首页 Tda1905

Tda1905

举报
开通vip

Tda1905 TDA1905 5W AUDIO AMPLIFIER WITH MUTING DESCRIPTION The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of appli- cations in radio and TV sets: – muting facility – protection a...

Tda1905
TDA1905 5W AUDIO AMPLIFIER WITH MUTING DESCRIPTION The TDA1905 is a monolithic integrated circuit in POWERDIP package, intended for use as low frequency power amplifier in a wide range of appli- cations in radio and TV sets: – muting facility – protection against chip over temperature – very low noise – high supply voltage rejection – low ”switch-on” noise – voltage range 4V to 30V The TDA 1905 is assembled in a new plastic pack- age, the POWERDIP, that offers the same assembly ease, space and cost saving of a normal dual in-line packagebut with apower dissipationofup to6W and a thermal resistance of 15°C/W (junction to pins). March 1993 Symbol Parameter Value Unit Vs Supply voltage 30 V Io Output peak current (non repetitive) 3 A Io Output peak current (repetitive) 2.5 A Vi Input voltage 0 to + Vs V Vi Differential input voltage ± 7 V V11 Muting thresold voltage Vs V Ptot Power dissipation at Tamb = 80°C 1 W Tcase = 60°C 6 W Tstg, Tj Storage and junction temperature -40 to 150 °C ABSOLUTE MAXIMUM RATINGS APPLICATION CIRCUIT Powerdip (8 + 8) ORDERING NUMBER : TDA 1905 1/14 Symbol Parameter Value Unit Rth-j-case Thermal resistance junction-pins max 15 °C/W Rth-j-amb Thermal resistance junction-ambient max 70 °C/W THERMAL DATA 2/14 PIN CONNECTION (top view) SCHEMATIC DIAGRAM TDA1905 TEST CIRCUITS: WITHOUT MUTING WITH MUTING FUNCTION 3/14 TDA1905 Symbol Parameter Test conditions Min. Typ. Max. Unit Vs Supply voltage 4 30 V Vo Quiescent output voltage Vs = 4V Vs = 14V Vs = 30V 1.6 6.7 14.4 2.1 7.2 15.5 2.5 7.8 16.8 V Id Quiescent drain current Vs = 4V Vs = 14V Vs = 30V 15 17 21 35 mA VCE sat Output stage saturation voltage IC = 1A IC = 2A 0.5 1 V Po Output power d = 10% Vs = 9V Vs = 14V Vs = 18V Vs = 24V f = 1KHz RL = 4Ω (*) RL = 4Ω RL = 8Ω RL = 16Ω 2.2 5 5 4.5 2.5 5.5 5.5 5.3 W d Harmonic distortion f = 1KHz Vs = 9V RL = 4Ω Po = 50 mW to 1.5W Vs = 14V RL = 4Ω Po = 50 mW to 3W Vs = 18V RL = 8Ω Po = 50 mW to 3W Vs = 24V RL = 16Ω Po = 50 mW to 3W 0.1 0.1 0.1 0.1 % Vi Input sensitivity f = 1KHz Vs = 9V Vs = 14V Vs = 18V Vs = 24V RL = 4Ω RL = 4Ω RL = 8Ω RL = 16Ω Po = 2.5W Po = 5.5W Po = 5.5W Po = 5.3W 37 49 73 100 mV Vi Input saturation voltage (rms) Vs = 9V Vs = 14V Vs = 18V Vs = 24V 0.8 1.3 1.8 2.4 V Ri Input resistance (pin 8) f = 1KHz 60 100 KΩ Id Drain current f = 1KHz Vs = 9V Vs = 14V Vs = 18V Vs = 24V RL = 4Ω RL = 4Ω RL = 8Ω RL = 16Ω Po = 2.5W Po = 5.5W Po = 5.5W Po = 5.3W 380 550 410 295 mA η Efficiency f = 1KHz Vs = 9V Vs = 14V Vs = 18V Vs = 24V RL = 4Ω RL = 4Ω RL = 8Ω RL = 16Ω Po = 2.5W Po = 5.5W Po = 5.5W Po = 5.3W 73 71 74 75 % ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb = 25 °C, Rth (heatsink) = 20 °C/W, unless otherwisw specified) (*) With an external resistor of 100Ω between pin 3 and +Vs. 4/14 TDA1905 Symbol Parameter Test conditions Min. Typ. Max. Unit BW Small signal bandwidth (-3dB) Vs = 14V RL = 4Ω Po = 1W 40 to 40,000 Hz Gv Voltage gain (open loop) Vs = 14V f = 1KHz 75 dB Gv Voltage gain (closed loop) Vs = 14V f = 1KHz RL = 4Ω Po = 1W 39.5 40 40.5 dB eN Total input noise Rg = 50Ω Rg = 1KΩ Rg = 10KΩ (°) 1.2 1.3 1.5 4.0 µV Rg = 50Ω Rg = 1KΩ Rg = 10KΩ (°°) 2.0 2.0 2.2 6.0 µV S/N Signal to noise ratio Vs = 14V Po = 5.5W RL = 4Ω Rg = 10KΩ Rg = 0 (°) 90 92 dB Rg = 10KΩ Rg = 0 (°°) 87 87 dB SVR Supply voltage rejection Vs = 18V RL = 8Ω fripple = 100 Hz Rg = 10KΩ Vripple = 0.5Vrms 40 50 dB Tsd Thermal shut-down case temperatura (*) Ptot = 2.5W 115 °C MUTING FUNCTION VTOFF Muting-off threshold voltage (pin 4) 1.9 4.7 V VTON Muting-on threshold voltage (pin 4) 0 1.3 V 6.2 Vs R5 Input-resistance (pin 5) Muting off 80 200 KΩ Muting on 10 30 Ω R4 Input resistance (pin 4) 150 KΩ AT Muting attenuation Rg + R1 = 10KΩ 50 60 dB ELECTRICAL CHARACTERISTICS (continued) Note: (°) Weighting filter = curve A. (° °) Fi lter with noise bandwidth: 22 Hz to 22 KHz. (*) See fig. 30 and fig. 31 5/14 TDA1905 8/14 APPLICATION INFORMATION Figure 19. Application circuit without muting Figure 20. PC board and components lay-out of the circuit of fig. 19 (1 : 1 scale) Figure 21. Application circuit with muting Figure 22. Delayed muting circuit TDA1905 APPLICATION INFORMATION (continued) Figure 23. Low-cost applicationcircuit without bootstrap. Figure 25. Two position DC tone control using change of pin 5 resistance (muting function) Figure 27. Bass Bomb tone control using change of pin 5 resistance (muting function) Figure 24. Output power vs. supply voltage (circuit of fig. 23) Figure 26. Frequency re- sponseofthecircuitof fig.25 Figure 28. Frequency re- sponseofthecircuitof fig. 27 9/14 TDA1905 APPLICATION SUGGESTION The recommended values of the external components are those shown on the application circuit of fig. 21. When the supply voltage Vs is less than 10V, a 100Ω resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power. Different values can be used. The following table can help the designer. Component Raccom. value Purpose Larger than recommended value Smaller than recommended value Allowed range Min. Max. Rg + R1 10KΩ Input signal imped. for muting operation Increase of the attenuation in muting-on condition. Decrease of the input sensitivity. Decrease of the attenu- ation in muting on condition. R2 10KΩ Feedback resistors Increase of gain. Decrease of gain. Increase quiescent current. 9 R3 R3 100Ω Decrease of gain. Increase of gain. 1KΩ R4 1KΩ Frequency stability Danger of oscillation at high frequencies with inductive loads. R5 100Ω Increase of the output swing with low supply voltage. 47 330 P1 20KΩ Volume potentiometer Increase of the switch-on noise. Decrease of the input impedance and of the input level. 10KΩ 100KΩ C1 C2 C3 0.22µF Input DC decoupling. Higher cost lower noise. Higher low frequency cutoff. Higher noise. C4 2.2µF Inverting input DC decoupling. Increase of the switch- on noise. Higher low frequency cutoff. 0.1µF C5 0.1µF Supply voltage bypass. Danger of oscillations. C6 10µF Ripple rejection Increase of SVR increase of the switch-on time Degradation of SVR 2.2µF 100µF C7 47µF Bootstrap. Increase of the distortion at low frequency. 10µF 100µF C8 0.22µF Frequency stability. Danger of oscillation. C9 1000µF Output DC decoupling. Higher low frequency cutoff. 11/14 TDA1905
本文档为【Tda1905】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_302978
暂无简介~
格式:pdf
大小:114KB
软件:PDF阅读器
页数:0
分类:互联网
上传时间:2011-09-05
浏览量:11