、z,kt上相应于t从0到达2,的一段弧, 2222222 2 2 解 在曲线,上有x,y,z,(a cos t),(a sin t),(k t),a,kt~ 并 且 y22222ds,(,asint),(acost),kdt,a,kdt ~ 2,22222222,(a,kt)a,kdt于是 (x,y,z)ds,,0,xo222222,,a,k(3a,4,k) , 3 222例4. 计算曲线积分 其中,为螺()d,xyzs,,,, xatyatzktt,,,,,cos,sin,(02),旋线的 一段弧. 2,222222222解: ,,,[(cos)(sin)()]atatkt()dxyzs,,,,,,(sin)(cos)datatkt,,,02,22222,,,akaktt[]d ,0 k2,2 ,,akatt2223,,,,,3,, 0 2,22222,,,akak(34), 3 6 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 三、小结 1、对弧长曲线积分的概念 2、对弧长曲线积分的计算 3、对弧长曲线积分的应用 四、思考与 练习 飞向蓝天的恐龙练习非连续性文本练习把字句和被字句的转换练习呼风唤雨的世纪练习呼风唤雨的世纪课后练习 22xy22已知椭圆 周长为a , 求 L:1,,(234)dxyxys,,, L43 7 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11, 2 对坐标的曲线积分 一、对坐标的曲线积分的概念与性质 1.引例:变力沿曲线所作的功: 设一个质点在xOy面内在变力F(x~ y),P(x~ y)i,Q(x~ y)j的作用下从点A沿光滑曲线弧L移动到点B~ 试求变力F(x~ y)所作的功, 用曲线L上的点A,A~ A~ A~ , , ,~ A,~ A,B把L分成n个小弧012n1n 段~ ,设A,(x~ y)~ 有向线段的长度为,s~ 它与x轴的夹角为,~ 则 AAkk kkk kk,1 ,(k,0~ 1~ 2~ , , ,~ n,1), AA,{cos,,sin,},skk1kkk, : 显然~ 变力F(x~ y)沿有向小弧段所作的功可以近似为 AAkk,1 , , F(x,y),AA,[P(x,y)cos,,Q(x,y)sin,],skkkk1kkkkkkk, 于是~ 变力F(x~ y)所作的功 n1,n,1, ~ W,F(x,y),AA,[P(x,y)cos,,Q(x,y)sin,],s,,kkkk1,kkkkkkkk1,k,1 从而 W,[P(x,y)cos,,Q(x,y)sin,]ds , ,L 这里,,,(x~ y)~ {cos,~ sin,}是曲线L在点(x~ y)处的与曲线方向一致的单位切向量, 8 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 把L分成n个小弧段: L~ L~ , , ,~ L, 12n 变力在L上所作的功近似为: i F(,~ ,),,s,P(,~ ,),x,Q(,~ ,),y , iiiiiiiii 变力在L上所作的功近似为: n , [P(,,,),x,Q(,,,),y],iiiiii i,1 变力在L上所作的功的精确值: n ~ W,lim[P(,,,),x,Q(,,,),y],iiiiii,0,i,1 其中,是各小弧段长度的最大值, 提示: 用,s,{,x~,y}表示从L的起点到其终点的的向量, 用,s表示iiiii,s的模, i 2.对坐标的曲线积分的定义: 定义 设函数f(x~ y)在有向光滑曲线L上有界, 把L分成n个有 向小弧段L~ L~ , , ,~ L, 小弧段L的起点为(x~ y)~ 终点为(x~ 12nii,1i,1i y)~ ,x,x,x~ ,y,y,y, (,~ ,)为L上任意一点~ ,为各小弧段长度iiii,1iii,1ii 的最大值, n 如果极限总存在~ 则称此极限为函数 limf(,,,),x,iii,,0,1i 9 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 f(x~ y)在有向曲线L上对坐标x的曲线积分~ 记作~ 即 f(x,y)dx,L n ~ f(x,y)dx,limf(,,,),x,iii,L,0,,1i n 如果极限总存在~ 则称此极限为函数 limf(,,,),y,iii,,0,1i f(x~ y)在有向曲线L上对坐标x的曲线积分~ 记作~ 即 f(x,y)dy,L n , f(x,y)dy,limf(,,,),y,iii,L,0,,1i 设L为xOy面上一条光滑有向曲线~ {cos,~ sin,}是与曲线方向一致的单位切向量~ 函数P(x~ y)、Q(x~ y)在L上有定义, 如果下列二式右端的积分存在~ 我们就定义 ~ P(x,y)dx,P(x,y)cos,ds,,LL ~ Q(x,y)dy,Q(x,y)sin,ds,,LL 前者称为函数P(x~ y)在有向曲线L上对坐标x的曲线积分~ 后者称为函数Q(x~ y)在有向曲线L上对坐标y的曲线积分~ 对坐标的曲线积分也叫第二类曲线积分, 说明: 定义的推广: 设,为空间内一条光滑有向曲线~ {cos,~ cos,~ cos,}是曲线在点(x~ y~ z)处的与曲线方向一致的单位切向量~ 函数P(x~ y~ z)、Q(x~ y~ z)、 10 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 R(x~ y~ z)在,上有定义, 我们定义(假如各式右端的积分存在) ~ P(x,y,z)dx,P(x,y,z)cos,ds,,,, ~ Q(x,y,z)dy,Q(x,y,z)cos,ds,,,, , R(x,y,z)dz,R(x,y,z)cos,ds,,,, n ~ f(x,y,z)dx,limf(,,,,,),x,iiii,L,0,,1i n ~ f(x,y,z)dy,limf(,,,,,),y,iiii,L,0,,1i n , f(x,y,z)dz,limf(,,,,,),z,iiii,L,0,,1i 对坐标的曲线积分的简写形式: , P(x,y)dx,Q(x,y)dy,P(x,y)dx,Q(x,y)dy,,,LLL P(x,y,z)dx,Q(x,y,z)dy,R(x,y,z)dz,,,,,, , ,P(x,y,z)dx,Q(x,y,z)dy,R(x,y,z)dz,, 3.对坐标的曲线积分的性质: (1) 如果把L分成L和L~ 则 12 , Pdx,Qdy,Pdx,Qdy,Pdx,Qdy,,,LLL12 (2) 设L是有向曲线弧~ ,L是与L方向相反的有向曲线弧~ 则 , P(x,y)dx,Q(x,y)d,,P(x,y)dx,Q(x,y)dy,,,LL 11 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 二、对坐标的曲线积分的计算: 定理: 设P(x~ y)、Q(x~ y)是定义在光滑有向曲线 L: x,,(t)~ y,,(t)~ 上的连续函数~ 当参数t单调地由,变到,时~ 点M(x~ y)从L的起点A沿L运动到终点B~ 则 ,,P(x,y)dx,P[,(t),,(t)],(t)dt ~ ,,L, ,,Q(x,y)dy,Q[,(t),,(t)],(t)dt , ,,L, 讨论: ,, P(x,y)dx,Q(x,y)dy,L ,,,P(x,y)dx,Q(x,y)dy,{P,[(t),,(t)],(t),Q[,(t),,(t)],(t)}dt提示: , ,,L, 定理: 若P(x~ y)是定义在光滑有向曲线 L: x,,(t)~ y,,(t)(,,t,,) 上的连续函数~ L的方向与t的增加方向一致~ 则 ,,P(x,y)dx,P[,(t),,(t)],(t)dt , ,,L, 简要证明: 不妨设,,,, 对应于t点与曲线L的方向一致的切向量为{,,(t)~ ,,(t)}~ ,,(t),cos所以,~ 22,,,(t),,(t) 从而 P(x,y)dx,P(x,y)cos,ds,,LL 12 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ,,,(t)22,, ,P,[(t),,(t)],(t),,(t)dt,22,,,(t),(t),, ,,,P[,(t),,(t)],(t)dt , ,, 应注意的问题: 下限a对应于L的起点~ 上限, 对应于L的终点~ ,不一定小于 , , 讨论: 若空间曲线,由参数方程 x,,,t)~ y, = (t)~ z,,(t) 给出~ 那么曲线积分 ,, P(x,y,z)dx,Q(x,y,z)dy,R(x,y,z)dz,, 如何计算 提示: P(x,y,z)dx,Q(x,y,z)dy,R(x,y,z)dz,, ,,,,Q,[(t),,(t),,(t)],(t)R[,(t),,(t),,(t)],(t)}dt,,,{P[,(t),,(t),,(t)],(t)~ , , 其中,对应于,的起点~ ,对应于,的终点, 例题: 2 例1,计算~ 其中L为抛物线y,x上从点A(1~ ,1)到点B(1~ 1)xydx,L 的一段弧, 13 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 解法一: 以x为参数, L分为AO和OB两部分: AO的方程为~ x从1变到0, OB 的方程为~ x从0变到y,,xy,x1, 因此 xydx,xydx,xydx,,,LAOOB 301142 ()2, ,x,xdx,xxdx,xdx,,,,1005 2 第二种方法: 以y为积分变量, L的方程为x,y~ y从,1变到1, 因此 114224,xydx,yy(y)dy , 2,ydy,,,,L,1,15 2 例2, 计算, ydx,L 222(1)L为按逆时针方向绕行的上半圆周x+y=a , (2)从点A(a~ 0)沿x轴到点B(,a~ 0)的直线段, 解 (1)L 的参数方程为 x,a cos,~ y,a sin,~ ,从0变到,, ,,4222323ydx,asin,(,asin,)d,,a(1,cos,)dcos,,,a 因此 , ,,,L003(2)L的方程为y,0~ x从a变到,a, ,a2ydx,0dx,0因此 , ,,La 22 例3 计算, (1)抛物线y,x上从O(0~ 0)到B(1~ 1)的2xydx,xdy,L 2一段弧, (2)抛物线x,y上从O(0~ 0)到B(1~ 1)的一段弧, (3)从O(0~ 0) 14 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 到A(1~ 0)~ 再到R (1~ 1)的有向折线OAB , 2 解 (1)L: y,x~ x从0变到1, 所以 1132222xydx,xdy,(2x,x,x,2x)dx,4xdx,1 , ,,,L00 2(2)L: x,y~ y从0变到1, 所以 1142242xydx,xdy,(2y,y,2y,y)dy,5ydy,1 , ,,,L00 (3)OA: y,0~ x从0变到1, AB: x,1~ y从0变到1, 222 2xydx,xdy,2xydx,xdy,2xydx,xdy,,,LOAAB 112,(2x,0,x,0)dx,(2y,0,1)dy ,0,1,1, ,,00 322 例4, 计算~ 其中,是从点A(3~ 2~ 1)到点B(0~ xdx,3zydy,xydz,, 0~ 0)的直线段AB, 解: 直线AB的参数方程为 x,3t~ y,2t~ x,t~ t从1变到0, 所以 00873223I,[(3t),3,3t(2t),2,(3t),2t]dt所以 , 87,tdt,,,,114 22yx 例5, 一个质点在力F的作用下从点A(a~ 0)沿椭圆,,1按逆22ab时针方向移动到点B(0~ b)~ F的大小与质点到原点的距离成正比~ 方向恒指向原点, 求力F所作的功W, 15 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 , 解: 椭圆的参数方程为x,acost~ y,bsint ~ t从0变到, 2 ,r ~ ~ r,OM,xi,yjF,k,|r|,(,),,k(xi,yj)|r| 其中k>0是比例常数, ::W,,kxdx,kydy,,kxdx,ydy于是 , ,,ABAB ,222 ,,k(,acostsint,bsintcost)dt,0 ,k22222,k(a,b)sintcostdt,(a,b) , ,02 三、两类曲线积分之间的联系 由定义~ 得 Pdx,Qdy,(Pcos,,Qsin,)ds,,LL ~ ,{P,Q},{cos,,sin,}ds,F,dr,,LL 其中F,{P~ Q}~ T,{cos,~ sin,}为有向曲线弧L上点(x~ y)处单位切向量~ dr,Tds,{dx~ dy}, 类似地有 Pdx,Qdy,Rdz,(Pcos,,Qcos,,Rcos,)ds,,,, , ,{P,Q,R},{cos,,cos,,cos,}ds,F,dr,,,, 其中F,{P~ Q~ R}~ T,{cos,~ cos,~ cos,}为有向曲线弧,上点(x~ y~ z)处单们切向量~ dr,Tds ,{dx~ dy~ dz }, 16 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 四、小结 z1、对坐标曲线积分的概念 C(0,0,1)2、对坐标曲线积分的计算 B(0,1,0)o2、 两类曲线积分之间的联系 y A(1,0,0)x五、思考题 已知为折线 ABCOA(如图), 计算 Ixyyz,,,ddd, , 17 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11,3 格林公式及其应用 一、格林公式 1. 单连通与复连通区域: 设D为平面区域~ 如果D内任一闭曲线所围的部分都属于D~ 则称D为平面单连通区域~ 否则称为复连通区域, 对平面区域D的边界曲线L~ 我们规定L的正向如下: 当观察者沿L的这个方向行走时~ D内在他近处的那一部分总在他的左边, 定理1设闭区域D由分段光滑的曲线围成~ 函数P(x~ y)及L Q(x~ y)在D上具有一阶连续偏导数~ 则有 ,Q,P(,)dxdy,Pdx,Qdy ~ ,,,L,x,yD 其中L是D的取正向的边界曲线, 证明: 仅就D即是X,型的又是Y,型的区域情形进行证明, ,P设D,{(x~ y)|,(x),y,,(x)~ a,x,b}, 因为连续~ 所以由二重积12,y 分的计算法有 ()b,xb,P(x,y)2,P , dxdy,{dy}dx,{P[x,,(x)],P[x,,(x)]}dx21,,,,,()axa,,y,y1D 另一方面~ 由对坐标的曲线积分的性质及计算法有 ba Pdx,Pdx,Pdx,P[x,,(x)]dx,P[x,,(x)]dx12,,,,,LLLab12 18 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 b,{P[x,,(x)],P[x,,(x)]}dx , 12,a 因此 ,P ,dxdy,Pdx, ,,,L,yD 设D,{(x~ y)|,(y),x,,(y)~ c,y,d}, 类似地可证 12 ,Q , dxdy,Qdx,,,L,xD 由于D即是X,型的又是Y,型的~ 所以以上两式同时成立~ 两式合并即得 ,Q,,,P , ,dxdy,Pdx,Qdy,,,,,L,x,y,,D 应注意的问题: (1)对复连通区域D~ 格林公式右端应包括沿区域D的全部边界的曲线积分~ 且边界的方向对区域D来说都是正向, (2)设区域D的边界曲线为L~ 取P,,y~ Q,x~ 则由格林公式得 1A,dxdy,xdy,ydx ~ 或, 2dxdy,xdy,ydx,,,,,,LL2DD 例1, 椭圆x,a cos, ~ y,b sin, 所围成图形的面积A, ,Q,Q,P,P,,1 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 : 只要~ 就有, (,)dxdy,dxdy,A,,,,,x,y,x,yDD 解: 设D是由椭圆x=acos, ~ y=bsin, 所围成的区域, 19 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ,Q11,P11P,,yQ,x,,,,1令~ ~ 则, 22,x,y22于是由格林公式~ 111 A,dxdy,,ydx,xdy,,ydx,xdy ,,,,LL222D 2,2,1122 ,,ab, abd,(absin,,abcos,)d,,,,,0022 例2 设L是任意一条分段光滑的闭曲线~ 证明 2 , 2xydx,xdy,0,L ,Q2,P,,2x,2x,0 证: 令P,2xy~ Q,x~ 则, ,x,y 22xydx,xdy,,0dxdy,0因此~ 由格林公式有, (为什么二重积分前有,,,LD“,”号, ) 2,yedxdy 例3, 计算~ 其中D是以O(0~ 0)~ A(1~ 1)~ B(0~ 1)为顶点的,, D 三角形闭区域, 2,Q2,P,y,y,,e 分析: 要使~ 只需P,0~ , Q,xe,x,y 2,Q2,P,y,y,,e 解: 令P,0~ ~ 则, 因此~ 由格林公式有 Q,xe,x,y 122221,y,y,y,x,1,xedy,xedx,(1,e)edxdy,xedy , ,,,,,02OADOA,AB,BO xdy,ydx 例4 计算~ 其中L为一条无重点、分段光滑且不经过,22Lx,y 20 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 原点的连续闭曲线~ L的方向为逆时针方向, 22,y,Qy,x22,Px,,解: 令P,~ , 则当x,y,0时~ 有, Q,2222222,x,y(x,y)x,yx,y 记L 所围成的闭区域为D, 当(0~ 0),D时~ 由格林公式得 xdyydx,, ,0,22Lxy, 22 2当(0~ 0),D时~ 在D内取一圆周l: x,y,r(r>0), 由L及l围成了一个复连通区域D~ 应用格林公式得 1 xdyydxxdyydx,,,,0~ ,,2222Llxyxy,, 其中l的方向取逆时针方向, 22222,xdy,ydxxdy,ydx,,rcos,rsin,于是 ,2,, ,,d,,2222,2Ll0x,yx,yr 二、平面上曲线积分与路径无关的条件 曲线积分与路径无关: 设G是一个开区域~ P(x~ y)、Q(x~ y)在区域G内具有一阶连续偏导数, 如果对于G内任意指定的两个点A、B以及G内从点A到点B的任意两条曲线L、L~ 等式 1 2 Pdx,Qdy,Pdx,Qdy,,LL12 恒成立~ 就说曲线积分在G内与路径无关~ 否则说与路径Pdx,Qdy,L 21 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 有关, 设曲线积分在G内与路径无关~ L和L是G内任意Pdx,Qdy 1 2,L 两条从点A到点B的曲线~ 则有 ~ Pdx,Qdy,Pdx,Qdy,,LL12 因为 , Pdx,Qdy,Pdx,QdyPdx,Qdy,Pdx,Qdy,0,,,,LLLL1212 ,,~ Pdx,Qdy,Pdx,Qdy,0Pdx,Qdy,0,,,,,LLL,(L)1212所以有以下结论: 曲线积分在G内与路径无关相当于沿G内任意 Pdx,Qdy,L 闭曲线C的曲线积分等于零, Pdx,Qdy,L 定理2 设开区域G是一个单连通域~ 函数P(x~ y)及Q(x~ y)在G 内具有一阶连续偏导数~ 则曲线积分在G内与路径无关Pdx,Qdy,L(或沿G内任意闭曲线的曲线积分为零)的充分必要条件是等式 ,Q,P ,,y,x 在G内恒成立, 充分性易证: ,Q,Q,P,P, 若~ 则,,0~ 由格林公式~ 对任意闭曲线L~ ,y,x,x,y ,Q,,,P有, Pdx,Qdy,,dxdy,0,,,,,L,x,y,,D 22 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 必要性: Q,P,,,,,0 假设存在一点M,G~ 使~ 不妨设,>0~ 0 xy,, ,Q,P,则由的连续性~ 存在M的一个, 邻域U(M, ,)~ 00,x,y ,,Q,P,,使在此邻域内有, 于是沿邻域U(M, ,)边界l 的闭曲线积0,x,y2 分 ,,Q,P2 ~ Pdx,Qdy,(,)dxdy,,,0,,,,,l,x,y2UM,(,)0 ,Q,P, 这与闭曲线积分为零相矛盾~ 因此在G内,,0,x,y 注意: 定理要求~ 区域G是单连通区域~ 且函数P(x~ y)及Q(x~ y)在G内具有一阶连续偏导数, 如果这两个条件之一不能满足~ 那么定理的结论不能保证成立, ,Q,P 破坏函数P、Q及、连续性的点称为奇点, ,y,x 22 例5 计算~ 其中L为抛物线y,x上从O(0~ 0)到B(1~ 1)2xydx,xdy,L 的一段弧, ,Q,P,,2x 解: 因为在整个xOy面内都成立~ ,y,x 2所以在整个xOy面内~ 积分与路径无关, 2xydx,xdy,L 23 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 2222xydx,xdy,2xydx,xdy,2xydx,xdy ,,,LOAAB 12,1dy,1 , ,0 讨论: 设L为一条无重点、分段光滑且不经过原点的连续闭曲线~ L xdyydx,的方向为逆时针方向~ 问是否一定成立, ,0,22Lxy, 提示: ,yxP, 这里和在点(0~ 0)不连续, Q,2222x,yx,y 22,Qy,x22,P,,因为当x,y,0时~ ~ 所以如果(0~ 0)不在L所围成的222,x,y(x,y) 区域内~ 则结论成立~ 而当(0~ 0)在L所围成的区域内时~ 结论未必成立, 三、二元函数的全微分求积 曲线积分在G内与路径无关~ 表明曲线积分的值只与起点从点(x~ y)与终点(x~ y)有关, 00 (x,y) 如果与路径无关~ 则把它记为 Pdx,QdyPdx,Qdy,,L(x,y)00 (x,y) 即 , Pdx,Qdy,Pdx,Qdy,,L(x,y)00 若起点(x~ y)为G内的一定点~ 终点(x~ y)为G内的动点~ 则 00 (x,y) u(x~ y) ,Pdx,Qdy,(x,y)00 为G内的的函数, 24 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 二元函数u(x~ y)的全微分为du(x~ y),u(x~ y)dx,u(x~ y)dy, xy 表达式P(x~ y)dx+Q(x~ y)dy与函数的全微分有相同的结构~ 但它未必就是某个函数的全微分, 那么在什么条件下表达式P(x~ y)dx+Q(x~ y)dy是某个二元函数u(x~ y)的全微分呢,当这样的二元函数存在时怎样求出这个二元函数呢, 定理3 设开区域G是一个单连通域~ 函数P(x~ y)及Q(x~ y)在G内具有一阶连续偏导数~ 则P(x~ y)dx,Q(x~ y)dy 在G内为某一函数u(x~ y)的全微分的充分必要条件是等式 ,Q,P , ,y,x 在G内恒成立, 简要证明: 必要性: 假设存在某一函数u(x~ y)~ 使得 du,P(x~ y)dx,Q(x~ y)dy~ 22,Q,P,,u,u,,u,u,,,,则有 ~ , ()(),y,y,x,x,y,x,x,y,y,x 22,Q,u,P,u,, 因为、连续~ 所以 ,x,y,y,y,x,x 22,Q,u,u,P,,~ 即, ,x,y,y,x,y,x 25 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 充分性: ,Q,P 因为在G内~ 所以积分 ,P(x,y)dx,Q(x,y)dy,L,y,x 在G内与路径无关, 在G内从点(x~ y)到点(x~ y)的曲线积分可表示00为 (x,y)考虑函数u(x~ y), ,P(x,y)dx,Q(x,y)dy,(x,y)00 (x,y)因为 u(x~ y) ,P(x,y)dx,Q(x,y)dy,(x,y)00 yx ~ ,Q(x,y)dy,P(x,y)dx0,,yx00 yx,u,,所以 , ,Q(x,y)dy,P(x,y)dx,P(x,y)0,,yx,x,x,x00 ,u 类似地有~ 从而du ,P(x~ y)dx,Q(x~ y)dy, 即P(x~ ,Q(x,y),y y)dx,Q(x~ y)dy是某一函数的全微分, 求原函数的公式: (x,y) ~ u(x,y),P(x,y)dx,Q(x,y)dy,(x,y)00 xy ~ u(x,y),P(x,y)dx,Q(x,y)dy0,,xy00 yx , u(x,y),Q(x,y)dy,P(x,y)dx0,,yx00 xdy,ydx 例6 验证:在右半平面(x>0)内是某个函数的全微分~ 并求22x,y 出一个这样的函数, ,yxP, 解: 这里~ Q,, 2222x,yx,y 因为P、Q在右半平面内具有一阶连续偏导数~ 且有 26 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 22,Qy,x,P,, ~ 222,x,y(x,y) xdy,ydx所以在右半平面内~ 是某个函数的全微分, 22x,y 取积分路线为从A(1~ 0)到B(x~ 0)再到C(x~ y)的折线~ 则所求函数为 (x,y)yxdy,ydxxdyy uxy,,,, (,)0,arctan,,22220(1, 0)xx,yx,y 问: 为什么(x~ y)不取(0~ 0)? 00 22 例7 验证: 在整个xOy面内~ xydx,xydy是某个函数的全微分~ 并求出一个这样的函数, 22 解 这里P,xy~ Q,xy, 因为P、Q在整个xOy面内具有一阶连续偏导数~ 且有 ,Q,P,2xy, ~ ,x,y 22所以在整个xOy面内~ xydx,xydy是某个函数的全微分, 取积分路线为从O(0~ 0)到A(x~ 0)再到B(x~ y)的折线~ 则所求函数为 22(x,y)yyxy22220 , ,,,,u(x,y),xydx,xydyxydyxydy,,,00(0, 0)2四、小结 27 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 1.连通区域的概念; 2.二重积分与曲线积分的关系 ,,QP(),,,dxdyPdxQdy ,,, L,,xyD 3. 格林公式的应用. 4. 与路径无关的四个等价命题 五、思考与练习: 在区域G内除M点外~ 如果P(x~ y)和Q(x~ y)具有一阶连续偏0 ,Q,P导数~ 且恒有,~ G是G内不含M的单连通区域~ 那么 10,x,y (1)在G内的曲线积分是否与路径无关? P(x,y)dx,Q(x,y)dy 1,L (2)在G内的闭曲线积分是否为零? P(x,y)dx,Q(x,y)dy 1,L (3) 在G内P(x~ y)dx,Q(x~ y)dy是否是某一函数u(x~ y)的全微分? 1 28 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11, 4 对面积的曲面积分 一、对面积的曲面积分的概念与性质 1.引例. 曲面形构件的质量问题: 设,为面密度非均匀的物质曲面~ 其面密度为,(x~ y~ z)~ 求其质量: 把曲面分成n个小块: ,S~ ,S~ , , ,~ ,S(,S也代表曲面的面积), 12 n i n 求质量的近似值: ,(,,,,,),S((,~ ,~ ,)是,S上任意一点), ,iii iiiiii,1 n M,lim,(,,,,,),S 取极限求精确值: (,为各小块曲面直径的,iiii,,0,1i 最大值), 2.定义 设曲面,是光滑的~ 函数f(x~ y~ z)在,上有界, 把,任意分成n小块: ,S~ ,S~ , , ,~ ,S(,S也代表曲面的面积)~ 在,S上任取一12 n ii点(,~ ,~ ,)~ 如果当各小块曲面的直径的最大值,,0时~ 极限iii n limf(,,,,,),S总存在~ 则称此极限为函数f(x~ y~ z)在曲面,上对面,iiii,,0,1i 积的曲面积分或第一类曲面积分~ 记作~ 即 f(x,y,z)dS,,, n , f(x,y,z)dS,limf(,,,,,),S,iiii,,,0,,1i, 其中f(x~ y~ z)叫做被积函数~ ,叫做积分曲面, 29 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 3.对面积的曲面积分的存在性: 我们指出当f(x~ y~ z)在光滑曲面,上连续时对面积的曲面积分是存在的, 今后总假定f(x~ y~ z)在,上连续, 根据上述定义面密度为连续函数,(x~ y~ z)的光滑曲面,的质量M可表示为,(x~ y~ z)在,上对面积的曲面积分: M,f(x,y,z)dS,,, 如果,是分片光滑的我们规定函数在,上对面积的曲面积分等于函数在光滑的各片曲面上对面积的曲面积分之和, 例如设,可分成两片光滑曲面,及,(记作,,,,,)就规定 1212 f(x,y,z)dS,f(x,y,z)dS,f(x,y,z)dS , ,,,,,,,,,,,1212 4.对面积的曲面积分的性质: (1)设c、c为常数~ 则 1 2 , [cf(x,y,z),cg(x,y,z)]dS,cf(x,y,z)dS,cg(x,y,z)dS1212,,,,,, ,,, (2)若曲面,可分成两片光滑曲面,及,~ 则 12 f(x,y,z)dS,f(x,y,z)dS,f(x,y,z)dS , ,,,,,,,,,12 (3)设在曲面,上f(x~ y~ z),g(x~ y~ z)~ 则 , f(x,y,z)dS,g(x,y,z)dS,,,,,, 30 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 (4)~ 其中A为曲面,的面积, dS,A,,, 二、对面积的曲面积分的计算(化曲面积分为二重积分) 定理: 设曲面,由方程z,z(x~ y)给出~ ,在xOy面上的投影区域 为D~ 函数z,z(x~ y)在D上具有连续偏导数~ 被积函数f(x~ y~ z)在,xyxy 上连续~ 则 22f(x,y,z)dS,f[x,y,z(x,y)]1,z(x,y),z(x,y)dxdy, xy,,,,,Dxy 如果积分曲面,的方程为y,y(z~ x)~ D为,在zOx面上的投影区zx域~ 则函数f(x~ y~ z)在,上对面积的曲面积分为 22f(x,y,z)dS,f[x,y(z,x),z]1,y(z,x),y(z,x)dzdx , zx,,,,,Dzx 如果积分曲面,的方程为x,x(y~ z)~ D为,在yOz面上的投影区yz域~ 则函数f(x~ y~ z)在,上对面积的曲面积分为 22f(x,y,z)dS,f[x(y,z),y,z]1,x(y,z),x(y,z)dydz , yz,,,,,Dyz 22221dS 例1 计算曲面积分~ 其中,是球面x,y,z,a被平面 ,,z, z,h(0,h,a)截出的顶部, 2222222z,a,x,y 解 ,的方程为~ D: x,y,a,h, xy ,y,xz,z,因为 ~ ~ yx222222a,x,ya,x,y 31 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 a22 dS,1,z,zdxdy,dxdy~ xy222a,x,y a1所以 ,dSdxdy,,,,222z,,axy,Dxy 222,a,h22rdra122a,h2aln,2,a[,ln(a,r)],, ,ad, ,0,,2200h2a,r 22yxa22,,,,,,提示: , 1zz1xy222222222,,,,axyaxy,,axy 例2 计算~ 其中,是由平面x,0~ y,0~ z,0及x,y,z,1所xyzdS,,, 围成的四面体的整个边界曲面, 解 整个边界曲面,在平面x,0、y,0、z,0及x,y,z,1上的部分依次记为,、,、,及,~ 于是 1234 xyzdS,xyzdS,xyzdS,xyzdS,xyzdS ,,,,,,,,,,,,,,,1234 ,0,0,0,xyzdS,3xy(1,x,y)dxdy ,,,,D,xy4 311,x1(1x),3,3xdxy(1,x,y)dy , 3xdx,,,,,,0006120提示: ,: z,1,x,y~ 4 22,, , dS,1,z,zdxdy,3dxdyxy 三、小结 1、 对面积的曲面积分的概念; 2、对面积的曲面积分的解法是将其化为投影域上的二重积分计算. (按照曲面的不同情况分为三种) 32 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 四、思考与练习 P158 题1;3;4(1) ; 7 P184 题2 33 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11, 5 对坐标的曲面积分 一、对坐标的曲面积分的概念与性质 1.预备知识 有向曲面:通常我们遇到的曲面都是双侧的, 例如由方程z,z(x~ y) 表示的曲面分为上侧与下侧, 设n,(cos,~ cos,~ cos,)为曲面上的法向量~ 在曲面的上侧cos,,0~ 在曲面的下侧cos,,0, 闭曲面有内侧与外侧之分, 类似地~ 如果曲面的方程为y,y(z~ x)~则曲面分为左侧与右侧~ 在曲面的右侧cos,,0~ 在曲面的左侧cos,,0, 如果曲面的方程为x,x(y~ z)~ 则曲面分为前侧与后侧~ 在曲面的前侧cos ,,0~ 在曲面的后侧cos,,0, 设,是有向曲面, 在,上取一小块曲面,S~ 把,S投影到xOy面上得一投影区域~ 这投影区域的面积记为(,,),假定,S上各点处的xy 法向量与z轴的夹角,的余弦cos,有相同的符号(即cos,都是正的或都是负的), 我们规定,S在xOy面上的投影(,S)为 xy ,,(,) cos,0,xy,,,(,),,(,) cos,0 ~ S,xyxy ,,0 cos,0, 其中cos,,0也就是(,,),0的情形, 类似地可以定义,S在yOz面及xy 在zOx面上的投影(,S)及(,S), yzzx 34 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 2.引例: 流向曲面一侧的流量: 设稳定流动的不可压缩流体的速度场由 v(x~ y~ z),(P(x~ y~ z) ~ Q(x~ y~ z) ~ R(x~ y~ z)) 给出~ ,是速度场中的一片有向曲面~ 函数P(x~ y~ z)、Q(x~ y~ z)、R(x~ y~ z)都在,上连续~ 求在单位时间内流向,指定侧的流体的质量~ 即流量,, 如果流体流过平面上面积为A的一个闭区域~ 且流体在这闭区域上各点处的流速为(常向量)v~ 又设n为该平面的单位法向量~ 那么在单位时间内流过这闭区域的流体组成一个底面积为A、斜高为|v|的斜柱体, ^,,, 当(v~n)时~ 这斜柱体的体积为 ,2 A|v|cos,,A v,n, ^,, 当(v~n)时~ 显然流体通过闭区域A的流向n所指一侧的流量2 ,为零~ 而Av,n,0, 故,,Av,n, ^,, 当(v~n)时~ Av,n,0~ 这时我们仍把Av,n称为流体通过闭区域2 A流向n所指一侧的流量~ 它表示流体通过闭区域A实际上流向,n ^所指一侧~ 且流向,n所指一侧的流量为,Av,n, 因此~ 不论(v~n)为何值~ 流体通过闭区域A流向n所指一侧的流量均为Av,n , 把曲面,分成n小块: ,S~ ,S~ , , ,~ ,S(,S同时也代表第i小块12ni 35 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 曲面的面积), 在,是光滑的和v是连续的前提下~ 只要,S的直径很i小~ 我们就可以用,S上任一点(,, ,, ,)处的流速 iiii v,v(,, ,, ,),P(,, ,, ,)i,Q(,, ,, ,)j,R(,, ,, ,)k iiii iii iii iii 代替,S上其它各点处的流速~ 以该点(,, ,, ,)处曲面,的单位法向iiii 量 n,cos, i,cos, j, cos, k iiii 代替,S上其它各点处的单位法向量, 从而得到通过,S流向指定侧ii的流量的近似值为 v,n,S (i,1, 2, , , , ,n) iii 于是~ 通过,流向指定侧的流量 n ,,v,n,S ,iii,1i n ,[P,(,,,,)cos,,Q,(,,,,)cos,,R(,,,,,)cos,],S ~ ,iiiiiiiiiiiii,1i 但 cos,,,S,(,S)~ cos,,,S,(,S)~ cos,,,S,(,S)~ iiiyz iiizx iiixy 因此上式可以写成 n ,,[P,(,,,,)(,S),Q,(,,,,)(,S),R(,,,,,)(,S)] , ,iiiiyziiiizxiiiixyi,1 令,,0取上述和的极限~ 就得到流量,的精确值, 这样的极限还会在其它问题中遇到, 抽去它们的具体意义~ 就得出下列对坐标的曲面积分的概念, 36 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 提示: 把,S看成是一小块平面~ 其法线向量为n~ 则通过,S流iii向指定侧的流量近似地等于一个斜柱体的体积, ^ 此斜柱体的斜高为|v|~ 高为|v|cos(v~n),v,n~ 体积为v,n,S , iiiiiiiii因为 n,cos, i,cos, j, cos, k~ iiii v,v(,, ,, ,),P(,, ,, ,)i,Q(,, ,, ,)j,R(,, ,, ,)k~ iiii iii iii iii v,n,S,[P(,, ,, ,)cos,,Q(,, ,, ,)cos,,R(,, ,, ,)cos,],S ~ iiiiiiiiiiiiiiii而 cos,,,S,(,S)~ cos,,,S,(,S)~ cos,,,S,(,S)~ iiiyz iiizx iiixy 所以 v,n,S,P(,, ,, ,)(,S),Q(,, ,, ,)(,S),R(,, ,, ,)(,S), iiiiiiiyziiiizxiiiixy 对于,上的一个小块,~ 显然在,t时间内流过,的是一个弯曲的柱体, 它的体积近似于以,为底~ 而高为 ^(|V|,t)cos(V~n),V,n ,t 的柱体的体积: V,n,t,S~ 这里n,(cos,~ cos,~ cos,)是,上的单位法向量~ ,S表示,的面积, 所以单位时间内流向, 指定侧的流体的质量近似于 V,n,S,(P(x~ y~ z)cos,,Q(x~ y~ z)cos, ,R(x~ y~ z)cos, ),S , 如果把曲面,分成n小块,(i,1~ 2~ ? ? ? ~ n)~ 单位时间内流向,指定i 侧的流体的质量近似于 n ,{P(x,y,z)cos,,Q(x,y,z)cos,,R(x,y,z)cos,},S ,, ,iiiiiiiiiiii,1i 37 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 按对面积的曲面积分的定义~ , ,,{P(x,y,z)cos,,Q(x,y,z)cos,,R(x,y,z)cos,}dS,V,ndS,,,,,, 舍去流体这个具体的物理内容~ 我们就抽象出如下对坐标的曲面积分的概念, 3.定义 设,为光滑的有向曲面~ 函数R(x~ y~ z)在,上有界, 把,任意分成n块小曲面,S(,S同时也代表第i小块曲面的面积), 在xOyii 面上的投影为(,S)~ (,, ,, ,)是,S上任意取定的一点, 如果当各小iii iixy 块曲面的直径的最大值,,0时~ n limR(,,,,,)(,S) ,iiiixy,,0,1i 总存在~ 则称此极限为函数R(x~ y~ z)在有向曲面,上对坐标x、y的曲面积分~ 记作~ R(x,y,z)dxdy,,, n 即 , R(x,y,z)dxdy,limR(,,,,,)(,S),iiiixy,,,0,,1i, 类似地有 n , P(x,y,z)dydz,limP(,,,,,)(,S),iiiiyz,,,0,,1i, n , Q(x,y,z)dzdx,limQ(,,,,,)(,S),iiiizx,,,0,,1i, 其中R(x~ y~ z)叫做被积函数~ ,叫做积分曲面, 38 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 4. 对坐标的曲面积分的存在性:我们指出当P(x~ y~ z) ~ Q(x~ y~ z) ~ R(x~ y~ z)在光滑曲面,上连续时,对坐标的曲面积分是存在的, 今后总假定P(x~ y~ z) ~ Q(x~ y~ z) ~ R(x~ y~ z)在,上连续。 5. 对坐标的曲面积分的简记形式: 在应用上出现较多的是 P(x,y,z)dydz,Q(x,y,z)dzdx,R(x,y,z)dxdy,,,,,,,,, , ,P(x,y,z)dydz,Q(x,y,z)dzdx,R(x,y,z)dxdy,,, 流向,指定侧的流量,可表示为 ,, ,P(x,y,z)dydz,Q(x,y,z)dzdx,R(x,y,z)dxdy,,, 一个规定: 如果是分片光滑的有向曲面~ 我们规定函数在,, 上对坐标的曲面积分等于函数在各片光滑曲面上对坐标的曲面积分之和, 6.对坐标的曲面积分的性质: 对坐标的曲面积分具有与对坐标的曲线积分类似的一些性质, 例如 (1)如果把,分成, 和,~ 则 12 Pdydz,Qdzdx,Rdxdy,,, ,Pdydz,Qdzdx,Rdxdy,Pdydz,Qdzdx,Rdxdy , ,,,,,,12 39 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 (2)设,是有向曲面~ ,,表示与,取相反侧的有向曲面~ 则 , Pdydz,Qdzdx,Rdxdy,,Pdydz,Qdzdx,Rdxdy,,,,,,, 这是因为如果n,(cos, ~ cos, ~ cos,)是,的单位法向量~ 则,,上的单位法向量是 ,n,(, cos, ~ ,cos,~ ,cos,), Pdydz,Qdzdx,Rdxdy,,,, ,,{P(x,y,z)cos,,Q(x,y,z)cos,,R(x,y,z)cos,}dS,,, ,,Pdydz,Qdzdx,Rdxdy,,, 二、对坐标的曲面积分的计算法 将曲面积分化为二重积分: 设积分曲面,由方程z,z(x~ y)给出的~ ,在xOy面上的投影区域为D ~ 函数z,z(x~ y)在D上具有一阶xyxy连续偏导数~ 被积函数R(x~ y~ z)在,上连续~ 则有 R(x,y,z)dxdy,,R[x,y,z(x,y)]dxdy~ ,,,,,Dxy 其中当,取上侧时~ 积分前取“,”, 当,取下侧时~ 积分前取“,”, 这是因为~ 按对坐标的曲面积分的定义~ 有 n ,, R(x,y,z)dxdylimR(,,,,,)(,S),iiiixy,,,0,,1i, 当,取上侧时~ cos ,,0~ 所以(,S) ,(,,), ixyixy 又因(,, ,, ,)是,上的一点~ 故,,z(,, ,), 从而有 iiiiii 40 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 nn , R,(,,,,)(,S),R[,,,,z(,,,)](,,),,iiiixyiiiiixy,1,1ii 令,,0取上式两端的极限~ 就得到 R(x,y,z)dxdy,R[x,y,z(x,y)]dxdy, ,,,,,Dxy 同理当,取下侧时~ 有 R(x,y,z)dxdy,,R[x,y,z(x,y)]dxdy , ,,,,,Dxy 类似地~ 如果,由x,x(y~ z)给出~ 则有 P(x,y,z)dydz,,P[x(y,z),y,z]dydz , ,,,,,Dyz 如果,由y,y(z~ x)给出~ 则有 Q(x,y,z)dzdx,,Q[x,y(z,x),z]dzdx , ,,,,,Dzx 应注意的问题: 应注意符号的确定, 222 例1, 计算曲面积分 ~ 其中,是长方体xdydz,ydzdx,zdxdy,,, ,的整个表面的外侧~ ,,((x~ y~ z) |0,x,a~ 0,y,b~ 0,z,c ), 解: 把,的上下面分别记为,和,, 前后面分别记为,和,, 1234 左右面分别记为,和,, 56 ,: z,c (0,x,a~ 0,y,b)的上侧, 1 ,: z,0 (0,x,a~ 0,y,b)的下侧, 2 ,: x,a (0,y,b~ 0,z,c)的前侧, 3 41 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ,: x,0 (0,y,b~ 0,z,c)的后侧, 4 ,: y,0 (0,x,a~ 0,z,c)的左侧, 5 ,: y,b (0,x,a~ 0,z,c)的右侧, 6 除,、,外~ 其余四片曲面在yOz 面上的投影为零~ 因此 34 22222 xdydz,ydydz,xdyd,adydz,0dydz,abc , ,,,,,,,,,,,,,DD34yzyz类似地可得 2222 ~ , ydzdx,baczdxdy,cab,,,,,, 于是所求曲面积分为(a,b,c)abc, 222 例2 计算曲面积分~ 其中,是球面x,y,z,1外侧在xyzdxdy,,, x,0~ y,0的部分, 解 把有向曲面,分成以下两部分: 22,z,1,x,y : (x,0~ y,0)的上侧~ 1 22,z,,1,x,y : (x,0~ y,0)的下侧, 2 22,和,在xOy面上的投影区域都是D: x,y,1(x,0~ y,0), 12xy xyzdxdy,xyzdxdy,xyzdxdy于是 ,,,,,,,,,12 2222,xy1,x,ydxdy,xy(,1,x,y)dxdy ,,,,DDxyxy ,1222222,2xy1,x,ydxdy, , ,2drsincos1,rrdr,,,,,,,0015Dxy 42 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 三、两类曲面积分之间的联系 设积分曲面,由方程z,z(x~ y)给出的~ ,在xOy面上的投影区域为D ~ 函数z,z(x~ y)在D上具有一阶连续偏导数~ 被积函数R(x~ y~ xyxy z)在,上连续, 如果,取上侧~ 则有 R(x,y,z)dxdy,R[x,y,z(x,y)]dxdy, ,,,,,Dxy 另一方面~ 因上述有向曲面,的法向量的方向余弦为 ,z,zy1xcos,cos,cos,, ~ ~ ~ ,,2222221,z,z1,z,z1,z,zxyxyxy故由对面积的曲面积分计算公式有 R(x,y,z)cos,dS,R[x,y,z(x,y)]dxdy , ,,,,,Dxy 由此可见~ 有 , R(x,y,z)dxdy,R(x,y,z)cos,dS,,,,,, 如果,取下侧~ 则有 R(x,y,z)dxdy,,R[x,y,z(x,y)]dxdy , ,,,,,Dxy ,1cos,但这时~ 因此仍有 ,221,z,zxy ~ R(x,y,z)dxdy,R(x,y,z)cos,dS,,,,,, 类似地可推得 43 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ~ P(x,y,z)dydz,P(x,y,z)cos,dS,,,,,, , Q(x,y,z)dzdx,P(x,y,z)cos,dS,,,,,, 综合起来有 ~ Pdydz,Qdzdx,Rdxdy,(Pcos,,Qcos,,Rcos,)dS,,,,,, 其中cos ,、cos ,、cos ,是有向曲面,上点(x~ y~ z)处的法向量的方向余弦, 两类曲面积分之间的联系也可写成如下向量的形式: ~ 或~ A,dS,A,ndSA,dS,AdSn,,,,,,,,,,,, 其中A,(P~ Q~ R)~ n,(cos ,~ cos ,~ cos ,)是有向曲面,上点(x~ y~ z)处的单位法向量~ dS,ndS,(dydz~ dzdx~ dxdy)~ 称为有向曲面元~ A为向量A在向量n上n 的投影, 2(z,x)dydz,zdxdy 例3 计算曲面积分~ 其中,是 ,, , 122z,(x,y)曲面介于平面z,0及z,2之间的部分的下侧, 2 解 由两类曲面积分之间的关系~ 可得 ,cos222,()()cos()z,xdydz,z,xdS,z,xdxdy , ,,,,,,cos,,,, 在曲面,上~ ,提示: 曲面上向下的法向量为(x~ y~ ,1) ) 44 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 x,122,,cos,cos,dS,1,x,ydxdy ~ ~ , 22221,x,y1,x,y 22故 (z,x)dydz,zdxdy,[(z,x)(,x),z]dxdy ,,,, ,, 1122222 ,{[(x,y),x],(,x),(x,y)}dxdy,,4222x,y,4 2,211222222 ,8,, ,d,(rcos,,r)rdr,[x,(x,y)]dxdy,,,,002222x,y,4 四、小结 1、物理意义 2、计算时应注意以下两点 曲面的侧 “一投,二代,三定号” 五、思考与练习 222设为球面,若以其球面的外侧为正侧,试问,x,y,z,1 22之左侧(即轴与其法线成钝角的一侧)是正oyy,1,x,z 22侧吗,那么的左侧是正侧吗, y,,1,x,z 45 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11, 6 高斯公式 通量与散度 一、高斯公式 定理1设空间闭区域,是由分片光滑的闭曲面,所围成~ 函数P(x, y, z)、Q(x, y, z)、R(x, y, z)在,上具有一阶连续偏导数~ 则有 ,Q,P,R(,,)dv,Pdydz,Qdzdx,Rdxdy ~ ,,,,,,x,y,z,, ,Q,P,R或 (,,)dv,(Pcos,,Qcos,,Rcos,)dS~ ,,,,,,x,y,z,, 简要证明 设,是一柱体~ 上边界曲面为,: z,z(x, y)~ 下边界12曲面为,: z,z(x, y)~ 侧面为柱面,~ ,取下侧~ ,取上侧, ,取外213123侧, 根据三重积分的计算法~ 有 zxy(,),,2RR, dvdxdydz,,,,,,zxy(,)1,,zz,Dxy ,{R[x,y,z(x,y)],R[x,y,z(x,y)]}dxdy, 21,,Dxy 另一方面~ 有 ~ R(x,y,z)dxdy,,R[x,y,z(x,y)]dxdy1,,,,,D1xy ~ R(x,y,z)dxdy,R[x,y,z(x,y)]dxdy2,,,,,D2xy 46 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ~ R(x,y,z)dxdy,0,,,3 以上三式相加~ 得 , R(x,y,z)dxdy,{R[x,y,z(x,y)],R[x,y,z(x,y)]}dxdy21,,,,,Dxy ,R所以 dv,R(x,y,z)dxdy, ,,,,,,z,, 类似地有 ,P dv,P(x,y,z)dydz~ ,,,,,,x,, ,Q ~ dv,Q(x,y,z)dzdx,,,,,,y,, 把以上三式两端分别相加~ 即得高斯公式, (x,y)dxdy,(y,z)xdydz 例1 利用高斯公式计算曲面积分~ 其中,,, , 22为柱面x,y,1及平面z,0~ z,3所围成的空间闭区域,的整个边界 曲面的外侧, 解 这里P,(y,z)x~ Q,0~ R,x,y~ ,Q,P,R,y,z,0,0 ~ ~ , ,z,x,y 由高斯公式~ 有 (x,y)dxdy,(y,z)dydz ,, , 47 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ,(y,z)dxdydz,(,sin,,z),d,d,dz ,,,,,, ,, 2,139, , (sin),dd,zdz,,,,,,,,,,0002 222 例2 计算曲面积分(xcos,,ycos,,zcos,)dS~ 其中,为锥面,, , 222x,y,z介于平面z,0及z,h (h>0)之间的部分的下侧~ cos,、cos,、cos,是,上点(x, y, z)处的法向量的方向余弦, 22 2 解 设,为z,h(x,y,h)的上侧~ 则,与,一起构成一个闭曲11面~ 记它们围成的空间闭区域为,~ 由高斯公式得 222 (xcos,ycos,zcos)dS,,,,,, hh ,2dxdy(x,y,z)dz,2dxdyzdz2222,,,,,,x,yx,y222222x,y,hx,y,h 14222,(h,x,y)dxdy h,,,,2222,,xyh h提示: , dxdy(x,y)dz,022,,,x,y222x,y,h 222224而 ~ (xcos,,ycos,,zcos,)dS,zdS,hdxdy,,h,,,,,,222,,x,y,h11 11222444(xcosycoszcos)dShhh,,,,,,,,,,,,因此 , ,,22, 提示: 根据被积函数的奇偶性和积分区域的对称性~ , 例3 设函数u(x, y, z)和v(x, y, z)在闭区域,上具有一阶及二阶连续偏导数~ 证明 48 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ,v,u,v,u,v,u,vu,vdxdydz,udS,(,,)dxdydz ~ ,,,,,,,,,n,x,x,y,y,z,z,,, ,v其中,是闭区域,的整个边界曲面~ 为函数v(x, y, z)沿,的外法,n ,,,线方向的方向导数~ 符号~ 称为拉普拉斯算子, 这个,,,,222,x,y,z 公式叫做格林第一公式, 证: 因为方向导数 ,v,v,v,v ~ ,cos,,cos,,cos,,n,x,y,z 其中cos,、cos,、cos,是,在点(x~ y~ z)处的外法线向量的方向余弦, 于是曲面积分 ,v,v,v,vudS,u(cos,cos,cos)dS ,,, ,,,,,n,x,y,z,, ,v,v,v,[(u)cos,(u)cos,(u)cos]dS,,, , ,,,x,y,z, 利用高斯公式~ 即得 ,v,,v,,v,,vudS,[(u),(u),(u)]dxdydz ,,,,,,n,x,x,y,y,z,z,, ,u,v,u,v,u,v,u,vdxdydz,(,,)dxdydz ~ ,,,,,,,x,x,y,y,z,z,, 将上式右端第二个积分移至左端便得所要证明的等式, 二、通量与散度 高斯公式的物理意义: 将高斯公式 49 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ,Q,P,R (,,)dv,(Pcos,,Qcos,,Rcos,)dS,,,,,,x,y,z,, 改写成 ,Q,P,R ~ (,,)dv,vdSn,,,,,,x,y,z,, 其中v,v,n,Pcos, ,Qcos, ,Rcos,~ n,{cos, ~ cos, ~ cos,}是,在点(x~ n y~ z)处的单位法向量, 公式的右端可解释为单位时间内离开闭区域,的流体的总质量~ 左端可解释为分布在,内的源头在单位时间内所产生的流体的总质量, 散度: 设,的体积为V~ 由高斯公式得 ,Q,P,R11 ~ ,,dv,vdS()n,,,,,V,x,y,zV,, 其左端表示,内源头在单位时间单位体积内所产生的流体质量的平均值, 由积分中值定理得 ,Q,P,R1 , ,,,vdS()|(,,,,,)n,,,x,y,zV, 令,缩向一点M(x~ y~ z)得 ,Q,P,R1 , ,,,vdSlimn,,,,M,x,y,zV, 50 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 上式左端称为v在点M的散度~ 记为divv~ 即 ,Q,P,Rdivv,,, , ,x,y,z 其左端表示单位时间单位体积分内所产生的流体质量, 一般地~ 设某向量场由 A(x~ y~ z),P(x~ y~ z)i,Q(x~ y~ z)j,R(x~ y~ z)k 给出~ 其中P~ Q~ R具有一阶连续偏导数~ ,是场内的一片有向曲面~ A,ndSn是,上点(x~ y~ z)处的单位法向量~ 则叫做向量场A通过,, , ,Q,P,R曲面,向着指定侧的通量(或流量)~ 而叫做向量场A的散,,,x,y,z度~ 记作div A~ 即 ,Q,P,RdivA,,, , ,x,y,z 高斯公式的另一形式: divAdv,A,ndSdivAdv,AdS ~ 或~ n,,,,,,,,,, ,,,,其中,是空间闭区域,的边界曲面~ 而 A,A,n,Pcos,,Qcos,,Rcos, n 是向量A在曲面,的外侧法向量上的投影, 四、小结 1、高斯公式 51 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 2、高斯公式的实质 (1)应用的条件 (2)物理意义 五、思考与练习 1.曲面应满足什么条件才能使高斯公式成立, 2.利用高斯公式计算曲面积分: (1),其中为球面 ,333xdydz,ydzdx,zdxdy,, , 2222 外侧; x,y,z,a (2),其中是界于和 z,0,xdydz,ydzdx,zdxdy,, , 22 之间的圆柱体的整个表面的外 z,3x,y,9 侧; 52 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ?11, 7 斯托克斯公式 环流量与旋度 一、斯托克斯公式 定理1 设,为分段光滑的空间有向闭曲线~ ,是以,为边界的分片光滑的有向曲面~ ,的正向与, 的侧符合右手规则~ 函数P(x~ y~ z)、Q(x~ y~ z)、R(x~ y~ z)在曲面,(连同边界)上具有一阶连续偏导数~ 则有 ,Q,Q,R,P,R,P(,)dydz,(,)dzdx,(,)dxdy , ,Pdx,Qdy,Rdz,,,,y,z,z,x,x,y,, 记忆方式: dydzdzdxdxdy ,,,,Pdx,Qdy,Rdz ~ ,,,,x,y,z,,PQR coscoscos,,, ,,,dS,Pdx,Qdy,Rdz或 ~ ,,,,x,y,z,,PQR 其中n,(cos, ~ cos, ~ cos,)为有向曲面,的单位法向量, 讨论: 如果,是xOy面上的一块平面闭区域~ 斯托克斯公式将变成什么? 例1 利用斯托克斯公式计算曲线积分~ 其中,为zdx,xdy,ydz,, 平面x,y,z,1被三个坐标面所截成的三角形的整个边界~ 它的正向与这个三角形上侧的法向量之间符合右手规则, 解 按斯托克斯公式~ 有 53 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 , zdx,xdy,ydz,dydz,dzdx,dxdy,,,,, 由于,的法向量的三个方向余弦都为正~ 又由于对称性~ 上式右端等于3d,~ ,,Dxy 其中D为xOy 面上由直线x,y,1及两条坐标轴围成的三角形闭区xy 域~ 因此 3,,, zdxxdyydz, ,2, 解 设,为闭曲线,所围成的三角形平面~ ,在yOz面、zOx面和xOy面上的投影区域分别为D、D和D~ 按斯托克斯公式~ 有 yzzxxy dydzdzdxdxdy ,,,, zdx,xdy,ydz,,,,x,y,z,,zxy 3 , ,,,,3 ,,dydz,dzdx,dxdydydzdzdxdxdydxdy,,,,,,,,,,2,DDDDyzzxxyxy 例2 利用斯托克斯公式计算曲线积分 222222 ~ I,(y,z)dx,(z,x)dy,(x,y)dz,, 3x,y,z,其中,是用平面截立方体: 0,x,1~ 0,y,1~ 0,z,1的表面所2 得的截痕~ 若从x轴的正向看去取逆时针方向, 3x,y,z, 解 取,为平面的上侧被,所围成的部分~ ,的单位2 11cos,cos,cos,法向量~ 即, 按斯托克斯公式~ 有 n,(1, 1, 1),,,33 54 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 111 333 ,,,4 I,dS,,(x,y,z)dS, ,,,,,x,y,z3,,222222y,xz,xx,y 43 ~ ,,,dS,,233dxdy,,,,23,Dxy 其中D为,在xOy平面上的投影区域~ 于是 xy 39 , ,,6,,6,,,Idxdy,,42Dxy dydzdzdxdxdy ,,, I,,,2(y,z)dydz,(x,z)dzdx,(x,y)dxdy,,,,,x,y,z,,222222y,zz,xx,y cos,cos,cos, ,,,4222dS,1,1,1dxdy提示 : , , ,,(x,y,z),x,y,z3222222y,xz,xx,y 9443I,,(x,y,z)dS,,,dS , ,,233,,6,,dxdydxdy,,,,,,,,2233,,DDxyxy二、环流量与旋度 旋度: 向量场A,(P(x~ y~ z)~ Q(x~ y~ z)~ R(x~ y~ z))所确定的向量场 ,Q,Q,R,P,R,P(,)i,(,)j,(,)k ,y,z,z,x,x,y 称为向量场A的旋度~ 记为rotA~ 即 ,Q,Q,R,P,R,P rotA,(,)i,(,)j,(,)k, ,y,z,z,x,x,y 55 青岛科技大学数理学院高等数学课程建设组 高等数学教案 第十一章 曲线积分与曲面积分 ijk ,,,rotA,旋度的记忆法: , ,x,y,z PQR 斯托克斯公式的另一形式: ~ 或 rotA,ndS,A,,ds(rotA)dS,Adsn,,,,,,,,,,, 其中n是曲面,上点(x~ y~ z)处的单位法向量~ ,是,的正向边界曲线,上点(x~ y~ z)处的单位切向量, 沿有向闭曲线,的曲线积分 Pdx,Qdy,Rdz,Ads,,,,, 叫做向量场A沿有向闭曲线,的环流量, 上述斯托克斯公式可叙述为: 向量场A沿有向闭曲线, 的环流量等于向量场A的旋度场通过,所张的曲面,的通量, 三、小结 1.斯托克斯公式 2.斯托克斯公式成立的条件 3.斯托克斯公式的物理意义 四、思考与练习 222rxyz,,,,div(grad);rot(grad).rr,,设 则 56 青岛科技大学数理学院高等数学课程建设组
本文档为【第十一章 曲线积分与曲面积分】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_219945
暂无简介~
格式:doc
大小:98KB
软件:Word
页数:45
分类:企业经营
上传时间:2017-10-18
浏览量:38