首页 ISPE 5.终处理选项:药典规定的纯化水和非药典规定的纯化水

ISPE 5.终处理选项:药典规定的纯化水和非药典规定的纯化水

举报
开通vip

ISPE 5.终处理选项:药典规定的纯化水和非药典规定的纯化水FINAL TREATMENT OPTIONS: FINAL TREATMENT OPTIONS: NON-COMPENDIAL and COMPENDIAL PURIFIED WATER 终处理选项: 药典规定的纯化水和非药典规定的纯化水 5 FINAL TREATMENT OPTIONS: NON-COMPENDIAL AND COMPENDIAL PURIFIED WATER终处理选项:药典规定的纯化水和非药典规定的纯化水 5.1 INTRODUCTION介绍 This chapter discusses t...

ISPE 5.终处理选项:药典规定的纯化水和非药典规定的纯化水
FINAL TREATMENT OPTIONS: FINAL TREATMENT OPTIONS: NON-COMPENDIAL and COMPENDIAL PURIFIED WATER 终处理选项: 药典规定的纯化水和非药典规定的纯化水 5 FINAL TREATMENT OPTIONS: NON-COMPENDIAL AND COMPENDIAL PURIFIED WATER终处理选项:药典规定的纯化水和非药典规定的纯化水 5.1 INTRODUCTION介绍 This chapter discusses the final treatment technologies and basic system configurations related to the manufacturing process of USP Purified Water and non-compendial water. 该章讨论的是USP纯化水和非药典规定的水的制备过程相关的基本系统结构和终处理工艺。 Various system configurations are presented, and reflect a significant shift from ion exchange based systems to membrane based systems. Equipment and system materials, surface finish and other design factors are discussed to promote the use of Good Engineering Practice for proper selection of components, piping, instrumentation, and controls. 将介绍各种系统,并反应从离子交换基础系统到膜基础系统的有效转换。将·讨论设备和系统的材料、表面磨光和其他设计因素以促进《良好工程实务 规范 编程规范下载gsp规范下载钢格栅规范下载警徽规范下载建设厅规范下载 》中的正确选择组件、管线、仪器操作和控制的应用。 USP Purified Water and non-compendial water can be produced by an almost unlimited combination of unit processes in various configurations. The most common pretreatment and final treatment technologies used in purified water production are shown in Figure 5-1, Figure 5-2, and Table 5-4 at the end of the chapter. This chapter discusses the final treatment unit processes currently utilized, including ion exchange, reverse osmosis, electrodeionization, ultrafiltration, microfiltration, and ultraviolet light. These technologies as well as distillation (see Chapter 6) are utilized in thousands of systems for the successful production of purified and non-compendial water. 在生产USP纯化水和非药典规定的水时,不同的加工单元之间的组合几乎是不受限制的。本章结尾处的图5-1、图5-2和图5-3显示了纯化水生产中最普通的预处理和终处理工艺。该章讨论了当前使用的终处理操作单元,包括:离子交换、反渗透、电法去离子、超滤、微滤和紫外光。成千上万的成功的生产纯化水和非药典规定的水的系统都使用了这些工艺以及蒸馏(见第6章)。 Ion exchange based systems were the dominant systems for decades in purified water production and are still successfully utilized in facilities today. The last decade has seen the growth of reverse osmosis membrane based systems increase to the point where over 90% of new systems employ primary reverse osmosis, with final polishing by continuous electrodeionization, ion exchange, or a second reverse osmosis stage. Membrane based systems usage has increased due to chemical consumption reduction, contaminant rejection (ionized solids, organics, colloids, microbes, endotoxins, and suspended solids), reduced maintenance, consistent operation, and effective lifecycle cost. 离子交换基础系统数十年以来一直在纯化水生产中占有优势,而且在今天它也在工厂中成功的利用。前十年我们已经看到反渗透膜基础系统不断的发展,以至有90%的新系统都采用了一级反渗透,并在其后加上电法去离子、离子交换或二级反渗透以作最后抛光。膜基础系统的应用不断增长,是因为膜基础系统的化学试剂消耗低、抗污染(离子化固体、有机物、胶体、微生物、内毒素和悬浮颗粒)、维护简单、操作联贯以及有效的寿命周期成本。 The various membrane based system configurations are compared with ion exchange and distillation in Table at the end of this chapter. 该章结尾处的表格将显示各种膜基础系统的结构和离子交换以及蒸馏的比较。 Equipment construction is discussed for each unit process section to promote proper selection of materials, surface finishes, and other design factors. The total system capital cost is influenced more by equipment design details than by process selection. Many aspects of equipment can be "overdesigned" and hence, become unnecessarily costly. Proper thought must be given to the individual component's function, location, required microbial performance, sanitization, and other factors, to optimize design. It is not necessary to construct every makeup system component with the same level of surface finish and detail as the distribution system for successful operation in most cases. 通过讨论各个操作单元的设备结构,以促进正确的选择材料、表面磨光和其他设计因素。设备设计细节要比 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 选择对整个系统资产成本的影响大。设备的许多方面都可能“设计过度”,因此会导致不必要的浪费。必须正确的考虑单个元件的功能、位置、要求的微生物特征、消毒和其他因素,以做出最佳的设计。没必要将系统的每个组成元件都建造的同多数情况中成功运行的分配系统的表面磨光和详细水平一样。 Many material selections are made erroneously to conform to cGMP requirements that do not actually dictate the details of construction for most final treatment components. Good Engineering Practice should be employed to optimize the system for consistent operation to specifications and lifecycle cost optimization. Part of the consideration is the need to replace system components (e.g., filters, RO membranes) at a frequency that meets GMP. 许多材料的选择都错误的被要求服从cGMP的要求,实际上cGMP并没有对多数终处理元件的结构细节做出指示。应依照《优良工程实务规范》来优化系统使得操作和指标一致以及寿命周期成本最佳。需考虑的要素是系统元件(如:过滤器、反渗透膜)的更换频率应满足GMP的要求。 This chapter does not differentiate between compendial and non-compendial water system equipment. Non-compendial water is often manufactured and validated in a manner consistent with compendial water. 该章中的药典规定的水和非药典规定的水的系统设备间没有差别。通常非药典规定的水和药典规定的水的生产和验证的方式是相同的。 5.2 ION EXCHANGE 离子交换 5.2.1 Description 说明 Cation and anion exchange resins are regenerated with acid and caustic solutions, respectively. As water passes through the ion exchange bed, the exchange of ions in the water stream for the hydrogen and hydroxide ions, held by the resin, occurs readily and is driven by concentration. Thus, the regeneration process driven by excess chemical concentrations. The important parameters of this system include resin quality regeneration systems, vessel linings, and waste neutralization systems. The operation of the system can be monitored by conductivity (resistivity) of the product water. 阳离子和阴离子交换树脂是分别用酸和碱再生的。当水通过离子交换床的时候,树脂捕获的离子和水中的氢离子和氢氧根离子发生了置换,该过程是易于发生的并且是受浓度驱使的。因此,可通过添加高浓度的化学药品来促使再生。该系统的重要参数包括:再生系统的树脂性质、容器的内壁材料和废水的中和系统。可通过制造出来的水的电导率(电阻率)来控制系统的操作。 A two-bed ion exchange system includes both cation and anion resin tanks. Two-bed ion exchange systems often times function as the workhorse of a strictly deionization (DI) water system in terms of salt removal. 复合床离子交换系统包括了阳离子树脂槽和阴离子树脂槽。从去盐方面来说,复合床离子交换系统通常是一个严格的去离子(DI)水系统的重负荷的机器。 Mixed-bed ion exchange systems are typically used as a secondary or "polishing" system. Mixed-bed DI units consist of a single tank with a mixture of anion and cation removal resin. A cation bed can also be used as a "polishing" Dl step, rather than a mixed-bed DI. 混合床离子交换系统典型的用作二级或“抛光”系统。混合床去离子单元是由装有混合的阴阳离子树脂的单槽构成。阳离子床也可以用作“抛光”去离子步骤,而不是混合床去离子。 Ion exchange resins are available in on-site and off-site regenerable systems. On-site regeneration requires chemical handling and disposal, but allows for internal process control and microbial control. Off-site regeneration can be accomplished through new resin to be used one time, or through repeated regeneration of the existing resin. New resin provides greater capacity and some possible quality control advantages, but at a higher cost. Regenerated resin produces a lower operating cost, but may raise quality control issues, such as resin segregation, regeneration quality, and consistency. 离子交换树脂可以在位和脱位再生。在位再生要求化学控制和处理,但可以在内部进行过程控制和微生物控制。脱线再生可通过只用过一次的新树脂或对现有树脂的重复再生实现。新树脂有较高的捕获能力以及一些质量控制的优点,但是成本较高。再生树脂的操作成本较低,但可能会出现质量控制问 快递公司问题件快递公司问题件货款处理关于圆的周长面积重点题型关于解方程组的题及答案关于南海问题 ,如树脂破裂、再生质量问题、和一致性问题。 Additional details on ion exchange can be found in Chapter 11. 离子交换的附加细节将在第11章里讲到。 5.2.2 Application应用 The major purpose of ion exchange equipment in USP purified water systems is to satisfy the conductivity requirements of the USP. Deionization (Dl) systems are often times used alone or in conjunction with reverse osmosis to produce USP Purified Water. Typical ion exchange systems do not effectively remove other contaminants noted in the USP purified water specification. In the ion exchange process, salt ions, which are common to potable water, are removed from the water stream and replaced with hydrogen and hydroxide ions. Ion exchange systems are available in various configurations that include two-bed Dl and mixed-bed Dl. Both configurations are available in on-site and off-site regeneration systems. USP纯化水系统中离子交换设备的主要目的是满足USP的电导率要求。通常单独使用去离子系统或将其连接到反渗透上来制造USP纯化水。典型的去离子系统并不能有效的去除USP纯化水指标中提到的其他污染物。在离子交换过程中,水中的盐离子(通常存在于饮用水中)被除去,并替换成氢离子和氢氧根离子。各种构型的离子交换系统都是适用的,这些构型包括:复合床去离子和混合床去离子。这两个构型都可以在位和脱位再生。 5.2.3 Pretreatment Requirements 对预处理的要求 Ion exchange systems require pretreatment to remove undissolved solids from the water stream and to avoid resin fouling or degradation. Although dechlorination is also recommended to avoid resin degradation by oxidation, the low levels of chlorine commonly found in most potable water supplies normally demonstrate only long-term effects on most ion exchange resins. 离子交换系统要求预处理先将水流中的不溶固体去除,以避免树脂污垢和降解。尽管也建议采用脱氯以避免树脂被氧化后降解,但是多数饮用水中的氯水平都较低,这表明它对多数 离子交换树脂只有长期影响。 5.2.4 Cost Savings Factors 成本节约因素 Most of the cost savings opportunities for these systems revolve around the correct choices in materials of construction, pretreatment options, instrumentation, and sizing of the Dl system. Acceptable piping materials of construction can vary from PVC to 316L SS. A correctly designed system will minimize the equipment size and maximize the amount of time between regenerations, considering microbial control and maintenance. Choosing to monitor only the critical parameters such as conductivity (resistivity), flow, pressure, etc., can minimize instrumentation. 这些系统的多数成本节约机会都是对下列项的正确选择:建造材料、预处理选项、使用的仪器和去离子系统的大小。结构中适用的管线材料可以从PVC到316L SS里面选。设计合理的系统将会考虑在微生物的控制和系统维护的基础上,使设备的尺寸降到最小,同时能使再生的频率降到最低。选择只监控一些关键参数(如:电导率(电阻率)、流速、压力等)能将仪器使用降到最低。 There are also cost savings choices that will need to be made with respect to capital purchase and on-going operating costs. These choices will steer you towards Dl off-site regenerable bottles, on-site regenerable Dl vessels (with automatic or manual controls) or another water treatment unit operation. 在采购资金和运行成本方面,还可选择其他的方面的成本节约。这些是去离子脱线再生瓶、在线再生去离子容器(自动或手动控制)或其他水处理单元操作方面。 5.2.5 Advantages and Disadvantages 优点和缺点 Advantages优点: ·Simple design and maintenance 设计和维护简单 ·Flexible in water flow production 生产中,水的流动性好 ·Good upset recovery 好的紊乱恢复性 ·Low capital cost for single train Dl systems 单床去离子系统的成本低 ·Removes ionizable substances (ammonia, carbon dioxide, and some organics)可去除可电离的物质(铵、二氧化碳、和一些有机物) Disadvantages缺点: ·High cost of operations on high total dissolved solids (TDS) in-feed-water 处理给水中的高的总溶解固体(TDS)的成本高。 ·Requires chemical handling for on-site regenerable Dl (safety and environmental issues) 去离子的在位再生要求处理化学试剂(安全和环境问题) ·Full on-site Dl system can take significantly more floor space due to primary vessels, chemical storage, and neutralization system 由于有一些主要的容器、化学试剂的储藏以及中和系统,使得整个在位去离子系统会占很大的地面面积 ·Off-site Dl systems will require outside service and significant costs for regeneration services 脱线去离子系统要求有外部辅助设备并且再生设备的成本也很高 ·Off-site regeneration involves consequent loss of control over the use, handling, and care of Dl vessels 脱线再生会使去离子容器的使用、操作和保养不可控制。 ·Dl vessels are excellent places for microbial growth to occur between regenerations 在两次再生之间的时间段,去离子容器是微生物生长的最佳地点。 5.2.6 Sanitization 消毒 All ion exchange resins can be sanitized chemically with various agents. The degree of resin attrition is a function of resin type and the chemical agent. Chemical cleaners include peracetic acid, sodium hypochlorite, and others. Some resins are capable of hot water sanitizations at temperatures between 65℃to 85℃. Ion exchange resins suitable for limited thermal sanitizations include: strong acid cation resin, and standard polystyrene cross-linked with divinylbenzene Type 1 strong base resin. 所有的离子交换树脂都能用各种试剂进行化学消毒。树脂的损耗程度取决于树脂的功能类型和化学试剂的不同。化学清洁剂包括:过氧乙酸、次氯酸钠和其他的试剂。一些树脂可以用65℃-85℃的热水消毒。只能用热消毒的离子交换树脂包括:强酸阳离子树脂、 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 的聚苯乙烯交联1型二乙烯基苯的强碱树脂。 Table 5-1 Comparison for ion exchange unit operations 表5-1:离子交换单元操作的对照表 Off-Site Regenerated 脱位再生 On-Site Regenerated 在位再生 Chemical Use: 化学试剂的使用 N/A Extensive 广泛的 Sanitization Method: 消毒方法 Change Out or Hot Water 更换或热水消毒 Regenerate 再生 Capital Cost:资金成本 Minimal小 Extensive 大 Water Consumption: 耗水 None无 Medium 中等 Energy Consumption: 耗能 Minimal 小 Minimal 小 Maintenance Requirements: 维护要求 Minimal 低 Medium 中等 Outside Service Used: 使用的外部辅助设备 Extensive 多 Low 少 Reliability:可信度 Good* 好 Good 好 Upset Recovery Operations: 紊乱恢复操作 Good, Replace 好,替换 Good 好 *Note: Having the Dl bottles regenerated by an outside service does not relieve the manufacturer of the responsibility to have quality control of their ion exchange system. *注:用外部辅助设备再生去离子瓶并不能减轻制造商对他们的离子交换系统质量控制的责任。 Table 5-2 Limits of Operation and Expected Performance 表5-2:操作和预期预处理的限度 Feed Quality:给水质量 ·Total Suspended Solids (turbidity): 总悬浮固体(混浊度) ·Filtration of 10 micron is recommended 推荐用孔径是10um的过滤器 ·Chlorine Tolerance: 氯耐受性 ·Varies with type of resin, generally at 0.5 ppm, some resins are rated up to 1 ppm 取决于树脂的类型,通常是0.5ppm,有些树脂规定为1ppm ·Total Dissolved Solids (TDS): 总溶解固体(TDS) ·< 200 ppm, operation at higher TDS levels is possible but operating costs can be high <200ppm,在较高水平的TDS下操作是可能的,但操作成本会很高 ·Temperature:温度 ·Most cation resin up to 121℃; most anion resin 40-70℃; some anion resin up to 100℃ 多数阳离子树脂可到121℃,多数阴离子树脂是40-70℃,某些阴离子树脂可到100℃ ·Conductivity:电导率 ·Can achieve conductivity below 1.0 microsiemen/cm depending on the system pretreatment and regeneration schedule 是否能达到<1.0 microsiemen/cm的电导率,取决于系统的预处理和再生 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 ·Regeneration and Chemical Efficiency: 再生和化学试剂功效 ·Linear variation is inverse to the feed water total dissolved solids- best below 200 ppm 线性变化和给水的总溶解固体(最好是小于200 ppm)相反 ·Feed TOC:给水的TOC含量 ·Ability to avoid fouling varies with type of resin可以避免由树脂的类型变化而引起的污垢变化 ·Product TOC: 制造出的水的TOC含量 ·May increase or decrease incoming TOC levels depending on resin type and feed water -difficult to predict. 是增加还是降低给水的TOC水平,取决于树脂的类型和给水(是难以预料的) 5.3 CONTINUOUS ELECTRODEIONIZATION (CEDI)连续电法去离子(CEDI) 5.3.1 Description说明 Electrodeionization removes ionized or ionizable species from water using electrically active media and an electrical potential to effect ion transport. Electrodeionization is distinguished from electrodialysis or oxidation/reduction processes by the use of electrically active media, and is distinguished from other ion exchange .processes by the use of an electrical potential. 电法去离子是通过使用电活化介质和促使离子运送的电位差来去除水中的离子化或可电离的物质。由于使用了电活化介质,电法去离子是不同于电渗析或氧化/还原过程;而且由于它采用了电位差,它也不同于其他离子交换过程。 The electrically active media in electrodeionization devices functions to alternately collect and discharge ionizable species and to facilitate the transport of ions continuously by ionic or electronic substitution mechanisms. Electrodeionization devices may comprise media of permanent or temporary charge and may be operated batchwise, intermittently, or continuously. The devices can be operated so as to cause electro-chemical reactions specifically designed to achieve or enhance performance and may comprise electrically active membranes such as, semi-permeable ion exchange or bipolar membranes. 电法去离子设备中的电活化介质的功能是:它能交替的浓缩和释放可电离的物质,并能通过离子或电子交替机制使离子连续运送变得便利。电法去离子设备可能是由永久的介质或暂时装填的介质构成,并可以间歇的或连续的分批操作。该设备的运行能引起电化学反应,这是为获得或加强性能特定设计的,同时该设备还可能包含电活化膜,如:离子交换半透膜或双级膜。 The continuous electrodeionization (CEDI) processes are distinguished from the collection/discharge processes (such as electrochemical ion exchange or capacitive deionization) in that the process is continuous rather than batch or intermittent, and that the ionic transport properties of the active media are a primary sizing parameter, as opposed to ionic capacity. Continuous electrodeionization devices typically comprise semi-permeable ion exchange membranes, permanently charged media, and a power supply that can create a DC electrical field. 连续电法去离子(CEDI)过程是不同于浓缩/排放过程(如:电化学离子交换或电容去离子),因为该过程是连续的而不是分批的或间歇的,活化介质的离子输送特征相对于离子带电量来说是一个初级筛分参数。典型的连续去离子设备包括离子交换半透膜、永久带电荷的媒介以及能产生直流电电场的电源。 A continuous electrodeionization cell is formed by two adjacent ion exchange membranes or by a membrane and an adjacent electrode. CEDI units typically have alternating ion depleting (purifying) and ion concentrating cells that can be fed from the same water source, or different water sources. Water is purified in CEDI devices through ion transfer. Ionized or ionizable species are drawn from the water passing through the ion depleting (purifying) cells into the concentrate water stream passing through the ion concentration cells. 连续电法去离子室是由两个邻近的离子交换膜或者一个膜和一个邻近的电极构成。典型的CEDI单元有一个交替的离子排除(净化)室和离子浓缩室,它们可以用同一个水源供给,也可以用不同的水源供给。水在CEDI设备中通过离子传递得到纯化。在穿过离子排除(净化)室时,水中的离子化物质或可电离物质就被排到离子浓缩室的浓缩水流中。 The water that is purified in CEDI units passes only through the electrically charged ion exchange media, and not through the ion exchange membranes. The ion exchange membranes are permeable to ionized or ionizable species, but not permeable to water. 在CEDI单元中纯化的水只穿过填充的离子交换介质,并不通过离子交换膜。离子交换膜是可以透过离子化或可电离的物质,但不透水。 The purifying cells typically have permanently charged ion exchange media between a pair of ion exchange membranes. Some units incorporate mixed (cationic and anionic) ion exchange media between a cationic membrane and an anionic membrane to form the purifying cell. Some units incorporate layers of cation and anion ion exchange media between ion exchange membranes to form the purifying cell. Other devices create single purifying cells (cationic or anionic) by incorporating a single ion exchange medium between ion exchange membranes. CEDI units can be configured with the cells in a plate and frame, or spiral wound configuration. 典型的纯化室是在一对离子交换膜间永久的填充离子交换媒介。一些单元是在一个阳离子膜和一个阴离子膜之间填充混合(阳离子和阴离子)的离子交换媒介,以形成纯化室。一些单元是在离子交换膜间填充阳离子层和阴离子层以形成纯化室。一些设备是通过在离子交换膜间填充单种离子交换媒介以形成单种纯化室(阳离子或阴离子)。CEDI单元可做成平板型或框型,或螺旋卷型。 The power supply creates a DC electric field between the cathode and anode of the CEDI device. Cations in the feed water stream passing through the purifying cell are drawn to the cathode. Cations are transported through the cation exchange media and either pass through the cation permeable membrane or are rejected by the anion permeable membrane. Anions are drawn to the anode and are transferred through anion exchange media and either pass through the anion permeable membrane or are rejected by the cation permeable membrane. The ion exchange membranes are oriented in a manner which contains the cations and anions removed from the purifying cells in the concentrating cells so that the ionic contaminants are removed from the CEDI unit. Some CEDI units utilize ion exchange media in the concentrating cells, while others do not. 电源在CEDI设备的阳极和阴极间产生一个直流电场。穿过纯化室的给水中的阳离子跑到阴极。阳离子的传送情况是:穿过阳离子交换介质、或者穿过阳离子渗透膜,或者是被阴离子渗透膜拦截。阴离子跑到阳极,其传送情况是:穿过阴离子交换媒介、或者穿过阴离子渗透膜,或者是被阳离子渗透膜拦截。离子交换膜定向的将纯化室中的阴离子和阳离子转移到浓缩室中,这样就可以去除CEDI单元中的离子污染。 As the ionic strength of the purified water stream decreases the high voltage gradient at the water-ion exchange media interfaces can cause water decomposition to its ionic constituents (H+ and OH-). The H+ and OH- ions are created continuously and regenerate the cation and anion exchange media, respectively, at the outlet end of the purifying cells. The constant high level of ion exchange media regeneration level allows production of high purity water (1 to 18 Mohm-cm) in the CEDI process. 当纯化的水流中离子强度降低后,水-离子交换媒介表面的高压梯度可以使水分解成离子形式(H+和OH-)。在纯化室的出口处不断的生成H+和OH-离子,并且它们可以不断的再生阴离子和阳离子交换媒介。在CEDI过程中,连续的离子交换媒介的高度再生水平促使产生高纯度的水(1 to 18 Mohm-cm)。 5.3.2 Application应用 In some cases, where drug microbiological quality is of lesser concern, CEDI units may be utilized down stream of reverse osmosis (RO) units in production of USP Purified Water or non-compendial water to increase the life of the CEDI units. For USP WFI water, the CEDI units are utilized up stream of reverse osmosis (RO) units. 在某些不是非常关注药品中的微生物的情况下,可在反渗透单元的下游使用CEDI单元来生产USP纯化水或非药典规定的水以增加CEDI单元的使用寿命。但是对于生产USP注射用水,则应在反渗透单元的上游使用CEDI单元。 5.3.3 Limitations限度 CEDI units cannot remove all contaminants from water. The principal removal mechanism is for ionized or ionizable species. CEDI units cannot purify 100% of the feed water stream, as a concentrate stream is always required to remove the contaminants from the system. CEDI has temperature limitations for practical operation. Most CEDI units are operated between 10 - 40℃(50 - 104℉). CEDI单元不能除去水中所有的污染物。主要是去除离子化的或可电离的物质。CEDI单元不能纯化100%的给水,因为浓缩液通常需要去除来自系统的污染。CEDI有实际操作温度限制。多数CEDI单元是在10 - 40℃(50 - 104℉)下操作的。 5.3.4 Pre-treatment Requirements 对预处理的要求 CEDI units must be protected from scale formation, fouling and thermal or oxidative degradation. The RO/pretreatment equipment typically reduces hardness, organics, suspended solids, and oxidants to acceptable levels. 必须防止CEDI单元结垢、生污垢以及热或氧化降解。反渗透/预处理设备可以将硬度、有机物、悬浮固体和氧化剂降低到合适的水平。 5.3.5 Performance性能 CEDI unit performance is a function of feed water quality and unit design.
本文档为【ISPE 5.终处理选项:药典规定的纯化水和非药典规定的纯化水】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_883935
暂无简介~
格式:doc
大小:179KB
软件:Word
页数:24
分类:
上传时间:2011-06-30
浏览量:29