下载

2下载券

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 大学物理学(上)3-大学物理讲稿(第3章刚体力学)

大学物理学(上)3-大学物理讲稿(第3章刚体力学).doc

大学物理学(上)3-大学物理讲稿(第3章刚体力学)

rongbingchi
2018-09-05 0人阅读 举报 0 0 暂无简介

简介:本文档为《大学物理学(上)3-大学物理讲稿(第3章刚体力学)doc》,可适用于其他资料领域

第章刚体力学一般情况下,一个物体的运动是很复杂的,它不仅包括平动、转动,有时还有振动在质点力学的讨论中,只研究了物体运动中最常见的一种平动,其它的运动被作为暂时的、次要的东西忽略了,结果物体被简化为质点在质点的平动问题解决以后,平动退居次要地位,质点也从没有形状大小的几何点变为有形状大小的物体在实践中我们都知道,物体在力的作用下形状和大小要发生变化例如:一块棉花,原来形状设为正方形,现在用双手捏可以将它捏成圆形、长方形或其它形状,也可以把它压得很小,放开使它的体积又较大,总之在力的作用下使它的形状和大小发生了变化但是在有些问题中,这种变化很不明显,我们眼睛几乎发现不了例如:一张桌子,人们经常爬在上边写字,但在短时间,我们并没有发现它的形状和大小有明显的变化这时就可以将它的微小形变忽略掉,又将此物体简化为一种理想的模型刚体所谓刚体,就是在外力作用下,形状和大小都不改变的物体也就是说,刚体内各质点之间的距离保持不变,刚体的各部分之间没有相对运动本章主要研究刚体的基本运动规律§刚体的运动一、刚体的平动和转动平动刚体在运动过程中,如果各个时刻刚体中任意一条直线始终保持彼此平行,这种运动称为刚体的平动(也称为平行移动)刚体平动过程中,其上各点运动轨迹的形状相同,且彼此平行每一瞬时各点的速度、加速度相等因此可用刚体上任意一点的运动来描述平动刚体的运动对上述结论可作如下解释,如图所示,由刚体的定义及刚体的平动的定义知,矢量BA为常矢量由于说明A、B两点的轨迹彼此平行而A、B两点是任意选定的,所以在刚体的平动中,其上各点的轨迹形状相同且彼此平行,将两边对时间t求一阶导数得()()式对时间t再求一次导数得()式()、()说明任一瞬时平动刚体上各点的速度,加速度均相等转动如果刚体上各质点都绕同一直线作圆周运动就称这一运动为刚体转动,此直线称为转轴转轴固定于参考系(即转轴的位置和方向相对于参考系是固定的)的情况称为定轴转动例如门窗、钟表指针、砂轮、电机轴子等的转动都属于定轴转动若转轴上有一点静止于参考系,而转轴的方向在变化,这种转动称为定点转动例如气象雷达天线的转动,玩具陀螺的转动就属于定点转动刚体的定轴转动是转动中基本而普遍的情况,也是本章的重点内容,对于定点转动,只简单介绍陀螺的运动二、刚体的定轴转动描述刚体的运动,首先要确定刚体的位置在定轴转动的情况下,转轴已固定,取垂直于转轴的平面为转动平面,如图所示,在此转动平面内取一坐标轴ox,这样就可以对刚体转动作定量描述刚体角坐标和角位移在转动平面内任选一点A,设A的位置矢量为r,因其大小不变,故其位置可用自x轴转至的角表示此称为定轴转动刚体的角坐标规定自x轴逆时针转向时为正,刚体定轴转动可用函数()描述,此即刚体绕定轴转动的运动学方程绕定轴转动的刚体在时间内角坐标的增量称为该时间内的角位移面对z轴观察,若>,刚体逆时针转动若<,刚体瞬时针转动在国际单位制中,角坐标和角位移单位为弧度(rad)角速度设t时刻刚体的角坐标为,t时刻刚体的角坐标为,则定轴转动刚体在时间内的平均角速度和→的瞬时角速度()上式说明定轴转动刚体的角速度等于其角坐标对时间t的一阶导数而且刚体上各点的角速度都相同因此角速度是描述整个刚体转动快慢的物理量(为正,表示刚体沿逆时针方向转动(为负,表示刚体沿顺时针方向转动,角速度的单位为弧度/秒在工程中,把每分钟转动的圈数称为转速,用n表示,单位为转/分,则(与n的关系为角加速度设t时刻刚体的角速度为(,t时刻刚体的角速度为,则定轴转动的刚体在时间内的平均角加速度和→的瞬时角加速度为()上式说明定轴转动刚体的角加速度等于其角速度对时间的一阶导数,亦等于角坐标对时间的二阶导数当(与(同号时,刚体作加速转动,(与(异号时,刚体作减速转动角加速度的单位为弧度/秒(rads)角速度和角加速度在描述刚体定轴转动中所起的作用与质点运动中速度和加速度的作用相似因此常把它们对应起来看待,速度与角速度相对应,加速度与角加速度相对应与质点运动学相似,对于定轴转动的刚体,若已知运动方程,容易求出角速度和角加速度若已知角加速度和初始条件,亦很容易求出角速度和运动方程对于匀速定轴转动有对于匀变速定轴转动,则有()式中为初始时刻的角坐标和角速度定轴转动的刚体上某点的速度和加速度定轴转动刚体上的各点都在绕轴上的一点作圆周运动,具有相同的角速度(,设某点M到转轴的距离为R,则由圆周运动的规律得该点的速率为()上式说明定轴转动的刚体上任意一点的速度大小等于转动半径R与刚体角速度(的乘积,速度的方向指向该点转动的方向M点的加速度分别用切向加速度和法向加速度表示,由其定义得:()由()、()式可知,若已知角量((、(),就可以求出刚体上任意一点作圆周运动的线量(),可见,角量充分地描述了刚体绕定轴的转动状态例题某发动机转子在启动过程中的转动方程为,式中以弧度计,t以秒计,转子的半径为R=m试求转子的外缘上M点在t=s时的速度和切向、法向加速度解:根据角速度和角加速度定义得据线量与角量的关系得M点的速度和加速度在切向、法向的投影为与同号,说明M点作加速运动作业(P):§刚体动力学一、刚体的转动动能刚体绕定轴转动时,构成刚体的所有质点的动能和,称为刚体的转动动能设某时刻刚体绕轴转动的角速度为,刚体中任一质元的质量为,离轴的垂直距离为,则其线速率为该质元的动能为将此式对所有质元求和即得整个刚体的动能(a)(b)二、刚体的转动惯量转动惯量由前面讨论可知,刚体的转动惯量()也就是说,转动惯量等于刚体中每个质元的质量与这一质元到转轴的垂直距离的平方的乘积的和,而与质元的运动速度无关与平动动能比较可知,转动惯量相当于平动时的质量是物体在转动中惯性大小的量度如果刚体的质量是连续分布的,需将()式的求和变为积分()转动惯量的单位在国际单位中为千克(米(kg(m)由转动惯量的定义式可知,刚体的转动惯量与刚体的质量、质量分布、转轴的位置有关因此,在谈及转动惯量时,必须明确哪一刚体对哪一转轴的转动惯量平行轴定理刚体对任意轴的转动惯量J,等于它对通过刚体质心且与该轴平行的轴的转动惯量Jc,加上刚体的质量与两轴距离d的平方的乘积即()这一关系称为平行轴定理正交轴定理薄板状刚体的质量均匀分布时,它对于板面内的两条正交轴的转动惯量之和,等于过这两轴的交点且垂直于板面的轴的转动惯量现对正交轴定理简单给出证明取板平面为坐标面,坐标轴即为三条正交轴,如图所示()例试求质量为m、长为l的匀质细棒对通过中心且与棒垂直的轴的转动惯量解:若将轴移到左端,利用平行轴定理则得例试求质量为m、半径为R的匀质圆盘对过它边缘上一点且垂直于盘面的轴的转动惯量解该圆盘对过中心且垂直于盘面的轴的转动惯量为根据平行轴定理有三、刚体的重力势能构成刚体的所有质点与地球组成的物体组的重力势能之和,称为刚体的重力势能设第i个质元的质量为其z坐标为zi,设XOY平面为参照水平面,则zi即该质元的高度,它和地球组成的物体组的重力势能为,刚体的重力势能为()上式表明:在计算刚体的重力势能时,刚体的质量可看作集中于刚体的质心因此,只要确定了刚体的质心位置,其重力势能就确定了,而与刚体的方位无关四、力矩与转动定律力矩与上章讨论质点角动量中力矩一样刚体的力矩()前已介绍在外力矩的作用下刚体获得加速度。转动定律讨论质点运动时,根据牛顿第二定律知,当质点所受的合外力大于零时,质点将获得加速运动对于刚体,由前面讨论可知,在外力矩的作用下获得角加速度,那么外力矩与角加速度之间服从怎样的规律?下面先以一质点为研究对象进行讨论设有质量为m的质点与刚性轻杆相连,杆与转轴相连且垂直,现在对此质点作用一个大小为的切向力,如图所示,则质点在此力作用下作圆周运动根据牛顿第二定律及力对o轴力矩的定义有对于任意的刚体,可认为是由无穷个质点组成设第i个质点的质量为,它到转轴的垂直距离为则第i个质点所受的合外力矩为对于作定轴转动的刚体,它的力矩只有两个方向,所以可求代数和(a)由于角加速度是矢量,转动惯量J是标量,所以力矩的方向与角加速度方向相同,因此其矢量式为(b)上式表明,作定轴转动的刚体所受的合外力矩等于刚体对该转轴的转动惯量与刚体在此合外力矩作用下所获得的角加速度的乘积此即为刚体定轴转动的转动定律刚体的转动定律在刚体转动中很重要把转动定律与牛顿第二定律F=ma比较可知,合外力矩M与合外力F对应刚体的转动惯量J与质点的质量m对应因此,转动定律可以看成是刚体定轴转动时的牛顿定律,它反映了力矩对定轴转动刚体的瞬时作用规律,它是刚体动力学的基本规律五、力矩的功与动能定理力矩的功在质点运动中,当外力作用于一质点上使它发生位移时,外力在作功在刚体绕定轴转动的情况下,外力矩使刚体中的每一质元都作圆周运动,转过一定的角位移,我们就说外力矩对刚体作了功如图所示,刚体绕oz轴转动设外力Fi作用于A点处经dt时间后,A沿半径为ri的圆周移动了微小的圆弧dsi,相应的角位移为,则有外力Fi所作的元功为上式表明:外力的元功等于力矩与角位移的乘积因此,对于定轴转动的刚体,外力的功与力矩有关当刚体在外力矩作用下,从角位置转到角位置时,力矩对刚体所作的总功为()由此可见,当刚体转动时,外力矩所作的总功等于外力对转轴的合力矩对角位移的积分式()是力矩对刚体作功的一般表达式说明:)力矩所作的功并不是新的概念,本质上仍然是力的功,只是在刚体转动的特殊情况下可表示为力矩对角位移的积分而已。)当力矩为常量时,力矩的功为)对于内力矩的功也应有同样的形式,但由于刚体对转轴的合内力矩为零,内力矩的总功也为零因此只考虑刚体所受的合外力矩的功力矩的功率与讨论质点作功类似,力矩的功率为:单位时间内力矩所作的功,用P表示设刚体在恒力矩作用下绕定轴转动,在dt时间内转过角位移为,则根据功率的定义式有()即力矩的瞬时功率等于力矩与角速度的乘积当力矩与角速度同向时,力矩的功和功率为正值当力矩与角速度方向相反时,力矩的功和功率为负值,称此力矩为阻力矩动能定理对质点来说,外力的功等于质点动能的增量这是质点的动能定理那么外力矩的功与刚体的转动动能有什么关系这就是绕定轴转动的刚体的动能定理所要讨论的内容对于定轴转动的刚体,在沿轴向的外力矩(对转轴的外力矩)作用下,就要产生角加速度(,从而引起角速度(大小的变化,使刚体的转动动能发生改变由转动定律()上式前半部分为刚体动能定理的微分表达式此式表明,合外力矩对定轴转动的刚体所作的功等于刚体转动动能的增量此式称为刚体定轴转动的动能定理它是力矩对空间的积累效应的结果,反映了外力矩对定轴转动刚体做功这一过程量与转动动能这一状态量之间的关系,从而为某些问题的求解带来了方便但要注意,此式只对定轴转动的刚体适用,非刚体不再适用,因为非刚体内力矩的功不一定为零例题一根质量为m,长为l的匀质棒AB,如图所示,棒可绕一水平的光滑转轴O在竖直平面内转动,O轴离A端的距离为l,今使棒从静止开始由水平位置绕O轴转动,求:()棒在水平位置(启动时)的角速度和角加速度()棒转到竖直位置时的角速度和角加速度()棒在竖直位置时,棒的两端和中点的速度和加速度解先确定细棒AB对O轴的转动惯量J,由于O轴与质心轴C的距离为,由平行轴定理得再对细棒进行受力分析:重力,作用在棒中心(重心),方向竖直向下,重力的力矩是变力矩,大小等于mglcosθ轴与棒之间没有摩擦力,轴对棒作用的支撑力垂直于棒与轴的接触面而且通过O点,在棒的转动过程中,这力的方向和大小将是随时间改变的,但对轴的力矩等于零()当棒在水平位置(刚启动)时,角速度此时,由转动定律求得此时的角加速度为()当棒从转到d时,重力矩所作的元功为棒从水平位置转到任意位置的过程中,合外力矩所作总功为由定轴转动刚体的动能定理有由此可得在竖直位置时()在竖直位置()下时,棒的A、B点和中点C的速度,加速度分别为§定轴转动刚体的角动量守恒在质点力学的讨论中,我们知道力作用于质点有时间积累效应和空间积累效应,而力的时间积累效应表现为力具有冲量,此冲量可使质点的动量发生变化力的空间积累效应则为力对质点所作的功当力作用于定轴转动的刚体上时,力的两种效应将表现为力矩的两种效应,力矩的空间积累效应亦表现为力矩的功,而力矩的时间积累效应则为本节要讨论的内容一、角动量(动量矩)刚体定轴转动时,刚体上所有质元都在转动平面上作圆周运动刚体上各个质元对轴的角动量的方向都相同,垂直于转动平面并沿转轴的方向因此,定轴转动刚体的角动量大小等于刚体中各个质元角动量大小的总和设刚体中某一质元的质量为,它到转轴的垂直距离为则该质元角动量为把刚体中所有质元的角动量相加,则得到刚体转动的角动量()由上式可知,刚体绕定轴转动的角动量等于刚体对该转轴的转动惯量与角速度的乘积由于角速度是矢量,所以刚体的角动量也是矢量,它的方向与角速度的方向相同在国际单位制中,角动量的单位为千克·米/秒(kg(ms)同理可定义在dt时间内刚体对转轴的元冲量矩为Mdt,那么在t到t时间内的冲量矩变为冲量矩也是矢量,其方向与力矩的方向相同在国际单位制中,冲量矩的单位为N•m•s,量纲为MLT可见冲量矩和动量矩的量纲相同,它们之间必有某种关系,下面讨论它们之间的关系二、动量矩定理在刚体绕定轴转动中,若转动惯量为恒量,则刚体的转动定律可以写成()这样,刚体转动定律用动量矩可表述为:定轴转动物体的动量矩的时间变化率等于物体所受的合外力矩说明:上式表示的转动定律比转动定律具有更广泛的适用性它既适用于刚体又适用于一般物体即也适用于质点间距离不恒定转动惯量可变化的物体。变形()式()说明:转动物体(刚体)所受合外力矩的冲量矩等于相应时间内转动物体动量矩的增量这一关系称为动量矩(角动量)定理此定理给出了冲量矩这一过程量与动量矩这一状态之间的关系它是力矩对时间的积累效应三、动量矩守恒定律如果刚体所受合外力矩为,由式()可得()即当物体所受合外力矩为零时,物体的动量矩保持不变,称为动量矩守恒定律或角动量守恒定律对于定轴转动,若取逆时针方向为正,瞬时针方向为负,式()、()、()都可用代数量表示在日常生活中,动量矩守恒的例子很多例如:()对于单个刚体,如果转动惯量为常数,在外力矩为零的条件下,角速度将保持不变如磨削用的砂轮,在切断电源后,由于阻力矩很小,可以旋转很长的时间如果考虑其间一小段时间,可以认为外力矩为零,故角速度恒定,刚体靠惯性作匀角速度转动()对于转动惯量可变的力学系统在外力矩为零的条件下,转动惯量减小,角速度增加反之,转动惯量增加,角速度减小如舞蹈演员、溜冰运动员在做旋转动作时,往往出现两臂张开旋转,然后迅速把两臂收回靠拢身体,使自己的转动惯量迅速减小,从而使转速加快停止时,又把两臂和腿伸开,使转动惯量增加,以降低转速,运动员就可以平稳地停下来()当转动物体由几个刚体组成时,若整个系统所受合外力矩为零,则系统的动量矩守恒,即有在工程上,两飞轮常用摩擦齿合器使它们以相同的转速一起转动,如图所示,A、B为两个飞轮,C为齿合器,开始时,两飞轮分别以恒定的角速度和转动,在齿合过程中,系统受轴向正压力和齿合器间的切向摩擦力,前者对转轴的力矩为零,后者为内力,系统不受外力矩作用,所以系统的动量矩守恒,有两飞轮齿合后共同转动的角速度为质点的直线运动(刚体的平动)与刚体的定轴转动的对应关系见下表例题一根质量为m长为l的均匀细棒,可以在竖直平面内绕通过其中心的水平轴转动。开始时细棒在水平位置一质量为m的小球以速度u垂直落到棒的端点设小球与棒作完全弹性碰撞求碰撞后小球的回跳速度以及棒的角速度各等于多少解用表示碰撞后小球的速度,ω表示棒的角速度对于小球和棒组成的系统,在碰撞过程中,由于时间很短,小球的重力可忽略不计,棒的重力对轴的力矩为(过轴的力对轴的力矩为),而冲击力f和f'为内力,因此在碰撞过程中,系统的合外力矩为零,满足动量矩守恒。(P)§刚体的自由度自由度的概念确定一个物体的位置所需要的独立坐标数,称为这个物体的自由度数在空间自由运动质点的位置需要三个独立坐标(如x、y、z)来确定其位置,因此,具有三个自由度限制在平面或曲面上运动的质点,需要两个独立的坐标,例如x、y,或,确定其位置,因此具有两个自由度限制在直线或曲线上运动的质点,只需一个坐标确定其位置,因此具有一个自由度如果将飞机、轮船、火车都看成质点,那么,它们分别具有三个、两个和一个自由度对于一个可以在空间自由运动的刚体,具有几个自由度呢?通常,可将刚体的一般运动分解为刚体中任意一点c(例如质心)的平动和绕c点的转动确定点的位置需要三个独立坐标,为确定绕点的转动,除需要确定通过c点的任一转轴的三个方位角,例如,还需确定刚体绕转轴转过的角度由于三个方位角中只有两个是独立的,因此自由刚体具有个自由度当刚体的运动受到某种限制时,其自由度数将减少,例如沿直线滚动的车轮具有三个自由度(由于在平面内运动,质心需要两个自由度,另一个为绕转轴转过的角度),绕固定轴转动的刚体具有一个自由度完整地描述一个物体的运动所涉及到的坐标数不可能少于该物体的自由度数通过对一个物体自由度的分析,有助于对该物体运动的描述自由度概念不仅在力学中有重要的应用,而且在固体物理、分子物理等分支领域以及一些工程技术学科中也都有重要的应用作业(P):、�EMBEDEquation����EMBEDEquation����EMBEDEquation����EMBEDEquation���PAGEunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknown

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/14

大学物理学(上)3-大学物理讲稿(第3章刚体力学)

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利