首页 bio2000历届考题2006_Bio2000 Final exam

bio2000历届考题2006_Bio2000 Final exam

举报
开通vip

bio2000历届考题2006_Bio2000 Final examBio2000 Final Exam-2006 (20 points for each question) 1. Calcium ions play important roles for the life and death of cells. Here you are asked to write an essay that describes the importance of cytosolic Ca2+ in regulating cell functions and mechanisms of Ca2+...

bio2000历届考题2006_Bio2000 Final exam
Bio2000 Final Exam-2006 (20 points for each question) 1. Calcium ions play important roles for the life and death of cells. Here you are asked to write an essay that describes the importance of cytosolic Ca2+ in regulating cell functions and mechanisms of Ca2+ signaling inside cells. The assay should include examples of cell functions where Ca2+ is critical, the ON and OFF mechanisms of Ca2+ signaling, and explanations why the Ca2+ signal is “local” and why the spatial and temporal patterns of intracellular Ca2+ concentration changes are important for cell signaling. 2. Regulation of gene expression is fundamental to most biological processes and is dependent on coordinated actions of numerous regulatory proteins. However, this complex process can be described by just one simple statement: the entire process of regulation of gene expression is to produce desired gene products at the desired amount, in the desired place and at the desired time. 1) How would you explain this process to a person who knows very little about molecular biology (let's assume that this person already knows that DNA is the genetic material and genes are carried by pieces of DNA)? You need to explain briefly the most critical events/steps in gene expression and regulation. 2) Now that this person understands the basic process of gene expression, please discuss in more detail two topics/issues that you think are critical to transcription regulation. Topics may include (but are not limited to): the recruitment model, cellular memory, long-distance communication between enhancers and promoters, targets of activators, gene expression noise, etc. Topics do not have to be limited to what has already been discussed in the lectures. 3. What is the newly recognized function of adipose tissue? Give a brief definition for adipokines. Most recently reported studies suggest that RBP4 (Retinol-Binding Protein 4) protein behaves as a novel adipokine given its role in glucose metabolism, and these findings support the notion that adipose serves as a glucose sensor. From these studies, are you convinced that RBP4 acts as a signaling molecule involved in tissue-tissue communications in the homeostatic regulation of blood glucose? What more questions, if any, would you think that need to be answered to help unambiguously delineate the metabolic function of RBP4? Briefly describe at least one experimental study you can think of and your anticipated point that the experimental results may demonstrate. (300-500 words) 4. Dr. Rosetta Stone wants to identify the co-regulators and downstream targets of a transcription factor Swi4 in yeast. She suspects that Swi4 may interact with other transcription factors in vivo to control the expression of their downstream targets. (1) Can you help Dr. Rosetta Stone decide which approach(es), yeast two-hybrid, protein complex/MS, or protein chip approach, is more suitable for identifying the co-regulators of Swi4, and why? (2) It has been well established in higher eukaryotes that when two transcription factors from a heterodimer, the dimer recognizes a different DNA motif sequence. In a screen Dr. Rosetta Stone finds that Swi4 binds to a transcription factor X, and now she wants to test whether this Swi4/X complex would recognize a different motif sequence in vivo using the ChIP-chip approach. Could you help her design the experimental procedure with all the proper controls? You can assume that all the necessary reagents are available, such as antibodies, oligo titling chips, etc. 5. Using bioinformatics tools, you have identified cDNA that is likely to encode a voltage-gated ion channel. 1) (40%) Select one region/domain below that, if with high homology to shaker potassium channel, will give the highest confidence that it is a potassium channel. Why? a. voltage-sensor region b. assembly domain c. inactivation domain d. pore forming region 2) (40%) Suggest one experiment and the possible experimental data that would support that the cDNA-encoded protein is a potassium channel. 3) (20%) Suggest one experiment and the possible experimental data that would support that the channel protein in fact also possesses transcription activation activity similar to transcription factors. Q1-1: Ca2+作为细胞内重要的第二信使,参与体内众多的生命过程,如:细胞生长,基因调节,肌肉收缩,抵制释放,神经可塑性,蛋白质磷酸化,激素分泌,细胞凋亡等过程中。尤其在心脏的兴奋收缩耦联过程中起着重要的作用。在心脏兴奋收缩耦联过程中,细胞膜去极化,使得横管上面的L型钙通道开放,导致Ca2+内流,引起肌质网上的Ryanodine Recepter(RyR)开放,释放出更多的Ca2+,最终引起细胞收缩。这就是所谓的钙致钙释放过程(Calcium induced calcium release, CICR)。钙在钙致钙释放过程中扮演者重要角色,它不仅是离子通道通透的离子,还是引起离子通道开放的信号分子。钙致钙释放过程中涉及到两个通道,一个是位于横管上的L型钙通道,另一个是位于肌质网上的RyR。这两个通道之间仅仅有一个十几个纳米的间隙。因为这个间隙非常狭小,使得从L型钙通道流入的少量的钙离子可以形成一个局部的高浓度,从而引起RyR的开放。这就是钙离子的局部控制的一个典型实例。另外钙离子的时空调节在心脏形式其正常功能方面也具有重要作用。当心肌细胞肌质网内的钙离子通过RyR流入胞内时,引起内钙升高,导致细胞的收缩。然而如果细胞内的钙离子持续高水平,那么细胞就不能回到舒张状态,不能进行下一次收缩,心脏也就无法行使它的功能。因此当细胞内钙升高后,肌质网上的钙泵以及细胞膜上的钠钙转运体都开始工作,迅速降低胞内钙浓度,使钙离子重新回到肌质网内,或者排到胞外。因此,钙在心肌细胞收缩过程当中体现为钙瞬变。钙瞬变保证细胞收缩的同时,能够顺利进入舒张状态。 Q1-2: 钙是人体重要的元素成份之一,在体内以2种形式存在:结合状态和离子状态(Ca2+)。但只有Ca2+才具有生理活性。体内Ca2+又分为细胞内Ca2+和细胞外Ca2+两种。研究 关于同志近三年现实表现材料材料类招标技术评分表图表与交易pdf视力表打印pdf用图表说话 pdf 明,细胞内Ca2+浓度低,仅为细胞外的1‰。细胞内Ca2+作为重要的第二信使,广泛存在于各种类型的细胞反应中。同时,它参与心肌细胞动作电位的形成和骨骼肌、心肌的兴奋-收缩耦联,具有兴奋心脏、调整心率、收缩心肌、骨骼肌及平滑肌的作用, 也可应用于心肌梗死及药物治疗。此外, 钙离子在血液凝固、细胞损伤及死亡过程中也发挥着重要的作用。笔者主要以心肌兴奋耦联收缩过程为例,阐述Ca2+调控的重要性。 细胞在静息状态下,胞浆内自由Ca2+浓度在100 nmol/ L 左右,而胞外环境Ca2+浓度在mmol/ L级水平,很大的电化学梯度使得细胞一旦被刺激,可以在毫秒的时间范围内使胞内Ca2+浓度达到μmol/ L水平。细胞质膜上有多种不同的通道可以在刺激条件下,控制胞外环境中的Ca2+流入胞内。胞内钙库释放也可引起胞内同等效力Ca2+浓度升高,胞内钙库主要有内质网/肌质网钙库( ER/SR)、线粒体、高尔基体、细胞核以及酸性囊泡库等。它们在相应的刺激条件下,也会引起Ca2+释放。钙通道电压门控Ca2+通道可分为L、T、N、P、Q 和R等类型。①L2型钙通道是Ca2+内流的单向转运系统。开放后持续的时间较长,失活较慢(100 ms~300 ms) ,又称为慢钙通道。因为可与双氢吡啶特异性结合,也叫双氢吡啶受体(DHPR),是电压依赖性钙通道。心肌DHPR位于表面膜和T管膜上,每个DHPR 对应一组RyR2 (即每个DHPR约对应数个RyR),介导动作电位期间的Ca2+内流,起Ca2+通道的作用。静息时,RyR2 通道关闭。当通过DHPR内流的Ca2+与RyR2通道的足结构域结合后,以Ca2+触发Ca2+释放方式使RyR2开放。②T 型钙通道窦房结细胞和蒲肯野纤维膜,其开闭也受膜电位变化的影响。较低水平的去极化就可激活,失活迅速,又称快钙通道。SR 的Ca2+释放通道:心肌SR的Ca2+释放通道包括RyR和IP3受体。心肌的RyR已认为是兴奋-收缩耦联过程中胞质Ca2+浓度升高的主要途径。IP3 受体位于SR(内质网) 膜,由IP3 调节其功能。IP3 受体的信号转导途径由G蛋白偶联受体或其他途径激活,但不是心肌细胞内主要的Ca2+释放途径。IP3 受体只能介导少量Ca2+释放,所以在心肌的兴奋-收缩耦联中不能起主要的作用。 而胞浆内Ca2+清除主要通过:质膜上的Na + / Ca2+交换(NCX)、质膜上的Ca2+-ATPase (PMCA)、内质网/肌浆网上的Ca2+-ATPase ( SERCA) 以及线粒体上的协同转运体(uniporter)。 这些Ca2+转运和清除机制通过复杂精细的调控作用,维持着胞内Ca2+浓度的稳态平衡。 前面提到,在静息状态下,胞内的Ca2+浓度时很低的。而其浓度的改变是取决于内质网和质膜上钙离子通道的开放。由于通常情况下,内质网内和细胞外的Ca2+浓度远远高于胞内,因此单个钙离子通道的开放都能对胞内的Ca2+浓度产生影响。质膜上少量的钙离子通道开放,造成细胞中局部的钙离子浓度的变化,可以通过进一步激活内质网上钙离子通道(如RyRs),造成内质网中的钙释放。这个过程称为钙诱导的钙释放(CICR)。CICR将兴奋与心肌收缩耦联在了一起。 要阐述Ca2+信号的局部性时不得不提到一个概念——钙火花。钙火花反映了一个间隙内RyRs的同步激活,即心肌兴奋收缩耦联的局部模式。兴奋收缩耦联期间,几千个钙火花的发生在时间上是同步的,因此在时间和空间上局部钙的增加几乎是完全重叠的。兴奋收缩耦联期间阻断90%以上钙电流或用外源性缓冲系统捕捉释放的钙时,仍可观察到局部钙释放的产生。钙火花是静息及兴奋收缩耦联期间SR钙释放的基本单位。舒张期时由于胞内低钙水平(100 nm/L),钙火花的发生频率很低;动作电位期间L-型钙通道的开放可大幅地提高局部钙浓度,是钙火花的发生频率较静息时提高103-106倍。SR-TT间隙处存在10-300个有序排列的RyRs,RyRs同源多聚体附近分布有调控其相互耦联的FK结合蛋白,一个RyR的开放足以提高局部钙水平,促使多个RyRs(10-200个)以耦联门控的方式共同参与钙火花产生。SR-TT的在空间上的耦联,造成了钙小星与钙火花在时间和空间上的耦联,产生CICR,使得心肌的兴奋与收缩耦联起来。 Q2-1: (1)如图所示: 所有生物的遗传信息,都是以基因的形式储藏在细胞内的DNA(或RNA)分子中。随着个体的发育,DNA分子能有序地将其所承载的遗传信息,通过密码子-反密码子系统,转变成蛋白质分子,执行各种生理生化功能,完成生命的全过程。科学家把这个从DNA到蛋白质的过程称为基因表达(gene expression,),对这个过程的调节就称为基因表达调控(gene regulation或gene control)。 基因表达调控主要表现在以下二方面: A.转录水平上的调控(transcriptional regulation); B.转录后水平上的调控(post-transcriptional regulation),包括 ① mRNA加工成熟水平上的调控(differential processing of RNA transcript); ② 翻译水平上的调控(differential translation of mRNA)。 基因调控的指挥系统也是多样的,不同的生物使用不同的信号来指挥基因调控。原核生物中,营养状况(nutritional status)和环境因素(environmental factor)对基因表达起着举足轻重的影响。在真核生物尤其是高等真核生物中,激素水平(hormone level)和发育阶段(developmental stage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。在转录水平上对基因表达的调控决定于DNA的结构、RNA聚合酶的功能、蛋白因子及其他小分子配基的相互作用。 (2)原核生物直接暴露在变幻莫测的环境中,食物供应无保障,只有能根据环境条件的改变合成各种不同的蛋白质,使代谢过程适应环境的变化,才能维持自身的生存和繁衍。高等真核生物代谢途径和食物来源都比较稳定,但由于它们是多细胞有机体,在个体发育过程中出现细胞分化,形成各种组织和器官,而不同类型的细胞所合成的蛋白质在质和量上都是不同的。因此,不论是真核还是原核细胞都有一套准确地调节基因转录的机制。自然选择倾向于保留高效率的生命过程。我想以细胞水平的转录调控和核内各种因子的协调统一这两个最普遍且最关键的tissue来进行讨论。生物中所利用的大多数基本调控机制一般执行如下规律:一个体系在需要时被打开,不需要时被关闭。这种“开-关”(on-off)活性是通过调节转录来建立的,也就是说mRNA的合成是可以被调节的。实际上,当我们说一个系统处于“off”状态时,也可能有本底水平的基因表达,常常是只合成1或2个mRNA分子和极少量的蛋白质分子。为了方便,我们常常使用“off”这一术语,但必须明白所谓“关”实际的意思是基因表达量特别低,很难甚至无法检测。外界信号在调控基因转录时,必须穿过细胞膜、细胞质、核膜之后才能够入核进行作用。在这个过程中,各个屏障都起到了选择作用,从而使信号更精确,它们也都可以起到开关的作用。同时,信号在传递过程中通过第二信使等进行放大,从而使调控非常迅速。当信号入核之后,核内的各种转录因子和酶之间又是一个层层激活的过程,在这当中还有启动子、增强子、抑制子等各种重要元件来控制转录过程的精确性。所以,基因的产物可以被控制在最适的量、最适的区域和最适的时间。 Q2-2: 1)两国交战时,敌方的各种骚扰可以当作是外界的信号,通过我方哨兵的侦察,将将该信号传到我军司令部,即相当于细胞核,之后,司令部会给予下属各级将士一系列的指示,将不同兵种部署在不同的场所,并命令它们在合适的时间发动进攻。从短期来看,仅涉及到原有兵力布局,以及士气的鼓舞等方面,在长期来看,则涉及新兵员的补充,不同兵种相对大小的变化等等。孙子认为战争中必须注意天时、地利、人和三个因素;细胞内蛋白质的作用同样要考虑到时间、位置、“partner”等方面的因素,而这些因素都是通过司令部(或细胞核)的一序列指令来达到的。 2)the recruitment model:司令部在作决定的时候,必须通过各位参谋长(转录因子)在会议室(启动子)的讨论,集中集体的智慧,最终作出命令(去核信号)。各位参谋长所提出的 意见 文理分科指导河道管理范围浙江建筑工程概算定额教材专家评审意见党员教师互相批评意见 与经层层传递到他的信息以及他自身的修养、背景有关,同样,某个转录因子的作用与它自身的性质以及胞外信号的作用有关。 Q2-3: 1)我们把机体比作电视机,一个个基因可以比作一个个频道。机体诞生相当于电视机被打开,这时就可以接收到许多频道,但是究竟哪个频道被收看取决于观众手中的遥控器。而用这遥控器选择频道的过程就是决定何种基因被表达的过程。在什么时间地点选择某个频道就是决定该基因何时何地表达的过程。而在决定了频道之后,我们还可以调节音量、色度、对比度等,这就相当于决定基因表达量的过程。 2)细胞记忆:有些时候转录因子的作用在其消失后仍然存在或遗传下来。如在果蝇中homeotic基因的表达。在早期的胚胎发生中,homeotic基因响应由gap和pair rule基因编码的转录因子。这些基因的激活态和沉默态后来都分别为trithorax类(trxG)基因和polycomb类(PcG)基因编码的蛋白所保留。trxG和pcG蛋白组成协同因子复合物通过DNA元件Polycomb相应元件(PREs)行使功能。在线虫的研究中发现,一种名叫Fab-7的PRE可以维持与其耦联的 报告 软件系统测试报告下载sgs报告如何下载关于路面塌陷情况报告535n,sgs报告怎么下载竣工报告下载 基因的激活态。也就是说,这一报告基因在激活子本身不再存在的情况下仍然可以保持活性。有趣的是这种记忆可以通过不依赖激活子的形式功过雌性种系传递到下一代。近来研究发现PcG和trxG的复合物都含有组蛋白甲基转移酶(HMT)的活性。因此人们猜测不同的组蛋白甲基化模式代表了hometic基因保持其激活态和沉默态的细胞记忆系统。 增强子和启动子之间的长距离通讯:高等真核生物的增强子即使与它们的启动子相隔数千个碱基仍能发挥功能。与短距离的激活相比,长距离的激活还需要面对另外两种挑战:一是启动子和增强子如何进行长距离通讯;二是增强子如何选择性地激活一个启动子,而不激活另一个同样在它作用范围内的启动子。对于第一个问题,人们提出一种叫做facilitator的蛋白可以增强相距很远的增强子和启动子之间的相互作用。最近研究表明增强子和启动子之间的通讯效率也可以被核心启动子附近叫做tethering元件的DNA元件所提高。而对于第二个问题的解释是增强子和启动子可以被不同的机制的调控。首先,tethering元件选择性地促进一个启动子与某一个增强子的通讯;其次,启动子之间有时可以相互竞争一个增强子,于是增强子更偏向于强启动子,而忽视弱启动子;最后,绝缘子元件可以阻止增强子和启动子之间“不需要”的通讯,于是也就促进了“需要”的通讯。 Q3-1: (1) 现在认为脂肪组织作为活跃的内分泌器官发挥功能。具体功能包括感受机体的营养状况;释放自由的脂肪酸,瘦素,脂联素,抵抗素,细胞因子和其他一些分子,这些物质在脑和外周组织中通过改变细胞的代谢发挥功能。 (2) Adipokines是指由脂肪组织产生和分泌的起激素作用的蛋白,能够参与机体代谢的调节,维持稳态,促进发育等作用,称之为脂肪因子。 (3) 我认为RBP是在组织与组织间调节血糖稳态的信号分子。因为实验发现,如果机体中血糖的浓度下降,引起脂肪细胞葡萄糖摄入减少,脂肪细胞分泌的RBP的水平上升,RBP可以作用于骨骼肌细胞和肝脏细胞,引起胰岛素信号下降,对于骨骼肌的摄取量较少,对于肝脏葡萄糖的输出增加,共同引起血糖浓度的升高,维持血糖的稳态。因此可以认为RBP是组织与组织之间调节血糖稳态的信号分子。 (4) 第一个问题RBP是怎样作用于骨骼肌和肝脏的 第二个问题RBP的受体是怎样的 第三个问题在骨骼肌和肝脏中RBP介导的信号是怎样转导的 (5)从脂肪细胞分泌的RBP经过血液循环到达肝脏组织和骨骼肌,由于RBP是蛋白质,不能跨过细胞膜进入细胞,所以在这两种组织的细胞膜表面一定存在RBP的受体。用放射性同位素标记纯化的RBP,使其作用于肝脏和骨骼肌细胞,然后通过差速离心提取两种细胞的细胞膜,用生化方法提取膜蛋白,再通过氯化铯密度梯度离心,收集带有放射性标记的一层。进行SDS-PAGE,因为已知RBP的分子量,所以除去RBP以外的条带即是受体蛋白所在的条带,另一方法是利用RBP的抗体沉淀RPB和受体的复合物,进行SDS-PAGE,即可分离出受体蛋白,把受体蛋白所在的条带进行回收,然后测定其序列,在数据库中查找它是否是一个已经被发现的蛋白,如果查找到这种蛋白并且已有报道发现了编码这种受体蛋白的基因,就可以通过基因克隆受体然后研究其结构和功能。如果数据库中没有相互匹配的数据,可以通过蛋白序列筛选其cDNA,再通过cDNA筛选其基因,得到基因后再通过克隆受体研究其结构和功能,进而根据受体的类型与性质分析信号通路以及对胰岛素的作用。 Q3-2: 脂肪细胞也是人体最重要的内分泌器官之一,这是近年来医学内分泌学领域的一项重要研究进展。脂肪细胞因子(Adipokines)是脂肪细胞合成分泌的功能蛋白或多肽激素,它作为内源性信号分子作用于脂肪组织和能量代谢器官,从而控制机体内能量的合成和代谢活动的功能稳态。 不。因为尚不确定它是血糖调控的因还是果。只能说它与胰岛素抗性有所关联,可能可以作为衡量糖尿病治疗效果的一个标记物。RBP4是否还在其它细胞中表达?它可以与哪些物质相互作用?它受什么调控?它的结构是怎样的?是受体吗?是转录因子吗?用生物信息学的方法比较它与其他蛋白的同源性,用计算机模拟的方法研究它的结构,与已知功能的蛋白进行比较,观察是否有结构上相似的蛋白,这些相似的蛋白又有什么功能;无论它是受体还是信号分子,都应该有与之可以研究结合的物质(配体、下游信号分子和蛋白激酶或受体等),可以分析胰岛素抗性和非抗性的个体种差异表达或差异存在的物质,研究RBP4与它们的亲和力;如果它是转录因子,那么可以用Chip-chip的方法确定与之结合的DNA,并可进一步用转染的方法,观察它是否能调节相应基因的转录。 Q4: (1)酵母双杂交和蛋白芯片更适合。因为蛋白芯片的方法可以找出与该蛋白相互作用的候选蛋白,同时酵母双杂交在细胞核中进行,而转录因子本来也在细胞核发挥作用,因而实验结果比较能反映体内的真实情况。我们可以将通过蛋白芯片筛选的候选蛋白与该蛋白一一作酵母双杂交,以进一步确定这些蛋白是否与该蛋白又相互作用。 (2)用Swi4、X、Swi4/X和Swi4/X的嵌合蛋白分别作ChIP-chip,比较四者结果的差异。观察Swi4/X和Swi4/X的嵌合蛋白是否有新的DNA结合域,这些新的结合域是否相同。如果相同,则进一步确证了Swi4和X可以相互作用。如果有不同,则在Swi4/X的这些ChIP-chip阳性结果上用Swi4和X的抗体做Western,观察是否两种抗体都能与之结合。如果能结合则进一步证明Swi4/X有了新的DNA结合域。 (1) ① design SiRNA for Swi4 and SiRNA for X, transfect separately these two SiRNA into cell , set up Swi4 knock out cell line and X knock out cell line. ② ChIP for wild type cell, Swi4 knock out cell and X knock out cell A Crosslink protein DNA complexes in cell with 1% formaldehyde at room temperature for 10 min. B Harvest cells Centrifuge cells (5min. at 3000rpm) and discard supernatant. Wash cells with 10ml ice-cold 1X TBS and spin cells down, again and discard supernatant. Place cells on ice. C lyse cell and shear chromatin s Cells were resuspended in 0.3ml of lysis buffer and sonicated three timers for 10 sec each at the maximum setting followed by centrifugation for 10 min. D preclear extract Add 30l bed volume of Protein A sepharose beads to each tube and incubate on a rotation wheel for 50min. at 4°C. Centifuge samples at 7500rpm for 2min and then transfer supernatant to a fresh tube. E immunoprecipitation Add antibody for Swi4 to X knock out cell and wild type cells, Add antibody for X to Swi4 knock out cells and wild type cells, And set up a wild-type-cell sample without antibody as negative control. Incubate on ice for 3hrs, then add 30l bed volume Protein A sepharose beads. Incubate on rotating wheel for 1hr at 4°C. Centrifuge sample for 2min at 7500rpm at 4°C. F Wash immunoprecipitates Add 1ml RIPA buffer to the beads and incubate for 5min. on rotating wheel at 4°C and then centrifuge at 7500rpm for 2min. Discard supernatant. Add 1ml RIPA-500 to the beads and repeat incubation and centrifugation. Add 1ml LiCl/detergent solution to the beads and repeat incubation and centrifugation. Add 1ml 1XTBS to the beads and repeat incubation and centrifugation. G Elute immunoprecipitates Add 100l 1%SDS/1X TE, mix and incubate at 65°C for 10min. Centifuge b riefly and transfer eluate to fresh tube and wash beads with 150l 0.67%SDS/1X TE. Briefly centrifuge and add wash to eluate.   H Reverse cross-links Incubate the immunoprecipitates and the total extract material for at least 6hrs at 65°C. I purify DNA fragment J Amplification, labeling and hybridization of DNA to DNA microarray The immunoprecipitated (ChIP) DNA and 1/200 of total input DNA were amplified label ChIP DNA with Cy5-dUTP, and label total input DNA withCy3-dUTP.Then combine them and they are hybridized to microarray , total input DNA acts as negative control. K western blot to verify that Swi4 and X can be pulled down. L analyze data Q5-1: 1)d.原因如下: 1.a只能说明它可能是电压门控离子通道,但不能确定具体是哪一种。 2.b只能说明它可能与钾离子通道可能有共同的祖先,甚至不能确定它是离子通道。 3.c只能说明它可能是离子通道。甚至不能确定它是电压门控离子通道。 4.d决定了离子通道的选择性,对于确定它是一个钾离子通道最有说服力。 2) (40%) Suggest one experiment and the possible experimental data that would support that the cDNA-encoded protein is a potassium channel. 用该cDNA转染爪蟾卵母细胞,使其表达。用膜片钳回路记录该细胞对所施电压做出的反应。比较在加入钾通道特异性阻断剂时和不加入时所记录的电流。如果该蛋白是钾离子通道,那么在给予适当的电压时,如果没有钾通道特异性阻断剂那么钾会外流,而给予时则不会。因此加入阻断剂时检测到的外向电流应该低于不加入的。 3) (20%) Suggest one experiment and the possible experimental data that would support that the channel protein in fact also possesses transcription activation activity similar to transcription factors. 在转录水平上参与基因表达调控的转录因子含有不同的结构域,以介导蛋白质功能的不同方面,典型的转录因子至少包括两个结构域:一个DNA结合结构域,它结合DNA的特异碱基对序列;另一个是激活结构域,它通过与其他蛋白质相互作用激活转录。因此,我们可以首先寻找该蛋白上是否有可能的DNA结构域,如“锌指”、“螺旋—转角—螺旋”、“螺旋—环—螺旋”、“亮氨酸”拉链等。 如果有,那么很可能是转录因子。为了进一步确定我们的判断,我们可以将两组全DNA进行酶切后,一组加入该蛋白交联后电泳,另一组不加,比较两组电泳结果,观察是否有变化,如果有变化则可进一步检测是否是由该蛋白质的结合引起的,其所结合DNA的序列。最后可以转染该蛋白,观察那段DNA操纵的mRNA或蛋白是否增加。 如果没有,也可以用酵母双杂交的办法进行确定。 3. What is the newly recognized function of adipose tissue? Give a brief definition for adipokines(脂肪细胞因子). Most recently reported studies suggest that RBP4 (Retinol-Binding Protein 4) protein behaves as a novel adipokine given its role in glucose metabolism, and these findings support the notion that adipose脂肪 serves as a glucose sensor. From these studies, are you convinced that RBP4 acts as a signaling molecule involved in tissue-tissue communications in the homeostatic regulation of blood glucose? What more questions, if any, would you think that need to be answered to help unambiguously delineate the metabolic function of RBP4? Briefly describe at least one experimental study you can think of and your anticipated point that the experimental results may demonstrate. (300-500 words) 脂肪细胞分泌的具有血管活性的激素和因子统称为脂肪细胞因子(adipocytokine) 4. Dr. Rosetta Stone wants to identify the co-regulators and downstream targets of a transcription factor Swi4 in yeast. She suspects that Swi4 may interact with other transcription factors in vivo to control the expression of their downstream targets. (1) Can you help Dr. Rosetta Stone decide which approach(es), yeast two-hybrid, protein complex/MS, or protein chip approach, is more suitable for identifying the co-regulators of Swi4, and why? (2) It has been well established in higher eukaryotes that when two transcription factors from a heterodimer, the dimer recognizes a different DNA motif sequence. In a screen Dr. Rosetta Stone finds that Swi4 binds to a transcription factor X, and now she wants to test whether this Swi4/X complex would recognize a different motif sequence in vivo using the ChIP-chip approach. Could you help her design the experimental procedure with all the proper controls? You can assume that all the necessary reagents are available, such as antibodies, oligo titling chips, etc. 酵母双杂交可以从cDNA 文库中筛选与已知蛋白质X 相互作用的未知蛋白质Y的编码序列等。 Cy3(绿色)或Cy5(红色) 5. Using bioinformatics tools, you have identified cDNA that is likely to encode a voltage-gated ion channel. 1) (40%) Select one region/domain below that, if with high homology to shaker potassium channel, will give the highest confidence that it is a potassium channel. Why? e. voltage-sensor region f. assembly domain g. inactivation domain h. pore forming region 2) (40%) Suggest one experiment and the possible experimental data that would support that the cDNA-encoded protein is a potassium channel. 3) (20%) Suggest one experiment and the possible experimental data that would support that the channel protein in fact also possesses transcription activation activity similar to transcription factors. Molecular identities of the M-current · KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel - Wang, H. S. et al., 1998, Science, 282:1890-3 · KCNQ2 and KCNQ3 mRNA injected into Xenopus oocytes, followed by electrophysiological recording. Compared with recordings in rat sympathetic neurons - Similar kinetic properties with native M-current - Similar drug sensitivity – linopirdine, XE991 · Functional M-channels contain KCNQ2 + KCNQ3 heteromers Voltage-gated calcium channels play a central role in regulating the electrical and biochemical properties of neurons and muscle cells. One of the ways in which calcium channels regulate long-lasting neuronal properties is by activating signaling pathways that control gene expression, but the mechanisms that link calcium channels to the nucleus are not well understood. We report that a C-terminal fragment of CaV1.2, an L-type voltage-gated calcium channel (LTC), translocates to the nucleus and regulates transcription. We show that this calcium channel associated transcription regulator (CCAT) binds to a nuclear protein, associates with an endogenous promoter, and regulates the expression of a wide variety of endogenous genes important for neuronal signaling and excitability. The nuclear localization of CCAT is regulated both developmentally and by changes in intracellular calcium. These findings provide evidence that voltage-gated calcium channels can directly activate transcription and suggest a mechanism linking voltagegated channels to the function and differentiation of excitable cells. CCAT Binds to a Nuclear Protein To get an indication of CCAT’s function, we looked for proteins that interact with CCAT in the nucleus. We expressed CCAT or a mutant form lacking the nuclear localization domain in Neuro2A cells, immunoprecipitated them via epitope tags, and identified interacting proteins by mass spectrometry. One of the proteins that coimmunoprecipitated with full length CCAT was p54(nrb)/NonO, a nuclear protein that plays a role in regulating transcription downstream of the neuronal Wiscott Aldrich Protein (Wu et al., 2006), the retinoic acid receptor, and the thyroid hormone receptor (Mathur et al., 2001). We verified the interaction of p54(nrb)/NonO with CCAT by coimmunoprecipitation followed by Western blotting against endogenous p54(nrb)/NonO (Figure 4A). These results indicate that CCAT is associated with a nuclear protein that participates in transcriptional regulation and regulates mRNA splicing, and suggest a role for the C terminus of CaV1.2 in the nucleus. CCAT Activates Transcription Based on its nuclear localization and its binding to p54(nrb)/NonO, we hypothesized that CCAT might regulate transcription. To investigate whether CCAT can activate transcription when recruited to a promoter by a heterologous DNA binding domain, we made a C-terminal fusion of the intact channel and the Gal4-DNA binding domain from yeast (CaV1.2-Gal4, Figure 4B). The Gal4- DNA binding domain recognizes the UAS-DNA sequence but requires a transcriptional activation domain to activate transcription. We introduced CaV1.2-Gal4 into Neuro2A cells along with a UAS-luciferase-reporter gene and measured luciferase expression. We found that CaV1.2-Gal4 activated transcription approximately 80 times better than Gal4 alone or than the channel lacking the Gal4- DNA binding domain (Figure 4C). These results suggest that the C terminus of CaV1.2 is produced as a soluble protein in cells, that it translocates to the nucleus, and that it activates transcription when recruited to a heterologous gene. To identify the domains of CaV1.2 that are required for transcriptional activation。。。。。。 transcription factors often form a large complex to initiate transcription . If he uses protein complex/MS to find out the co-regulator of Swi4, he may identify some other proteins in the complex that do not interact directly with Swi4, besides co-regulators of Swi4 and it is not a easy thing to tell co-regulators from other proteins in the complex.
本文档为【bio2000历届考题2006_Bio2000 Final exam】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_320832
暂无简介~
格式:doc
大小:355KB
软件:Word
页数:14
分类:英语四级
上传时间:2018-09-10
浏览量:16