下载

2下载券

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 结构化学课件

结构化学课件.ppt

结构化学课件

猪猪
2011-10-09 0人阅读 举报 0 0 暂无简介

简介:本文档为《结构化学课件ppt》,可适用于工程科技领域

HO第三章双原子分子的结构和性质H的结构和共价键的本质分子轨道理论同核双原子分子的结构异核及双原子分子的结构H分子的结构和价键理论分子光谱﹡光电子能谱第三章双原子分子的结构和性质化学键概述前言:两个原子相互靠近它们之间存在什么样的作用力怎样才能形成稳定的分子结构?这是化学键理论讨论的主要问题。两个原子相距较长距离时它们倾向于相互吸引而在短距离内它们会互相排斥。某一对原子间相互吸引力很弱而另一对原子间吸引力强到足以形成稳定分子。为什么有这么大的差别这正是本章要讨论的内容。 化学键概述共价单键离子键金属键氢键缺电子多中心氢桥键H配键分子氢配位键抓氢键。化学键的定义和类型化学键:共价键离子键和金属键。基本理论:价键理论分子轨道理论配位场理论。键型的多样性化学键的定义:广义地说化学键是将原子结合成物质世界的作用力。化学键定义为:在分子或晶体中两个或多个原子间的强烈相互作用导致形成相对稳定的分子和晶体。化学键理论简介原子是由带电粒子组成的我们预计原子间相互作用力大多是静电相互作用主要取决于两个方面一是原子的带电状态(中性原子或离子)二是原子的电子结构按原子最外价电子层全满状态(闭壳层)或未满状态(开壳层)来分类。闭壳层包括中性原子如稀有气体He、Ne、Kr……及具有稀有气体闭壳层结构的离子如Li、Na、Mg、F、Cl等。开壳层则包括大多数中性原子如H、Na、Mg、C、F等。显然闭壳层原子(或离子)与开壳层原子之间相互作用很不相同。化学键理论简介一、原子间相互作用力()两个闭壳层的中性原子例如HeHe它们之间是vanderWaals(范德华)引力作用。()两个开壳层的中性原子例如HH它们之间靠共用电子对结合称为“共价键”。()一个闭壳层的正离子与一个闭壳层的负离子例如NaCl它们之间是静电相互作用称之为“离子键”。()一个开壳层离子(一般是正离子)与多个闭壳层离子(或分子)例如过渡金属配合物Mn(X)m,它们之间形成配位键(属共价键范围)。()许多金属原子聚集在一起最外层价电子脱离核的束缚在整个金属固体内运动金属键。讨论这些成键原理的理论称化学键理论。原子间相互作用大致可分为以下几类:原子通过化学键结合成分子分子是物质中独立地、相对稳定地存在并保持该化合物特性的最小颗粒是参与化学反应的基本单元。原子相互吸引、相互排斥以一定的次序和方式结合成分子。物质的化学性质主要决定于分子的性质而分子的性质主要由分子的结构决定。因此探索分子内部的结构了解结构和性能的关系就成了结构化学的重要组成部分。化学键是指分子中将原子结合在一起的相互作用力,广义而论还包括分子间的相互作用。两个或多个原子(或离子)之间依靠化学键将原子结合成相对稳定的分子或晶体。典型的化学键有三种:共价键、离子键和金属键。气态分子中的化学键主要是共价键。离子键和金属键分别存在于离子化合物与块状金属中。分子间和分子内部有时还形成氢键其强弱介于共价键和范德华力之间。现代化学键理论是建立在量子力学基础上的。由于分子的Schrödinger方程比较复杂严格求解经常遇到困难常采用某些近似的假定以简化计算。随着量子力学的发展为处理分子结构问题提出了三个基本理论:分子轨道理论、价键理论和配位场理论。这三个理论互有联系。最早发展起来的是价键理论年Heitler和London成功地解了H分子的Schrödinger方程这是最早的价键理论的成果也是价键理论的基础。以后Pauling引进杂化轨道概念使价键理论获得发展。分子轨道理论是后来发展起来的从年代以来用它处理有机共轭分子结构取得了很大成功获得迅猛发展成为当代化学键理论的主流。配位场理论则是根据配位化合物的结构特征发展起来的。这些化学键理论都将陆续在后面详细地介绍。从二十世纪初发展至今化学键理论已形成三大流派:分子轨道理论(MolecularOrbital)、价键理论(ValenceBond)和密度泛函理论(DensityFunctionalTheory)。二、化学键理论简介分子轨道理论:从世纪年代初由HundMullikenLennardJones开创SlaterHückelPople发展至今。该方法的分子轨道具有较普通的数学形式较易程序化。六十年代以来随着计算机的发展该方法得到了很大的发展。如Pople等研制的Gaussian从头算程序,已成为当今研究化学键理论的主流方法以后我们将主要介绍该方法。TheNobelPrizeinChemistry"fortheirtheories,developedindependently,concerningthecourseofchemicalreactions"    年获化学奖Pople教授年生于英国的Somerset。年在剑桥大学获得数学博士学位。他的导师JohnLennardJones是剑桥大学化学系理论化学的Plemmer讲座教授当时的Faraday学会主席。Pople教授曾经在剑桥大学数学系任教后转入国家物理实验室工作直至年移居美国在CarnegieMellon大学任化学物理教授。从年起至今Pople一直在西北大学化学系任教授。Pople教授是美国国家科学院和美国艺术与科学院院士。JohnAPopleEngland~JohnAPople()分子轨道采用原子轨道线性组合(LCAO)例如CH分子C原子有ssp等个轨道加上个H原子s轨道共有个原子轨道可组合成个分子轨道。()分子中每个电子看作是在核与其它电子组成的平均势场中运动每个电子在整个分子中运动称为单电子近似。()分子轨道按能级高低排列电子从低至高两两自旋反平行填入分子轨道。分子轨道理论(MO)要点:三十年代由HeitlerLondon、Pauling、Slater等创立的化学键理论VB很重视化学图像。价键波函数采用可能形成化学键的大量共价结构和少量离子结构形成键函数通过变分计算得到状态波函数和能量。例如苯分子的π电子可形成以下多种共振结构图苯分子的多种共振结构图价键理论(VB):这是描述电子空间轨道运动的键函数还有描述电子自旋运动的键函数。由这些结构的键函数通过各种近似计算可得到体系的分子轨道与能级键函数形式因不同分子而异很难用一个统一的公式表示因此给价键理论的程序化带来很大的困难。在二十世纪三十年代化学家都倾向于用价键理论来解释分子结构但到了五十年代价键理论发展缓慢到了八十年代又有人对价键理论方法进行改进我校张乾二院士带领的课题组也在价键方法程序化方面取得了突破性的进展。鲍林TheNobelPrizeinChemistry"fortheirtheories,developedindependently,concerningthecourseofchemicalreactions"由于他对化学键本质的研究及把它应用到复杂物质结构的解释做出了卓越贡献而获得年诺贝尔化学奖年化学奖年鲍林LC(LinusarlPauling,~)LinusCarlPaulingUSACaliforniaInstituteofTechnologyPasadena,CA,USA鲍林鲍林年月日生于美国俄勒冈州。~年在加利福尼亚理工学院学习获得博士学位。去欧洲讲学。年~年任加利福尼亚理工学院理论化学助教教授。~年任副教授。年~年任教授年担任美国化学会会长。~年担任美国哲学会副会长。~年任圣迭戈加利福尼亚大学教授。~年任斯坦福大学教授。年以后任鲍林科学和医学研究所研究教授。主要成就:首先将量子力学与近代化学理论结合并应用于化学领域的重要代表人物是建立现代结构化学理论的杰出的先行者是量子化学的创始人之一。他早期的研究工作是从大学学习阶段开始,在州立学院读书期间他就着手化学键的研究收集了很多有关这方面的数据和资料。年代对化学键开始了正式研究他从研究硫钼矿的晶体入手经过了大约 年左右的时间从年代起陆续发表了好几篇涉及核间距和预测晶体结构的论文并从物质的晶体性质出发设计制作了很多模型来推测它的结构形态。这种方法在预言各种晶体结构、晶胞的形状和大小以及原子间结合方式等方面取得了独特的成功。量子力学诞生后他利用量子力学方法开展物理与化学的微观方面研究。包括分子原子运动和化学键性质等取得了很大成功。他从年代初就提出的关于计算原子电负性的公式和杂化轨道理论以及年代中期以后在研究生物大分子方面关于确定肽键和蛋白质分子的-螺旋体二级结构等出色成就打开了通往分子奥秘大门的通道阐明了原子间相互作用的规律和不同型式化学键的本质。此外他还把价键理论进一步扩展到金属和金属络合物方面并且阐明和发展了有关原子核结构和裂变过程本质的理论。他的研究工作涉及面较广尤其是他的化学键理论解释和阐明了许多复杂化合物的空间构型和本质特征从而解决了过去长期未能解决的分子结构方面的许多问题。年代后他的工作主要是把理论上的研究成果进一步应用于生物学和医学等方面。他的研究成果不仅对化学的各个基本领域产生巨大影响而且深深扩展到生物学、生理病理学和医学等领域也为分子生物学的崛起和发展做出了积极贡献。由于他在化学方面特别是化学键的性质和复杂分子结构方面的贡献年获得诺贝尔化学奖又由于对世界和平事业所作出的贡献年获得诺贝尔和平奖。密度泛函理论(DFT)  DFT是年由Kohn等提出Ellis 、 LeeYangParr 等发展、九十年代流行的一种化学键理论在DFT中用电荷密度函数代替单电子波函数描述体系的状态在解Schrödinger方程时用统计方法代替交换积分计算因而取得了计算时间短、精度高的效果特别适用重原子多原子体系。 密度泛函理论(DFT)TheNobelPrizeinChemistry"fortheirtheories,developedindependently,concerningthecourseofchemicalreactions"年获诺贝尔化学奖WalterKohn奥地利~WalterKohnWalterKohn教授年生于奥地利的维也纳。年作为犹太人的Kohn来到加拿大。年Kohn在多伦多大学获得数学与屋里学学士学位年获得应用数学硕士学位。年在美国的哈佛大学获得物理学博士学位。~年Kohn分别在CarnegieMellon大学物理系任教授加州大学SanDiego分校物理系任教年至今Kohn教授一直在加州大学SantaBarbara分校工作是该校理论物理研究所的创建人。Kohn教授是美国国家科学院和美国艺术与科学院院士。年Kohn教授发表了他的Caussian程序。随后这一程序的版本不断升级最高版本是Gaussian。现在全世界有数以千计的化学家在使用他的程序研究化学问题并取得了相当的成功。随后Kohn与Sham在年还指出了在密度泛函理论框架下如何运用传统的平均势理论来解决电子的相关问题。Gaussian主页:http:wwwgaussiancom简介:Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件研究范围:分子能量和结构过渡态的能量和结构化学键以及反应能量分子轨道偶极矩和多极矩原子电荷和电势振动频率红外和拉曼光谱NMR极化率和超极化率热力学性质反应路径。计算可以模拟在气相和溶液中的体系,模拟基态和激发态。Gaussian还可以对周期边界体系进行计算。Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。 Gaussian的功能有:基本算法:可对任何一般的收缩gaussian函数进行单电子和双电子积分。这些基函数可以是笛卡尔高斯函数或纯角动量函数多种基组存储于程序中通过名称调用。积分可储存在内存外接存储器上或用到时重新计算。对于某些类型的计算计算的花费可以使用快速多极方法(FMM)和稀疏矩阵技术线性化。   将原子轨道(AO)积分转换成分子轨道基的计算可用的方法有incore(将AO积分全部存在内存里)直接(不需储存积分)半直接(储存部分积分)和传统方法(所有AO积分储存在硬盘上)。能量:使用AMBERDREIDING和UFF力场的分子力学计算。   使用CNDO,INDO,MINDO,MNDO,AM和PM模型哈密顿量的半经验方法计算。   使用闭壳层(RHF)自旋非限制开壳层(UHF)自旋限制开壳层(ROHF)HartreeFock波函数的自洽场(SCF)计算。   使用二级三级四级和五级MollerPlesset微扰理论计算相关能。MP计算可用直接和半直接方法有效地使用可用的内存和硬盘空间。用组态相互作用(CI)计算相关能使用全部双激发(CID)或全部单激发和双激发(CISD)。   双取代的耦合簇理论(CCD)单双取代耦合簇理论(CCSD)单双取代的二次组态相互作用(QCISD),和BruecknerDoubles理论。还可以计算非迭代三组态(以及QCISD和BD的四组态)的贡献。   泛函数理论(DFT)包括LSDA,BLPY,Becke的三参数混合方法Becke的单参数混合方法和由此产生的变体以及由使用者自行组合的HartreeFock和DFT的混合方法。   自动化的高度准确能量方法:G理论G理论和G(MP)理论完全基组(CBS)方法:CBS,CSBq,CBSQCBSQB和CBSQCIAPNO以及一般CBS外插方法。   广义MCSCF包括完全活性空间SCF(CASSCF)并允许包含MP相关作用计算。算法的改善使得Gaussian可处理个以内的活性轨道。   广义价键结完全配对(GVBPP)SCF方法。   对HartreeFock和DFT方法计算在取消限制后测试SCF波函数的稳定性。使用单激发组态相互作用(CISingles)方法HF和DFT的含时方法和ZINDO半经验方法计算激发态能量。梯度和几何优化:   解析计算RHFUHFROHFGVBPPCASSCFMPMPMP(SDQ)CIDCISDCCDQCISD密度泛函和激发态CIS能量的核坐标梯度。以上后SCF方法可以利用冻结核近似。   使用内坐标笛卡尔坐标或混合坐标自动进行几何优化到能量最小或鞍点结构。不论输入结构使用何种坐标系统优化计算的默认执行使用冗余内坐标。  使用同步过渡引导的准Newton方法自动进行过渡态搜寻。  使用反应内坐标(IRC)计算化学反应路径。  对能量和几何优化进行二或三层ONIOM计算。  同时优化过渡态和反应路径。  使用态平均CASSCF进行圆锥截面优化计算。 沿着指定的反应路径对过渡结构定位能量最大点的IRCMax计算。直接动力学轨迹计算其中的经典运动方程集成了解析二级导数。频率和二级导数:   对RHFUHFDFTRMPUMP和CASSCF方法和用CIS方法计算的激发态等的力常数(对核坐标的二次导数)极化率超极化率和偶极矩解析导数的解析计算方法。   对MPMP(SDQ)CIDCISDCCD和QCISD方法的能量或梯度的数值微分计算力常数极化率和偶极矩导数。   使用任意同位素温度和压强做谐振分析和热化学分析。   决定振动跃迁的红外和拉曼光谱强度。分子特性:   使用SCFDFTMPCICCDQCISD方法求解各种单电子性质如Mulliken布居分析多极矩自然布居分析静电势以及使用MerzKollmanSingh方法CHelp方法或CHelpG方法由静电势计算的原子电荷。  用SCFDFT和MP方法计算NMR屏蔽张量和分子的磁化系数。  振动圆二色性(VCD)强度。  分子内原子理论的成键分析和原子性质。  用传播算子方法计算电子亲和能和电离势。  CASSCF计算中可计算两自旋状态间的近似自旋轨道耦合。溶剂模型:所有这些模型使用自洽反应场(SCRF)方法模拟在溶液中的分子系统。   Onsager模型(偶极和球反应场)包括在HF和DFT级别解析的一级和二级导数在MPMPMP(SDQ)CICCD和QCISD级别的单点能计算。   Tomasi等人的解析HFDFTMPMPMP(SDQ)QCISDCCDCID和CISD能量与HF和DFT梯度的极化连续重叠球状反应场(PCM)模型。   在HF和DFT级别上解析能量的IPCM(静态等密度曲面)模型。   在HF和DFT级别上的SCIPCM(自洽等密度曲面)模型用解析方法计算能量和梯度数值方法计算振动频率。Gaussian简介(年三月Gaussian从升级到)Gaussian是Gaussian系列电子结构程序的最新版本。它在化学、化工、生物化学、物理化学等化学相关领域方面的功能都进行了增强。研究大分子的反应和光谱Gaussian对ONIOM做了重大修改能够处理更大的分子(例如酶)可以研究有机体系的反应机制表面和表面反应的团簇模型有机物光化学过程有机和有机金属化合物的取代影响和反应以及均相催化作用等。ONIOM的其它新功能还有:定制分子力学力场高效的ONIOM频率计算ONIOM对电、磁性质的计算。通过自旋自旋耦合常数确定构像当没有X射线结构可以利用时研究新化合物的构像是相当困难的。NMR光谱的磁屏蔽数据提供了分子中各原子之间的连接信息。自旋自旋耦合常数可用来帮助识别分子的特定构像因为它们依赖于分子结构的扭转角。除了以前版本提供的NMR屏蔽和化学位移以外Gaussian还能预测自旋自旋耦合常数。通过对不同构像计算这些常数并对预测的和观测的光谱做比较可以识别观测到的特定构像。另外归属观测的峰值到特定的原子也比较容易。研究周期性体系Gaussian扩展了化学体系的研究范围它可以用周期性边界条件的方法(PBC)模拟周期性体系例如聚合物和晶体。PBC技术把体系作为重复的单元进行模拟以确定化合物的结构和整体性质。例如Gaussian可以预测聚合物的平衡结构和过渡结构。通过计算异构能量反应能量等它还可以研究聚合物的反应包括分解降解燃烧等。Gaussian还可以模拟化合物的能带隙。PBC的其它功能还有:()二维PBC方法可以模拟表面化学例如在表面和晶体上的反应。用同样的基组HartreeFock或DFT理论方法还可以用表面模型或团簇模型研究相同的问题。Gaussian使得对研究的问题可以选择合适的近似方法而不是使问题满足于模块的能力极限。()三维PBC:预测晶体以及其它三维周期体系的结构和整体性质。预测光谱Gaussian可以计算各种光谱和光谱特性。包括:IR和Raman预共振Raman紫外可见NMR振动圆形二色性(VCD)电子圆形二色性(ECD)旋光色散(ORD)谐性振转耦合非谐性振动及振转耦合g张量以及其它的超精细光谱张量。模拟在反应和分子特性中溶剂的影响在气相和在溶液之间分子特性和化学反应经常变化很大。例如低位构像在气相和在(不同溶剂的)溶液中具有完全不同的能量构像的平衡结构也不同化学反应具有不同的路径。Gaussian提供极化连续介质模型(PCM)用于模拟溶液体系。这个方法把溶剂描述为极化的连续介质并把溶质放入溶剂间的空穴中。Gaussian的PCM功能包含了许多重大的改进扩展了研究问题的范围:可以计算溶剂中的激发能以及激发态的有关特性NMR以及其它的磁性能用能量的解析二级导数计算振动频率IR和Raman光谱以及其它特性极化率和超极划率执行性能上的改善。 Gaussian新增加了以下内容:新的量子化学方法()ONIOM模块做了增强对ONIOM(MO:MM)计算支持电子嵌入可以在QM区域的计算中考虑MM区域的电特性。通过算法的改善ONIOM(MO:MM)对大分子(如蛋白质)的优化更快结果更可靠。ONIOM(MO:MM)能够计算解析频率ONIOM(MO:MO)的频率计算更快。提供对一般分子力场(MM)的支持包括读入和修改参数。包含了独立的MM优化程序。支持任何ONIOM模拟的外部程序。()修改和增强了溶剂模块改善和增强了连续介质模型(PCM):默认是IEFPCM模型解析频率计算可以用于SCRF方法。此外改善了空穴生成技术。模拟溶液中的很多特性。可以对Klamt的COSMORS程序产生输入通过统计力学方法用于计算溶解能配分系数蒸汽压以及其它整体性质。()周期性边界条件(PBC)增加了PBC模块用于研究周期体系例如聚合物表面和晶体。PBC模块可以对一维、二维或三维重复性分子或波函求解具有边界条件的Schrodinger方程。周期体系可以用HF和DFT研究能量和梯度()分子动力学方法计算包含两个主要近似:BornOppenheimer分子动力学(BOMD),对势能曲面的局域二次近似计算经典轨迹。计算用Hessian算法预测和校正走步,较以前的计算在步长上能够改善倍以上。还可以使用解析二级导数,BOMD能够用于所有具有解析梯度的理论方法。提供原子中心密度矩阵传播(ADMP)分子动力学方法,用于HartreeFock和DFT。吸取了Car和Parrinello的经验,ADMP传递电子自由度,而不是求解每个核结构的SCF方程与CarParrinello不同之处在于,ADMP传递密度矩阵而不是MO。如果使用了原子中心基组,执行效率会更高。这一方法解决了CarParrinello存在的一些限制,例如,不再需要用D代替H以获得能量守恒纯DFT和混合DFT均可使用。ADMP也可以在溶剂存在的情况下执行ADMP可以用于ONIOM(MO:MM)计算。()激发态激发态计算方面做了增强:由于改善了在完全组态相互作用计算中求解CI矢量的算法提高了CASSCF执行效率。对能量和梯度计算可以使用约个轨道(频率计算仍是个)。限制活性空间(RAS)的SCF方法。RASSCF把分子轨道分成五个部分:最低的占据轨道(计算中作为非活性轨道考虑)计算中作为双占据的RAS空间包含对所研究问题非常重要分子轨道的RAS空间弱占据的RAS空间以及未占据轨道(计算中做冻结处理)。因此CASSCF在RAS计算中分成三个部分考虑的组态通过定义RAS空间允许的最少电子数和RAS空间允许的最多电子数以及三个RAS空间电子总数来产生。NBO轨道可用于定义CAS和RAS活性空间。对于对应成键孤对电子的反键轨道可以提供相当好的初始猜测。对称性匹配簇组态相互作用(SACCI)方法用于有机体系激发态的高精度计算研究两个或更多电子激发的过程(例如电离谱的扰动)以及其它的问题。CISTDHF和TDDFT的激发态计算中可以考虑溶剂影响。新的分子特性()自旋自旋耦合常数用于辅助识别磁谱的构像。()g张量以及其它的超精细光谱张量包括核电四次常数转动常数四次离心畸变项电子自旋转动项核自旋转动项偶极超精细项以及Fermi接触项。所有的张量可以输出到Pickett的拟合与光谱分析程序。()谐性振转耦合常数。分子的光谱特性依赖于分子振、转模式的耦合。可用于分析转动谱。()非谐性振动及振转耦合。通过使用微扰理论更高级的项可以包含到频率计算中以产生更精确的结果。()预共振Raman光谱可以产生基态结构原子间连接以及振动态的信息。()旋光性以及旋光色散通过GIAO计算用于识别手性体系的异构体。()电子圆二色性(ECD)。这一特性是光学活性分子在可见紫外区域的差异吸收用于归属绝对构型。预测的光谱还可用于解释已存在的ECD数据和归属峰位()含频极化和超极化用于研究材料的分子特性随入射光波长的变化。()用量度无关原子轨道(GIAO)方法计算磁化率它类似于电极化率用于研究分子的顺磁反磁特性。()预测气相和在溶剂中的电、磁特性和光谱。()ONIOM预测电、磁特性。新增加的基本算法()更好的初始轨道猜测。Gaussian使用Harris泛函产生初始猜测。这个泛函是对DFT非迭代的近似它产生的初始轨道比Gaussian要好例如对有机体系有所改善对金属体系有明显改善。()新的SCF收敛算法几乎可以解决以前所有的收敛问题。对于其它极少数的不收敛情况Gaussian提供了Fermi展宽和阻尼方法。()纯DFT计算的密度拟合近似。这一近似在计算库仑相互作用时把密度用一组原子中心函数展开而不是计算全部的双电子积分。它用线性换算的算法对中等体系的纯DFT计算可以极大地提高计算效率而又不损失多少精度。Gaussian可以对AO基自动产生合适的拟合基也可以选择内置的拟合基。()更快的自动FMM方法用于适中的体系(纯DFT约个原子混合DFT约个原子)。()对纯DFT使用更快的库仑能算法节省库仑问题的CPU时间。()O(N)更精确的交换能量项。在HartreeFock和DFT计算中通过删除密度矩阵的零值项来屏蔽精确的交换贡献。这可以节省时间而又不损失精度。新增功能:()新的密度泛函:OPTX交换PBE和B相关VSXC和HCTH纯泛函B及其变体BBBPBEPBE混合泛函。()高精度能量方法:G及其变体W方法。另外还包含WBD它用BD代替耦合簇比CBSQB和G更精确当然计算也更加昂贵。()对重元素全电子基组计算的DouglasKrollHess标量相对论修正用于当ECP基组不能满足精度的情况。()逼近基组极限的UGBS基组。H的结构和共价键的本质H的分子在化学上虽不稳定很容易从周围获得一个电子变为氢分子但已通过实验证明它的存在并已测定出它的键长为pm键离解能为KJ·mol。正像单电子的氢原子作为讨论多电子原子结构的出发点一样单电子的H可为讨论多电子的双原子分子结构提供许多有用的概念。H的结构和共价键的本质H的Schrödinger方程(原子单位定核近似)eRraAB▽–rarbRψ=EψrbH是一个包含两个原子核和一个电子的体系。其坐标如图所示。图中和代表电子与两个核的距离代表两个核的距离。rarbRH的Schrödinger方程H   式中ψ和E分别为H的波函数和能量。左边方括号中第一项代表电子动能算符第二项和第三项代表电子受核的吸引能第四项代表两个原子核的静电排斥能。由于电子质量比原子核质量小地多电子运动速度比核快得多电子绕核运动时核可以看作不动。式中不含核的动能运动项电子处在固定的核势场中运动此即BornOppenheimer(波恩奥本哈默)近似。因而解得的波函数只反映电子的运动状态。这样把核看作不动固定核间距R解方程得到分子的电子波函数和能级改变R值可得一系列波函数和相应的能级。与电子能量最低值相对应的R就是平衡核间距Re。Hψ=EψΨ*Hψ=Eψ*ψ∫Ψ*Hψdτ=E∫ψ*ψdτ﹤E﹥=∫Ψ*Hψdτ∫ψ*ψdτ≥E线性变分法:ψ=cψcψ‥‥cnψn从而求出E值最低时对应的Ci值。∫(caψacbψb)﹡H(caψacbψb)dτE(ca,cb)=∫(caψacbψb)dτ展开上式并令:Haa=∫Ψ*aHψadτ=Hbb=∫Ψ*bHψbdτHab=∫Ψ*aHψbdτ=Hba=∫Ψ*bHψadτSaa=∫Ψ*aψadτ=Sbb=∫Ψ*bψbdτSab=∫Ψ*aψbdτ=Sba=∫Ψ*bψadτ变分法解HSchrodinger方程CaHaaCaCbHabCbHbbYE(ca,cb)==CaSaaCaCbSabCbSbbZ对ca,cb偏微商求极值得:∂E∂ca=(Z)(∂Y∂ca)-(YZ)(∂Z∂ca)=∂E∂cb=(Z)(∂Y∂cb)-(YZ)(∂Z∂cb)=消去Z因为YZ=E得:(∂Y∂ca)E(∂Z∂ca)=(∂Y∂cb)E(∂Z∂cb)=将YZ值代入可得久期方程和久期行列式:ca(HaaE)cb(HabESab)=ca(HabESab)cb(HbbE)=HaaEHabESabHabESabHbbE=解此行列式得E的两个解:HaaHabHaaHabE=E=SabSab将E值代入久期方程式的E得ca=cb相应的波函数为:Ψ=ca(ψaψb)将E值代入久期方程式的E得ca=cb,相应的波函数为:Ψ=ca(ψaψb)通过波函数归一化条件可求得:ca=(Sab)ca=(Sab)积分HaaHabSab的意义和H的结构Haa=∫Ψ*aHψadτ=∫Ψ*a▽–rarbRψadτ=∫Ψ*a▽–raψadτR∫Ψ*aψadτ∫Ψ*arbψadτ=EHR-∫rbψadτ=EHJ≈EHJ=R-∫rbψadτ(即R=∫rbψadτ)积分HaaHabSab的意义和H的结构()Haa(Hbb):库仑积分(α积分)Sab=∫Ψ*aΨbdτ=∫ΨaΨbdτR=,Sab=R=∞,Sab()HabHba:交换积分(β积分)Hab=∫Ψ*aHΨbdτ=Hba=∫Ψ*a▽–rarbRΨbdτ=∫Ψ*a▽–rbψbdτR∫Ψ*aΨbdτ∫raΨ*aΨbdτ=∫Ψ*aEHΨbdτRSab∫raΨaΨbdτ=EHSabRSab∫raΨaΨbdτ=EHSabK(K=RSab∫raΨaΨbdτ)一般分子的核间距时K﹤Sab﹥EH=ev,∴Hab﹤()Sab(Sba):重叠积分(S积分)把HaaHabSab关系代入得JKJKE=EHE=EHSSE<EH<EΨ=(Sab)(ψaψb)E=(αβ)SΨ=(Sab)(ψaψb)E=(αβ)Sψ=(S)-(ψaψbψaψb)ψ=(S)-(ψaψbψaψb) →→ψψψbψaψbψa(a)成键轨道(b)反键轨道量子力学处理H分子的结果两个氢原子电子自旋方式相反靠近、重叠核间形成一个电子概率密度较大的区域。系统能量降低形成氢分子。核间距R为pm。共价键的本质原子轨道重叠核间电子概率密度大吸引原子核而成健。海特勒和伦敦用量子力学处理氢原子形成氢分子时得到了H分子的位能曲线便反映出氢分子的能量与核间距之间的关系以及电子状态对成键的影响。假定A、B两原子中的电子自旋是相反的当两个氢原子相互接近时A原子的电子不仅受A核吸引也受B核吸引。同理B原子的电子不仅受B核吸引也受A核吸引。整个系统的能量低于两个H原子单独存在的能量。当系统的能量达到最低点时核间距如图所示。R=pm(实验值为pm)。如果两原子继续接近核之间的排斥力逐渐增大系统的能量升高。在R处两个氢原子形成化学键它的能量最低这种状态称为氢分子的基态。当体系的吸引与排斥达到平衡时两核之间的距离为R。如果两个氢原子的电子自旋平行当它们相互接近时量子力学可以证明它们产生的相互排斥作用越是接近能量就越高。结果是系统的能量始终高于两个单独存在的氢原子的能量于是不能成键。这种不稳定状态称为H分子的排斥态。如图所示。应用量子力原理可以计算基态分子和排斥态电子云分布。计算结果表明基态分子中两个核间的电子几率密度∣Ψ∣远远大于排斥态分子中核间的电子云几率密度∣Ψ∣。图(a)(b)所示:由图可见自旋相反的两个电子的电子云密集在个原子核之间使系统的能量降低从而能形成稳定的共价键。而排斥态个电子的电子云在核间稀疏几率密度几乎为零系统的能量增大所以不能成键。从以上讨论可见两个氢原子的s轨道ψs都是正值叠加后使两核间电子云浓密并将两个原子核强烈地吸引在一起同时由于两核间的高电子云密度区域的存在对两个原子核产生屏蔽作用降低了两核间的正电排斥力系统的势能降低因而能够成键。由此也能看出共价键的本质仍是一种电性作用但绝对不是正、负离子间的静电作用。共价键的本质当原子相互接近时它们的原子轨道互相同号叠加组合成成键分子轨道当电子进入成键轨道体系能量降低形成稳定的分子此时原子间形成共价键。共价键的形成是原子轨道(或分子轨道)相互叠加组成新的分子轨道而不是电子云叠加。从能量角度看聚集在核间运动的电子同时受两个核正电荷的吸引降低体系的能量有利于电子在核间聚集。一切化学过程都归结为化学的吸引和排斥的过程由一个氢原子和一个氢原子核组成H也是排斥和吸引对立统一的过程。当核间距离很大时相互作用可以忽略能量等于一个氢原子和一个氢原子核能量之和一般以它作为能量的相对零点核间距离逐渐缩小时两个原子轨道的重叠逐渐增大成键轨道的呢功能量逐渐降低当两个核进一步接近时两个核正电荷相斥又会使能量上升。共价键的本质第三节分子轨道理论(MO)和双原子分子的结构年美国科学家莫立根(Mulliken)洪特(Hund)等人先后提出了分子轨道理论(MolecularOrbitalTheory)简称MO法从而弥补了价键理论的不足。第三节分子轨道理论(MO)和双原子分子的结构分子轨道理论的基本要点、分子轨道是由分子中原子的原子轨道线性组合而成简称LCAO(linearcombinationofatomicorbitals的缩写)。组合形成的分子轨道数目与组合前的原子轨道数目相等。如两个原子轨道ψa和ψb线性组合后形成两个分子轨道ψ和ψ*分子轨道理论的基本要点ψ=cψacψbψ=cψacψb、分子轨道理论的基本观点是把分子看作一个整体其中电子不再从属于某一个原子而是在整个分子的势场范围内运动。正如在原子中每个电子的运动状态可用波函数(ψ)来描述那样分子中每个电子的运动状态也可用相应的波函数来描述。这种组合和杂化轨道不同杂化轨道是同一原子内部能量相近的不同类型的轨道重新组合而分子轨道却是由不同原子提供的原子轨道的线性组合。原子轨道用s、p、d、f……表示分子轨道则用σ、π、δ……表示。、原子轨道线性组合成分子轨道后分子轨道中能量高于原来的原子轨道者称为反键轨道能量低于原来的原子轨道者称为成键轨道。、原子轨道要有效地线性组合成分子轨道必须遵循下面三条原则:()对称性匹配原则。只有对称性匹配的原子轨道才能有效地组合成分子轨道。哪些原子轨道之间对称性匹配呢?如图(a)(c)所示。ψa为s轨道ψb为py轨道键轴为x。看起来ψa和ψb可以重叠但实际上各有一半区域为同号重叠另一半为异号重叠两者正好抵消净成键效应为零因此不能组成分子轨道亦称两个原子轨道对称性不匹配而不能组成分子轨道。再从图(b)(d)(e)看ψa和ψb同号迭加满足对称性匹配的条件便能组合形成分子轨道。()能量相近原则。只有能量相近的原子轨道才能组合成有效的分子轨道。能量愈相近组成的分子轨道越有效。若两条原子轨道相差很大则不能组成分子轨道只会发生电子转移而形成离子键。()最大重叠原则。原子轨道发生重叠时在对称性匹配的条件下原子轨道ψa和ψb的重叠程度愈大成键轨道相对于组成的原子轨道的能量降低得愈显著成键效果强形成的化学键愈稳定。简单分子轨道理论分子轨道理论.分子中每个电子是在原子核与其它电子组成的平均势场中运动运动状态可用波函数来描述。体系总波函数可写成单电子函数的乘积体系总Hamilton算符可写为单电子算符之和通过变数分离可得到单电子函数满足的方程这就是MO采用的独立电子物理模型。简单分子轨道理论.分子轨道可用原子轨道线性组合得到(LinearCombinationofAtomicOrbitals),简写为(LCAO)。由n个原子轨道组合可得到n个分子轨道线性组合系数可用变分法或其它方法确定。两个原子轨道形成的分子轨道能级低于原子轨道的称为成键轨道能级高于原子轨道的称为反键轨道能级接近原子轨道的一般为非键轨道。.两个原子轨道要有效地组合成分子轨道必须满足对称性匹配能级相近和轨道最大重叠三个条件。其中对称性匹配是先决条件其它影响成键的效率。.根据Pauli原理每个分子轨道至多能容纳个自旋反平行的电子。分子中的电子按能量顺序由低到高两两填入分子轨道。分子轨道的概念ψi称为分子中单电子的波函数分子轨道的形成能量相近轨道最大重叠对称性匹配XZZZZZ轨道重叠时的对称性条件()对称性匹配()对称性不匹配()()能量高低相近条件近似证明:ΨaΨbEa<EbΨ=caψacbψbHaaEHabESabHabESabHbbE=令Haa=EaHbb=EbSab=(EaE)(EbE)β=E=〔(EaEb)√(EbEa)β〕=EaUE=〔(EaEb)√(EbEa)β〕=EbUU=〔√(EbEa)β(EbEa)〕﹥E﹤Ea﹤Eb﹤E当Ea=Eb时U=∣β∣当(EaEb)》β时U≈E≈EaEb≈

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/165

结构化学课件

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利