首页 LM231LM331精密电压—频率转换器

LM231LM331精密电压—频率转换器

举报
开通vip

LM231LM331精密电压—频率转换器 LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters General Description The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-v...

LM231LM331精密电压—频率转换器
LM231A/LM231/LM331A/LM331 Precision Voltage-to-Frequency Converters General Description The LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modula- tion or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied in- put voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter appli- cations. Further, the LM231A/LM331A attain a new high level of accuracy versus temperature which could only be at- tained with expensive voltage-to-frequency modules. Addi- tionally the LM231/331 are ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels. The LM231/LM331 utilize a new temperature-compensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4.0V. The precision timer circuit has low bias cur- rents without degrading the quick response necessary for 100 kHz voltage-to-frequency conversion. And the output are capable of driving 3 TTL loads, or a high voltage output up to 40V, yet is short-circuit-proof against VCC. Features n Guaranteed linearity 0.01% max n Improved performance in existing voltage-to-frequency conversion applications n Split or single supply operation n Operates on single 5V supply n Pulse output compatible with all logic forms n Excellent temperature stability, ±50 ppm/˚C max n Low power dissipation, 15 mW typical at 5V n Wide dynamic range, 100 dB min at 10 kHz full scale frequency n Wide range of full scale frequency, 1 Hz to 100 kHz n Low cost Typical Applications Teflon® is a registered trademark of DuPont DS005680-1 *Use stable components with low temperature coefficients. See Typical Applications section. **0.1µF or 1µF, See “Principles of Operation.” FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter with ±0.03% Typical Linearity (f = 10 Hz to 11 kHz) June 1999 LM 231A/LM 231/LM 331A/LM 331 Precision V oltage-to-Frequency Converters © 1999 National Semiconductor Corporation DS005680 www.national.com Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. LM231A/LM231 LM331A/LM331 Supply Voltage 40V 40V Output Short Circuit to Ground Continuous Continuous Output Short Circuit to VCC Continuous Continuous Input Voltage −0.2V to +VS −0.2V to +VS TMIN TMAX TMIN TMAX Operating Ambient Temperature Range −25˚C to +85˚C 0˚C to +70˚C Power Dissipation (PD at 25˚C) and Thermal Resistance (θjA) (N Package) PD 1.25W 1.25W θjA 100˚C/W 100˚C/W Lead Temperature (Soldering, 10 sec.) Dual-In-Line Package (Plastic) 260˚C 260˚C ESD Susceptibility (Note 4) N Package 500V 500V Electrical Characteristics TA=25˚C unless otherwise specified (Note 2) Parameter Conditions Min Typ Max Units VFC Non-Linearity (Note 3) 4.5V ≤ VS ≤ 20V ±0.003 ±0.01 % Full- Scale TMIN ≤ TA ≤ TMAX ±0.006 ±0.02 % Full- Scale VFC Non-Linearity VS = 15V, f = 10 Hz to 11 kHz ±0.024 ±0.14 %Full- In Circuit of Figure 1 Scale Conversion Accuracy Scale Factor (Gain) VIN = −10V, RS = 14 kΩ LM231, LM231A 0.95 1.00 1.05 kHz/V LM331, LM331A 0.90 1.00 1.10 kHz/V Temperature Stability of Gain TMIN ≤ TA ≤ TMAX, 4.5V ≤ VS ≤ 20V LM231/LM331 ±30 ±150 ppm/˚C LM231A/LM331A ±20 ±50 ppm/˚C Change of Gain with VS 4.5V ≤ VS ≤ 10V 0.01 0.1 %/V 10V ≤ VS ≤ 40V 0.006 0.06 %/V Rated Full-Scale Frequency VIN = −10V 10.0 kHz Gain Stability vs Time TMIN ≤ TA ≤ TMAX ±0.02 % Full- (1000 Hrs) Scale Overrange (Beyond Full-Scale) Frequency VIN = −11V 10 % INPUT COMPARATOR Offset Voltage ±3 ±10 mV LM231/LM331 TMIN ≤ TA ≤ TMAX ±4 ±14 mV LM231A/LM331A TMIN ≤ TA ≤ TMAX ±3 ±10 mV Bias Current −80 −300 nA Offset Current ±8 ±100 nA Common-Mode Range TMIN ≤ TA ≤ TMAX −0.2 VCC−2.0 V TIMER Timer Threshold Voltage, Pin 5 0.63 0.667 0.70 x VS Input Bias Current, Pin 5 VS = 15V All Devices 0V ≤ VPIN 5 ≤ 9.9V ±10 ±100 nA LM231/LM331 VPIN 5 = 10V 200 1000 nA LM231A/LM331A VPIN 5 = 10V 200 500 nA www.national.com 2 Electrical Characteristics (Continued) TA=25˚C unless otherwise specified (Note 2) Parameter Conditions Min Typ Max Units TIMER VSAT PIN 5 (Reset) I = 5 mA 0.22 0.5 V CURRENT SOURCE (Pin 1) Output Current RS=14 kΩ, VPIN 1=0 LM231, LM231A 126 135 144 µA LM331, LM331A 116 136 156 µA Change with Voltage 0V ≤ VPIN 1 ≤ 10V 0.2 1.0 µA Current Source OFF Leakage LM231, LM231A, LM331, LM331A 0.02 10.0 nA All Devices TA=TMAX 2.0 50.0 nA Operating Range of Current (Typical) (10 to 500) µA REFERENCE VOLTAGE (Pin 2) LM231, LM231A 1.76 1.89 2.02 VDC LM331, LM331A 1.70 1.89 2.08 VDC Stability vs Temperature ±60 ppm/˚C Stability vs Time, 1000 Hours ±0.1 % LOGIC OUTPUT (Pin 3) VSAT I=5 mA 0.15 0.50 V I=3.2 mA (2 TTL Loads), TMIN≤TA≤TMAX 0.10 0.40 V OFF Leakage ±0.05 1.0 µA SUPPLY CURRENT LM231, LM231A VS=5V 2.0 3.0 4.0 mA LM331, LM331A VS=40V 2.5 4.0 6.0 mA VS=5V 1.5 3.0 6.0 mA VS=40V 2.0 4.0 8.0 mA Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions. Note 2: All specifications apply in the circuit of Figure 4, with 4.0V≤VS≤40V, unless otherwise noted. Note 3: Nonlinearity is defined as the deviation of fOUT from VIN x (10 kHz/−10 VDC) when the circuit has been trimmed for zero error at 10 Hz and at 10 kHz, over the frequency range 1 Hz to 11 kHz. For the timing capacitor, CT, use NPO ceramic, Teflon®, or polystyrene. Note 4: Human body model, 100 pF discharged through a 1.5 kΩ resistor. www.national.com3 Functional Block Diagram DS005680-2 Pin numbers apply to 8-pin packages only. FIGURE 2. www.national.com 4 Typical Performance Characteristics (All electrical characteristics apply for the circuit of Figure 4, unless otherwise noted.) Nonlinearity Error as Precision V-to-F Converter (Figure 4) DS005680-25 Nonlinearity Error DS005680-26 Nonlinearity Error vs Power Supply Voltage DS005680-27 Frequency vs Temperature DS005680-28 VREF vs Temperature DS005680-29 Output Frequency vs VSUPPLY DS005680-30 100 kHz Nonlinearity Error (Figure 5) DS005680-31 Nonlinearity Error (Figure 1) DS005680-32 Input Current (Pins 6,7) vs Temperature DS005680-33 www.national.com5 Typical Performance Characteristics (Continued) Typical Applications PRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTER The LM231/331 are monolithic circuits designed for accu- racy and versatile operation when applied as voltage-to-frequency (V-to-F) converters or as frequency-to-voltage (F-to-V) converters. A simplified block diagram of the LM231/331 is shown in Figure 3 and consists of a switched current source, input comparator, and 1-shot timer. The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter, Figure 3, which consists of the simplified block diagram of the LM231/331 and the various resistors and capacitors con- nected to it. The voltage comparator compares a positive input voltage, V1, at pin 7 to the voltage, Vx, at pin 6. If V1 is greater, the comparator will trigger the 1-shot timer. The output of the timer will turn ON both the frequency output transistor and the switched current source for a period t=1.1 RtCt. During this period, the current i will flow out of the switched current source and provide a fixed amount of charge, Q=i x t, into the capacitor, CL. This will normally charge Vx up to a higher level than V1. At the end of the timing period, the current i will turn OFF, and the timer will reset itself. Now there is no current flowing from pin 1, and the capacitor CL will be gradually discharged by RL until Vx falls to the level of V1. Then the comparator will trigger the timer and start an- other cycle. The current flowing into CL is exactly IAVE = i x (1.1xRtCt) x f, and the current flowing out of CL is exactly Vx/RL ≅ VIN/RL. If VIN is doubled, the frequency will double to maintain this balance. Even a simple V-to-F converter can provide a fre- quency precisely proportional to its input voltage over a wide range of frequencies. DETAIL OF OPERATION, FUNCTIONAL BLOCK DIAGRAM (Figure 2) The block diagram shows a band gap reference which pro- vides a stable 1.9 VDC output. This 1.9 VDC is well regulated over a VS range of 3.9V to 40V. It also has a flat, low tem- perature coefficient, and typically changes less than 1⁄2% over a 100˚C temperature change. The current pump circuit forces the voltage at pin 2 to be at 1.9V, and causes a current i=1.90V/RS to flow. For Rs=14k, i=135 µA. The precision current reflector provides a current equal to i to the current switch. The current switch switches the current to pin 1 or to ground depending on the state of the RS flip-flop. The timing function consists of an RS flip-flop, and a timer comparator connected to the external RtCt network. When the input comparator detects a voltage at pin 7 higher than pin 6, it sets the RS flip-flop which turns ON the current switch and the output driver transistor. When the voltage at pin 5 rises to 2⁄3 VCC, the timer comparator causes the RS flip-flop to reset. The reset transistor is then turned ON and the current switch is turned OFF. However, if the input comparator still detects pin 7 higher than pin 6 when pin 5 crosses 2⁄3 VCC, the flip-flop will not be reset, and the current at pin 1 will continue to flow, in its at- tempt to make the voltage at pin 6 higher than pin 7. This Power Drain vs VSUPPLY DS005680-34 Output Saturation Voltage vs IOUT (Pin 3) DS005680-35 Nonlinearity Error, Precision F-to-V Converter (Figure 7) DS005680-36 DS005680-4 FIGURE 3. Simplified Block Diagram of Stand-Alone Voltage-to-Frequency Converter and External Components www.national.com 6 Typical Applications (Continued) condition will usually apply under start-up conditions or in the case of an overload voltage at signal input. It should be noted that during this sort of overload, the output frequency will be 0; as soon as the signal is restored to the working range, the output frequency will be resumed. The output driver transistor acts to saturate pin 3 with an ON resistance of about 50Ω. In case of overvoltage, the output current is actively limited to less than 50 mA. The voltage at pin 2 is regulated at 1.90 VDC for all values of i between 10 µA to 500 µA. It can be used as a voltage ref- erence for other components, but care must be taken to en- sure that current is not taken from it which could reduce the accuracy of the converter. PRINCIPLES OF OPERATION OF BASIC VOLTAGE- TO-FREQUENCY CONVERTER (Figure 1) The simple stand-alone V-to-F converter shown in Figure 1 includes all the basic circuitry of Figure 3 plus a few compo- nents for improved performance. A resistor, RIN=100 kΩ±10%, has been added in the path to pin 7, so that the bias current at pin 7 (−80 nA typical) will cancel the effect of the bias current at pin 6 and help provide minimum frequency offset. The resistance RS at pin 2 is made up of a 12 kΩ fixed resis- tor plus a 5 kΩ (cermet, preferably) gain adjust rheostat. The function of this adjustment is to trim out the gain tolerance of the LM231/331, and the tolerance of Rt, RL and Ct. For best results, all the components should be stable low-temperature-coefficient components, such as metal-film resistors. The capacitor should have low dielectric absorp- tion; depending on the temperature characteristics desired, NPO ceramic, polystyrene, Teflon or polypropylene are best suited. A capacitor CIN is added from pin 7 to ground to act as a filter for VIN. A value of 0.01 µF to 0.1 µF will be adequate in most cases; however, in cases where better filtering is required, a 1 µF capacitor can be used. When the RC time constants are matched at pin 6 and pin 7, a voltage step at VIN will cause a step change in fOUT. If CIN is much less than CL, a step at VIN may cause fOUT to stop momentarily. A 47Ω resistor, in series with the 1 µF CL, is added to give hysteresis effect which helps the input comparator provide the excellent linearity (0.03% typical). DETAIL OF OPERATION OF PRECISION V-TO-F CONVERTER (Figure 4) In this circuit, integration is performed by using a conven- tional operational amplifier and feedback capacitor, CF. When the integrator’s output crosses the nominal threshold level at pin 6 of the LM231/331, the timing cycle is initiated. The average current fed into the op amp’s summing point (pin 2) is i x (1.1 RtCt) x f which is perfectly balanced with −VIN/RIN. In this circuit, the voltage offset of the LM231/331 input comparator does not affect the offset or accuracy of the V-to-F converter as it does in the stand-alone V-to-F con- verter; nor does the LM231/331 bias current or offset cur- rent. Instead, the offset voltage and offset current of the op- erational amplifier are the only limits on how small the signal can be accurately converted. Since op amps with voltage off- set well below 1 mV and offset currents well below 2 nA are available at low cost, this circuit is recommended for best ac- curacy for small signals. This circuit also responds immedi- ately to any change of input signal (which a stand-alone cir- cuit does not) so that the output frequency will be an accurate representation of VIN, as quickly as 2 output pulses’ spacing can be measured. In the precision mode, excellent linearity is obtained be- cause the current source (pin 1) is always at ground potential and that voltage does not vary with VIN or fOUT. (In the stand-alone V-to-F converter, a major cause of non-linearity is the output impedance at pin 1 which causes i to change as a function of VIN). The circuit of Figure 5 operates in the same way as Figure 4, but with the necessary changes for high speed operation. www.national.com7 Typical Applications (Continued) DS005680-5 *Use stable components with low temperature coefficients. See Typical Applications section. **This resistor can be 5 kΩ or 10 kΩ for VS=8V to 22V, but must be 10 kΩ for VS=4.5V to 8V. ***Use low offset voltage and low offset current op amps for A1: recommended type LF411A FIGURE 4. Standard Test Circuit and Applications Circuit, Precision Voltage-to-Frequency Converter www.national.com 8 Typical Applications (Continued) DETAILS OF OPERATION, FREQUENCY-TO- VOLTAGE CONVERTERS (Figure 6 and Figure 7) In these applications, a pulse input at fIN is differentiated by a C-R network and the negative-going edge at pin 6 causes the input comparator to trigger the timer circuit. Just as with a V-to-F converter, the average current flowing out of pin 1 is IAVERAGE = i x (1.1 RtCt) x f. In the simple circuit of Figure 6, this current is filtered in the network RL = 100 kΩ and 1 µF. The ripple will be less than 10 mV peak, but the response will be slow, with a 0.1 second time constant, and settling of 0.7 second to 0.1% accuracy. In the precision circuit, an operational amplifier provides a buffered output and also acts as a 2-pole filter. The ripple will be less than 5 mV peak for all frequencies above 1 kHz, and the response time will be much quicker than in Figure 6. However, for input frequencies below 200 Hz, this circuit will have worse ripple than Figure 6. The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made. Inherently, V-to-F converter response can be fast, but F-to-V response can not. DS005680-6 *Use stable components with low temperature coefficients. See Typical Applications section. **This resistor can be 5 kΩ or 10 kΩ for VS=8V to 22V, but must be 10 kΩ for VS=4.5V to 8V. ***Use low offset voltage and low offset current op amps for A1: recommended types LF411A or LF356. FIGURE 5. Precision Voltage-to-Frequency Converter, 100 kHz Full-Scale, ±0.03% Non-Linearity www.national.com9 Typical Applications (Continued) DS005680-7 *Use stable components with low temperature coefficients. FIGURE 6. Simple Frequency-to-Voltage Converter, 10 kHz Full-Scale, ±0.06% Non-Linearity DS005680-8 *Use stable components with low temperature coefficients. FIGURE 7. Precision Frequency-to-Voltage Converter, 10 kHz Full-Scale with 2-Pole Filter, ±0.01% Non-Linearity Maximum Light Intensity to Frequency Converter DS005680-9 *L14F-1, L14G-1 or L14H-1, photo transistor (General Electric Co.) or similar Temperature to Frequency Converter DS005680-10 www.national.com 10 Typical Applications (Continued) Long-Term Digital Integrator Using VFC DS005680-11 Basic Analog-to-Digital Converter Using Voltage-to-Frequency Converter DS005680-12 Analog-to-Digital Converter with Microprocessor DS005680-13 Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and Receiver DS005680-14 www.national.com11 Typical Applications (Continued) Voltage-to-Frequency Converter with Square-Wave Output Using ÷ 2 Flip-Flop DS005680-15 Voltage-to-Frequency Converter with Isolators DS005680-16 Voltage-to-Frequency Converter with Isolators DS005680-17 www.national.com 12 Typical Applications (Continued) Connection Diagram Voltage-to-Frequency Converter with Isolators DS005680-18 Voltage-to-Frequency Converter with Isolators DS005680-19 Dual-In-Line Package DS005680-21 Order Number LM231AN, LM231N, LM331AN, or LM331N See NS Package Number N08E www.national.com13 Schematic Diagram D S0 05 68 0- 22 www.national.com 14 Physical Dimensions inches (millimeters) unless otherwise noted LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 www.national.com Dual-In-Line Package (N) Order Number LM231AN, LM231N, LM331AN, or LM331N NS Package N08E LM 231A/LM 231/LM 331A/LM 331 Precision V oltage-to-Frequency Converters National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. 电子爱好者 网站是一
本文档为【LM231LM331精密电压—频率转换器】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_428838
暂无简介~
格式:pdf
大小:374KB
软件:PDF阅读器
页数:16
分类:
上传时间:2011-08-10
浏览量:103