首页 电路分析实验指导书

电路分析实验指导书

举报
开通vip

电路分析实验指导书实验一 基本电工仪表的使用与测量误差的计算 《电路分析》实验指导书 深圳大学 机电与控制工程学院 2006年12月修订 目录 1.​ 基本电工仪表的使用与测量误差的计算……………………………… 3 2.​ 基尔霍夫定律的验证………………………………………………… …7 3.​ 戴维南定理的验证……………………………………………………… 9 4.​ 受控源实验………………………………………………………………13 5.​ RC一阶电路的响应测试……………………………………………… 18 6.​ R、L、C元件阻抗特...

电路分析实验指导书
实验一 基本电工仪表的使用与测量误差的计算 《电路 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 》实验指导书 深圳大学 机电与控制工程学院 2006年12月修订 目录 1.​ 基本电工仪表的使用与测量误差的计算……………………………… 3 2.​ 基尔霍夫定律的验证………………………………………………… …7 3.​ 戴维南定理的验证……………………………………………………… 9 4.​ 受控源实验………………………………………………………………13 5.​ RC一阶电路的响应测试……………………………………………… 18 6.​ R、L、C元件阻抗特性的测定…………………………………………21 7.​ R、L、C串联谐振电路的研究…………………………………………23 8.​ 三相交流电路电压、电流的测量………………………………………27 9.​ 含受控源电路的实验分析………………………………………………30 附录 验证性实验报告的封面 设计性实验报告的封面 实验一 基本电工仪表的使用与典型电信号的观察 一、实验目的 1、熟悉实验台上各类电源、测量仪表的布局及使用 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 2、掌握电压表、电流表内电阻的测量方法 3、熟悉常用电工仪表及设备的使用方法,包括万用表、电源、信号发生器、示波器、电压与电流表等等。 二、实验说明 1、为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的实际工作状态,这就要求电压表的内阻为无穷大;电流表的内阻为零。而实际使用的电工仪表都不能满足上述要求。因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值之间出现误差,这种测量误差值的大小与仪表本身内阻值的的大小密切相关。 2、本实验测量电流的内阻采用“分流法”,如图1-1所示。 图1-1 可调电流源 A为被测内阻RA的直流电流表,测量时先断开开关S,调节电流源的输出电流I使A表指针满偏转,然后合上开关S,并保持I值不变,调节电阻箱RB的阻值,使电流表指在1/2满偏转位置,此时有 所以 RA=RB//R1 R1为固定电阻之值,RB由电阻箱的刻度盘上读得。 3、测量电压表的内阻采用分压法,如图1-2所示。 图 1-2 可调稳压源 V为被测内阻RV的电压表,测量时先将开关S闭合,调节直流稳压源的输出电压,使电压表V的指针为满偏转。然后断开开关S,调节RB使电压表V的指示值减半。此时有 RV =RB + R1 电阻箱刻度盘读出值RB加上固定电阻R1,即为被测电压表的内阻值。电压表的灵敏度为 S = RV/U (Ω/v) 4、仪表内阻引入的测量误差(通常称之为方法误差,而仪表本身构造上引起的误差称为仪表基本误差)的计算。 以图1-3所示电路为例 图 1-3 R1上的电压为 UR1= U,若R1=R2,则UR1=1/2U 现用一内阻为RV的电压表来测量UR1的值,当RV与R1并联后, RAB= ,以此来代替上式中的R1,则得U‘R1= 绝对误差为 △U=U‘R1—UR1=U( ) 化简后得 △U= ,若R1=R2=RV ,则得 △U= 相对误差△U%= 三、实验设备 序号 名 称 型号与规格 数量 备注 1 可调直流稳压电源 1 DG04 2 可调恒流源 1 DG04 3 万用表 FM-30 或其他 1 4 可调电阻箱 0~9999.9Ω 1 DG04 5 电阻器 8.2Ω , 10KΩ DG04 6 信号发生器、示波器 1 四、实验内容 1、根据“分流法”原理测定万用表直流毫安表的内阻,线路如图1-1所示。 被测电流表量程 S断开时的IA (mA) S闭合时的I,A (mA) RB (Ω) R1 (Ω) 计算内阻RA (Ω) 2、根据“分压法”原理按图1-2接线,测定万用表直流电压表的内阻。 被测电压表量程 S闭合时表读数(V) S断开时表读数(V) RB (KΩ) R1 (KΩ) 计算内阻RV(KΩ) S (Ω/V) 3、使用示波器观察信号发生器的各种输出波形,并测量信号幅值、周期或频率。 五、实验注意事项 1、本实验重点是熟悉常用电工仪表及设备的使用方法,特别是示波器的操作。 2、实验台上提供所有实验的电源,直流稳压源和恒流源均可通过粗调(分段调)旋钮和细调(连续调)旋钮调节其输出量,并由数字电压表和数字毫安表显示其输出量的大小,启动实验台电源之前,应使其输出旋钮置于零位,实验时再缓慢地、减输出。 3、稳压源的输出不允许短路,恒流源的输出不允许开路。 4、电压表应与电路并联使用,电流表与电路串联使用,并且都要注意极性与量程的合理选择。 六、思考题 1、根据实验内容1和2,若已求出1mA和10V档的内阻,可否直接计算得出10mA档和25V档的内阻? 2、用量程为10A的电流表测实际值为8A的电流时,实际读数为8.1A,求测量的绝对误差和相对误差。 3、如图1-4(a)、(b)为伏安法测量电阻的两种电路,被测电阻的实际值为Rx,电压表的内阻为RV,电流表的内阻为RA,求两种电路测电阻Rx的相对误差。 图 1-4 七、实验报告 1、列表记录实验数据,并计算各被测仪表的内阻值。 2、记录示波器观察到的波形,并说明测量幅值和频率的方法。 3、对思考题的计算与回答。 4、其他(包括实验的心得、体会及意见)。 实验二 基尔霍夫定律的验证 一、​ 实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2、学会用电流插头、插座测量各支路电流的方法。 二、原理说明 基尔霍夫定律是电路的基本定律。测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言,应有∑I=0;对任何一个闭合回路而言,应有∑U=0。 运用上述定律时必须注意电流的正方向,此方向可预先任意设定。 三、实验设备 序号 名 称 型号与规格 数量 备注 1 直流稳压电源 +6V,+12V切换 1 DG04 2 直流可调稳压电源 0~30V 1 DG04 3 万用表 1 4 直流数字电压表 1 D31 5 直流数字毫安表 1 D31 6 电位、电压测定实验电路板 1 DG05 四、实验内容 实验线路如图2-1所示 1、实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路的结构,掌握各开关的操作使用方法。 2、分别将两路直流稳压源(一路如E1为+6,+12V切换电源,另一路,如E2接0~30V可调直流稳压源)接入电路,令E1=6V, E2=12V。 3、熟悉电流插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。 4、将电流插头分别插入三支路的三个电流插座中,读出并记录电流值。 5、用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录之。 被测量 I1 (mA) I2 (mA) I3 (mA) E1 (V) E2 (V) UFA (V) UAB (V) UAD (V) UCD (V) UDE (V) 计算值 测量值 相对误差 五、实验注意事项 1、所有需要测量的电压值,均以电压表测量的读数为准,不以电源表盘指示值为准。 2、防止电源两端碰线短路。 3、若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,此时指针正偏,但读得的电流值必须冠以负号。 六、预习思考题 1、根据图2-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。 2、实验中,若用万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示呢? 七、实验报告 1、根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。 2、根据实验数据,选定实验电路中任一个闭合回路,验证KVL的正确性。 3、误差原因分析。 4、 心得体会 决胜全面小康心得体会学党史心得下载党史学习心得下载军训心得免费下载党史学习心得下载 及其他。 实验三 戴维南定理 ——有源二端网络等效参数的测定—— 一、​ 实验目的 1、验证戴维南定理的正确性,加深对该定理的理解。 2、掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1、任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势E0等于这个有源二端网络的开路电压U∝,其等效内阻E0等于该网络中所有独立源均置零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。 R∝,E0和R0称为有源二端网络的等效参数。 2、有源二端网络等效参数的测量方法 (1)开路电压、短路电流法 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U∝,然后再将其输出端短路,用电流表测其短路电流I∝,则内阻为 (2)伏安法 用电压表、电流表测出有源二端网络的外特性如图3-1所示。根据外特性曲线求出斜率tgφ,则内阻 用伏安法,主要是测量开路电压及电流为额定值IN时的输出端电压值UN,则内阻为 若二端网络的内阻值很低时,则不宜测其短路电流。 图3-1 图3-2 (3)半压法 如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的的小内阻值。 (4)零示法 在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示法,如图3-3所示。 图 3-3 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即将被测有源二端网络的开路电压。 三、实验设备 序号 名称 型号与规格 数量 备注 1 可调直流稳压电源 1 DG04 2 可调直流恒流源 1 DG05 3 直流数字电压表 1 D31 4 直流数字毫安表 1 D31 5 万用表 1 6 可调电阻箱 0~99999.9Ω 1 DG09 7 电位器 470Ω 1 DG09 8 戴维南定理实验电路板 1 DG05 四、实验内容 被测有源二端网络如图3-4(a)所示。 1、用开路电压、短路电流法测定戴维南等效电路的U∝和R0。按图3-4(a)线路接入稳压电源ES和恒流源IS及可变电阻箱RL,测定U∝和R0。 U∝(V) I∝(mA) R0=U∝/I∝(Ω) (a) (b) 图 3-4 2、负载实验 按图3-4(a)改变RL阻值,测量有源二端网络的外特征。 RL(Ω) 0 ∞ U(V) I(mA) 3、验证戴维南定理:用一只470Ω的电位器,(当可变电阻器用),将其阻值调整到等于按步骤“1”所得的等效电阻R0之值,然后令其与直流稳压电源(调到步骤“1”时所得的开路电压U∝之值)相串联,如图3-4(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证。 RL(Ω) 0 ∞ U(V) I(mA) 4、测定有源二端网络等效电阻(又称入端电阻)的其它方法:将被测有源网络内的所有独立源置零(将电流源IS去掉,也去掉电压源,并在原电压端所接的两点用一根短路导线相连),然后用伏安法或者直接用万用表的欧姆档去测定负载RL开路后A、B两点间的电阻,此即为被测网络的等效内阻R0或称网络的入端电阻Ri。 5、用半压法和零示法测量被测网络的等效内阻R0及其开路电压U∝,线路及数据表格自拟。 五、实验注意事项 1、注意测量时,电流表量程的更换。 2、步骤“4”中,电源置零时不可将稳压源短接。 3、用万用表直接测R0时,网络内的独立电源必须先置零,以免损坏万用表,其次,欧姆档必须经调零后再进行测量。 六、预习思考题 1、在求戴维南等效电路时,作短路试验,测I∞的条件是什么?在本实验中可否直接作负载短路实验?请实验前对线路3-4(a)预先作好计算,以便调整实验线路及测量时可准确的选取电表的量程。 2、说明测有源网络开路电压及等效内阻的几种方法,并比较其优缺点。 七、实验报告 1、根据步骤2和3,分别绘出曲线,验证戴维南定理的正确性,并分析产生误差的原因。 2、根据步骤1、4、5各种方法测得的U∝与R0与预习时电路计算的结果作比较,你能得出什么结论? 3、归纳、总结实验结果。 4、心得体会和其他。 实验四 受控源实验 一、实验目的 通过测试受控源的外特性及其转移参数,进一步理解受控源的物理概念,加深对受控源的认识和理解。 二、原理说明 1、电源有独立电源(如电池、发电机等)与非独立电源(或称为受控源)之分。 受控源与独立源的不同点是:独立源的电势ES或电激流IS是某一固定的数值或是某一时间的函数,她不随电路其余部分的状态而变,而受控源的电势或电激流则是随电路中另一支路的电压或电流而变的一种电源。 受控源又与无源元件不同,无源元件两端的电压和它自身的电流有一定的函数关系,而受控源的输出电压或电流和另一支路(或元件)的电流或电压有某种函数关系。 2、独立源与无源元件是二端器件,受控源则是四端器件,或称为双口元件,它有一对输入端(U1、I1)和一对输出端(U2、I2)。输入端用以控制输出端电压或电流的大小,施加于输入端控制量可以是电压或电流,因而有两种受控电压源(即电压控制电压源VCVS和电流控制电压源CCVS)和两类受控电流源(即电压控制电流源VCCS和电流控制电流源CCCS)。 3、当受控源的电压(或电流)与控制支路的电压(或电流)成正比变化时,则该受控源是线性的。 理想受控源的控制支路只有一个独立变量(电压或电流),另一个独立变量等于零,即从输入口看,理想受控源或者是短路(即输入电阻R1=0,因而U1=0)或者是开路(即输入电导G1=0,因而输入电流I1=0);从输入口看,理想受控源或是一个理想电压源或者是一个理想电流源,如图4-1所示。 图 4-1 4、受控源的控制端与受控端的关系式称为转移函数。 四种受控源的定义及其转移函数参量的定义如下: (1)压控电压源(VCVS),U2=f(U1),μ=U2/ U1 称为转移电压比(或电压增益)。 (2)压控电流源(VCCS),I2=f(U1),gm=I2/ U1 称为转移电导。 (3)流控电压源(CCVS),U2=f(I1),Im=U2/ I1 称为转移电阻。 (4)流控电流源(CCCS),I2=f(I1),α=I2/ I1 称为转移电流比(或电流增益)。 三、实验设备 序号 名称 型号与规格 数量 备注 1 可调直流稳压电源 1 DG04 2 可调恒流源 1 DG04 3 直流数字电压表 1 D31 4 直流数字毫安表 1 D31 5 可调电阻箱 1 DG09 6 受控源实验电路板 1 DG06 四、实验内容 1、测量受控源VCVS的转移特性U2=f(U1)及负载特性U2=f(IL),实验线路如图4-2所示。 图 4-2 (1)固定RL=2KΩ,调节稳压电源输出电压U1,测量U1及相应的U2值,列表: V1 (V) 0 1 2 3 4 5 6 7 7 V2 (V) 在方格纸上绘出电压转移特性曲线U2=f(U1),并在其线性部分求出转移电压比μ。 (2)保持U1=2V,调节可变电阻箱RL的阻值,测U2及IL,绘制负载特性曲线U2=f(IL)。 RL(Ω) 50 70 100 200 300 400 500 ∞ V2(V) IL (mA) 2、测量受控源VCCS的转移特性IL=f(U1)及负载特性IL=f(U2),实验线路如图4-3。 图 4-3 (1)固定RL=2KΩ,调节稳压电源的输出电压U1,测出相应的IL值,绘制IL=f(U1)曲线,并由其线性部分求出转移电导gm。 U1(V) 0 0.5 1.0 1.5 2 2.5 3 3.5 IL(mA) (2)保持U1=2V,令RL从大到小变化,测出相应的IL及U2,绘制IL=f(U2)曲线。 RL(KΩ) 50 20 10 8 4 2 1 IL(mA) V2(V) 3、测量受控源CCVS的转移特性U2=f(I1)与负载特性U2=f(IL)。 实验线路如图4-4 图 4-4 (1)固定RL=2KΩ,调节恒流源的输出电流IS,使其在0.05~0.7mA范围内取8个数值,测出U2,绘制U2=f(I1)曲线,并由线性部分求出转移电阻rm。 I1(mA) V2(V) (2)保持IS=0.5mA,令RL从1 KΩ增至8 KΩ,测出U2及IL,绘制负载特性曲线 U2=f(IL)。 RL(KΩ) 1 2 3 4 5 6 7 8 U2(V) IL(mA) 4、测量受控源CCCS的转移特性IL=f(I1)及负载特性IL=f(U2)。 实验线路如图4-5。 图 4-5 (1)固定RL=2KΩ,调节恒流源的输出电流IS,使其在0.05~0.7mA范围内取8个数值,测出IL,绘制IL=f(I1)曲线,并由其线性部分求出转移电流α。 I1(mA) IL(mA) (2)保持IS=0.5mA,令RL从0,100Ω,200Ω增至80KΩ,测出IL,绘制IL=f(U2)曲线。 RL(KΩ) IL(mA) U2(V) 五、实验注意事项 1、每次组装线路,必须事先断开供电电源,但不必关闭电源总开关。 2、用恒流源供电的实验中,不要使恒流源的负载开路。 六、预习思考题 1、受控源和独立源相比有何异同点?比较四种受控源的代号、电路模型、控制量与被控制量的关系如何? 2、四种受控源中的rm、gm、α和μ的意义是什么?如何测得? 3、若受控源控制量的极性反向,试问其输出极性是否发生变化? 4、受控源的控制特性是否适合于交流信号? 5、如何由两个基本的CCVS和VCCS获得其它两个CCCS和VCVS,它们的输入输出如何连接? 七、实验报告 1、根据实验数据,在方格纸上分别绘出四种受控源的转移特性和负载特性曲线,并求出相应的转移参量。 2、对预习思考题作必要的回答。 3、对实验的结果作出合理的分析和结论,总结对四种受控源的认识和理解。 4、心得体会及其他。 试验五 RC一阶电路的响应测试 一、实验目的 1、​ 测定RC一阶电路的零输入响应,零状态响应及完全响应。 2、​ 学习电路时间常数的测量方法。 3、​ 掌握有关微分电路和积分电路的概念。 4、​ 进一步学会用示波器测绘图形。 二、原理说明 1、动态网络的过渡过程是十分短暂的单次变化过程,对时间常数τ较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。然而能用一般的双踪示波器观察过渡过程和测量有关的参数,必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方法来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号,只要选择方波的重复周期远大于电路的时间常数τ。电路在这样的方波序列脉冲信号的激励下,它的影响和直流接通与断开的过渡过程是基本相同的。 2、RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3、时间常数τ的测定方法: 用示波器测得零输入响应的波形如图5-1(a)所示。 根据一阶微分方程的求解得知 当t=τ时,UC(τ)=0.368E。 此时所对应的时间就等于τ。 亦可用零状态响应波形增长到0.632E所对应的时间测得,如图5-1(c)所示。 (a)零输入响应 (b)RC一阶电路 (c)零状态响应 图 5-1 1、微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。 一个简单的RC串连电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 时(T为方波脉冲的重复周期),且由R端作为响应输出,这就成了一个微分电路,因为此时电路的输出信号电压与输入信号的微分成正比。如图5-2(a)所示。 (a)微分电路 (b)积分电路 图 5-2 若将图5-2(a)中的R与C位置调换一下,即由C端作为响应输出,且当电路参数的选择满足τ=RC>> 条件时,如图5-2(b)所示即称为积分电路,因为此时电路的输出信号电压与输入信号电压的积分成正比。 从输出波形来看,上述两个电路均起着波形转换的作用,请在实验过程仔细观察与记录。 3、​ 实验设备 序号 名 称 型号与规格 数量 备注 1 脉冲信号发生器 1 DG03 2 双踪示波器 1 3 动态电路实验板 1 DG07 四、实验内容 实验线路板的结构如图5-3所示,认清R、C元件的布局及其标称值,各开关的通断位置等等。 1、选择动态电路板上的R、C元件,令 R=10K,C=3300Pf 组成如图5-1(b)所示的RC充放电电路,E为脉冲信号发生器输出U =3V,f=1KHz的方波电压信号,并通过两根同轴电缆线,将激励源E和响应Uc的信号分别连至示波器的两个输入口YA和YB,这时可在示波器的屏幕上观察到激励与响应的变化规律,求测时间常数τ,并用方格纸按1:1的比例描绘波形。 少量地改变电容值或电阻值,定性地观察对响应的影响,记录观察到的现象。 2、令R=10K,C=0.1μf,观察并描绘响应的波形,继续增大C之值,定性地观察对响应的影响。 3、选择动态板上的R、C元件,组成如图5-2(a)所示的微分电路,令C=0.01μf,R=100Ω。 在同样的方波激励信号(Um=3V,f=1KHZ)作用下,观察并描绘激励与响应的波形。 增减R之值,定性地观察对响应地影响,并作记录,当R增至1MΩ时,输入输出波形有何本质上的区别? 五、实验注意事项 1、调节电子仪器各旋钮时,动作不要过猛。实验前,尚需熟度双踪示波器的使用说明,特别是观察双踪时,要特别注意那些开关、旋钮的操作与调节。 2、信号源的接地端与示波器的接地端要连在一起(称共地),以防外界干扰而影响测量的准确性。 3、示波器的辉度不应过亮,尤其是光点长期停留在荧屏上不动时,以延长示波管的使用寿命。 六、预习思考题 1、什么样的电信号可作为RC一阶电路零输入响应、零状态响应、和完全响应的激励信号? 2、已知RC一阶电路R=10KΩ,C=0.1μf,试计算时间常熟τ,并根据τ值的物理意义,拟定测量τ的 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 。 3、何谓积分电路和微分电路,它们必须具备什么条件?它们在方波序列脉冲的激励下,其输出信号波形的变化规律如何?这两种电路有何功用? 4、预习要求:熟读仪器使用说明回答上述问题,准备方格纸。 七、实验报告 1、根据实验观测结果,在方格纸上绘出RC一阶电路冲放电时UC的变化曲线,由曲线测得τ值,并与参数的计算结果作比较,分析误差原因。 2、根据实验观测结果,归纳、总结积分电路和电路的形成条件,阐明波形变换的特征。 3、心得体会及其他。 图 5-3 动态电路、选频电路实验板 实验六 R、L、C元件阻抗特性的测定 1、​ 实验目的 1、​ 验证电阻,感抗、容抗与频率的关系,测定R~f,X ~f与X ~特性曲线。 2、​ 加深理解R、L、C元件端电压与电流间的相位关系。 2、​ 原理说明 1、​ 在正弦交变信号作用下,R、L、C电路元件在电路中的抗流作用与信号的频率有关,它们的阻抗频率特性R~f,X ~f,X ~f曲线如图6-1所示。 2、​ 元件阻抗频率特性的测量电路如图6-2所示。 图 6-1 图 6-2 图中的r是提供测量回路电流用的 标准 excel标准偏差excel标准偏差函数exl标准差函数国标检验抽样标准表免费下载红头文件格式标准下载 小电阻,由于r的阻值远小于被测元件的阻抗值,因此可以认为AB之间的电压就是被测元件R与L或C两端的电压,流过被测元件的电流则可由r两端的电压除以r所得。 若用双踪示波器同时观察r与被测元件两端的电压,亦就展现出被测元件两端的电压和流过该元件电流的波形,从而可在荧光屏上测出电压与电流的幅值及它们之间的相位差。 3、​ 将元件R、L、C串连或并联相接,亦可用同样的方法测得Z 与Z 时的阻抗频率特性Z~f,根据电压、电流的相位差可判断Z 与Z 是感性还是容性负载。 4、​ 元件的阻抗角(即相位差φ)随输入信号的频率变化而改变,将各个不同频率下的相位差画在以频率f为横坐标,阻抗角φ为纵坐标的坐标纸,并用光滑的曲线连接这些点,即得到阻抗角的频率特性曲线。 用双踪示波器测量阻抗角的方法如图6-3所示。荧光屏上数得一个周期占n格,相 图 6-3 位差占m格,则实际的相位差φ(阻抗角)为φ= 度。 3、​ 实验设备 序号 名 称 型号与规格 数量 备注 1 低频信号发生器 1 DG03 2 交流毫伏表 1 3 双踪示波器 1 4 实验线路元件 R=1KΩ,C=0.1μf,L约0.1H,r=30Ω 1 DG09 5 频率计 1 DG03 4、​ 实验内容 1、​ 测量R、L、C元件的阻抗频率特性 通过电缆线将低频信号发生器输出的正弦信号接至如图6-2的电路,作为激励源U,并用交流毫伏表测量,使激励电压的有效值为U=3V,并保持不变。 使信号源的输出频率从200Hz逐渐增至5KHz(用频率计测量),并使开关S分别接通R、L、C三个元件,用交流毫伏表测量Ur,并通过计算得到各频率点时的R、XL与XC之值,记入表中。 频 率 f(KHz) R Ur(mV) IR=Ur /r(mA) R=U /IR (KΩ) L Ur(mV) IL=Ur /r(mA) XL=U/IL(KΩ) C Ur(mV) IC=Ur /r(mA) XC=U/IC(KΩ) 2、​ 用双踪示波器观察在不同频率下各元件阻抗角的变化情况,并作记录。 3、​ 测量R、L、C元件串连的阻抗角频率特性。 频 率 f(KHz) n(格) m(格) φ(格) 5、​ 实验注意事项 1、​ 交流毫伏表属于高阻抗电表,测量前必须先调零。 2、​ 测φ时,示波器的“v/div”和“t/div”的微调旋钮应旋置“校准位置”。 6、​ 预习思考题 1、​ 测量R、L、C各个元件的阻抗角时,为什么要与它们串连一个小电阻?可否用一个小电感或大电容代替?为什么? 7、​ 实验报告 1、​ 根据实验数据,在方格纸上绘制R、L、C三个元件的阻抗频率特性曲线,从中可得出什么结论? 2、​ 根据实验数据,在方格纸上绘制R、L、C三个元件串连的阻抗角频率特性曲线,并总结、归纳出结论。 3、​ 心得体会及其他。 实验七 R、L、C串连谐振电路的研究 一、实验目的 4、​ 学习用实验方法绘制R、L、C串连电路的幅频特性曲线。 5、​ 加深理解电路发生谐振的条件、特点、掌握电路品质因数(电路Q值)的物理意及其测定方法。 二、原理说明 1、在图7-1所示的R、L、C串连电路中,当正弦交流信号源的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。取电阻R上的电压U0之值,然后以f为横坐标,以U0/Ui为纵坐标,绘出光滑的曲线,此即为幅频特性,亦称谐振曲线,如图7-2所示。 图7-1 图7-2 2、在f=f = 处(XL=XC),即幅频率特性曲线尖峰所在的频率点,该频率称为谐振频率,此时电路呈纯阳性,电路阻抗的模为最小,在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压同Ui相位,从理论上讲,此时Ui=UR=U0,UL=UC=QUi,式中的Q称为电路的品质因数。 3、电路品质因数Q值的两种测量方法 一是根据公式 Q= = 测定,UC与UL分别为谐振时电容器C和电感线圈L上的电压;另一方法是通过测量谐振曲线的通频带宽度 △f=f2-f1 再根据 Q= 求出Q值,式中f0为谐振频率,f2和f1是失谐时,幅度下降到为最大值的 (=0.707)倍时的上、下频率点。 Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好,在恒压远供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 三、实验设备 序号 名 称 型号与规格 数量 备注 1 低频信号发生器 1 DG03 2 交流毫伏表 1 3 双踪示波器 1 4 谐振电路实验电路板 R=330Ω、2.2K, C=2400P,L=约200mH 1 DG07 5 频率计 1 DG03 四、实验内容 1、按图7-3组成监视、测量电路,用交流毫伏表电压,用示波器监视信号源输出,令其输出电压Ui≤3V,并保持不变。 图7-3 2、找出电路的谐振频率f0,其方法是,讲毫伏表接在R(330Ω)两端,令信号源的频率由小逐渐变大(注意要维持信号源的输出幅度不变),当U0的读数为最大时,读得频率计上的频率值即为电路的谐振频率f0,并测量UC与UL之值(注意几时更换毫伏表的量程)。 3、在谐振点两侧,按频率递增或递减500Hz或1KHz,依次各取8个测量点,逐渐测出U0,UL,UC之值,记入数据表格。 f(KHz) U0(V) UL(V) UC(V) Ui=3V,R=330Ω, f0 = ,Q= ,f2-f1= 4、改变电阻值,重复步骤2、3的测量过程 f(KHz) U0(V) UL(V) UC(V) Ui=3V,R=330Ω, f0 = ,Q= ,f2-f1= 五、实验注意事项 1、测试频率点的选择应在靠近谐振频率附近多取几点,在变换频率测试前,应调整信号输出幅度(用示波器监视输出幅度),使其维持在3V输出。 2、在测量UC和UL数值前,应将毫伏表的量程改大约十倍,而且在测量UC与UL时毫伏表的“+”端接C与L的公共点,其接地端分别触及L和C的近地端N2和N1。 3、实验过程中交流毫伏表电源线采用两线插头。 六、预习思考题 1、根据实验线路板给出地元件参数值,估算电路地谐振频率。 2、改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率值? 3、如何判别电路是否发生谐振?测试谐振点的方案有哪些? 4、电路发生串连时,为什么输入电压不能太大,如果信号源给出3V的电压,电路谐振时,用交流毫伏表测UL和UC,应该选择用多大的量程? 5、要提高R、L、C串连电路的品质因数,电路参数应如何改变? 6、本实验在谐振时,对应的UL与UC是否相等?如有差异,原因何在? 七、实验报告 1、根据测量数据,绘出不同Q值是三条幅频特性曲线 U0=f(f),UL=f(f),UC=f(f) 2、计算出通频带与Q值,说明不同R值对电路通频带与品质因数的影响。 3、对两种不同的测Q值的方法进行比较,分析误差原因。 4、谐振时,比较输出电压U0与输入电压Ui是否相等? 5、通过本实验,总结、归纳串联谐振电路的特征。 6、心得体会及其他。 实验八 三相交流电路电压、电流的测量 一、实验目的 1、掌握三相负载作星形联接、三角形连接的方法,验证这两种接法下线、相电压,线、相电流之间的关系。 2、充分理解三相四线供电系统中中线的作用。 二、原理说明 1、三相负载可接成星形(又称“Y”接)或三角形(又称“△”接),当三相对称负载作Y形联接时,线电压Ui是相电压UP的 倍。线电流I1等于相电流IP,即 U1= UP , I1 =IP 当采用三相四线制接法时,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有 I1 = IP , U1=UP 2、不对称三相负载作Y形联接时,必须采用三相四线制接法,即Y0接法。而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电源过高,使负载遭受损坏;负载重的那一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0接法。 3、对于不对称负载作△接时,I1≠ IP,但只要电源地线电压Ui对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 三、实验设备 序号 名 称 型 号 与 规 格 数量 备注 1 交流电压表 1 D33 2 交流电流表 1 D32 3 万用表 1 4 三相自耦调压器 1 DG01 5 三相灯组负载 220V,15W白炽灯 9 DG08 6 电门插座 3 DG09 四、实验内容 1、三相负载星形联接(三相四线制供电) 按图8-1线路组接实验电路,即三相灯组负载经三相自耦调压器接通三相对称电源,并将三相调压器的旋柄置于三相电压输出为0V的位置(即逆时针旋到底的位置),经指导教师检查合格后,方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为220V,并按以下的步骤完成各项实验,分别测量三相负载的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压,将所测得的数据记入表8-1中,并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。 图8-1 表8-1 测量数据 实验内 容(负载情况) 开灯盏数 线电流(A) 线电压(V) 相电压(V) 中性电流I0(A) 中点 电压 UNO(V) A 相 B相 C相 IA IB IC UAB UBC UCA UAO UBO UCO Y0接平衡负载 3 3 3 Y接平衡负载 3 3 3 Y0接不平衡负载 1 2 3 Y接不平衡负载 1 2 3 Y0接B相断开 1 3 Y接B相断开 1 3 Y接B相断开 1 3 2、负载三角形联接(三相三线制供电) 按图8-2改接线路,经指导教师检查合格后接通三相电源,并调节调压器,使其输出线电压为220V,并按数据表格的内容进行测试。 图 8-2 表8-2 测量数据 负载情况 开灯盏数 线电压=相电压(V) 线电流(A) 相电流(A) A-B相 B-C相 C-A相 UAB UBC UCA IA IB IC IAB IBC ICA 三相平衡 3 3 3 三相不平衡 1 2 3 五、实验注意事项 1、本实验采用三相交流市电,线电压为380V,应穿绝缘鞋进实验室。实验时要注意人身安全,不可触及导电部件,防止以外事故发生。 2、每次接线完毕,同组同学应自查一遍,然后由指导教师检查后,方可接通电源,必须严格遵守先接线,后通电;先断电后拆线的实验操作原则。 3、星形负载作短路实验时,必须首先断开中线,以免发生短路事故。 六、预习思考题 1、三相负载根据什么条件作星形或三角形连接? 2、复习三相交流电路有关内容,试分析三相星形联接不对称负载在无中线情况下,当某相负载开路或短路时会出现什么情况?如果接上中线,情况又如何? 3、本次实验中为什么要通过三相调压器将380V的市电线电压降为220V的线电压使用? 七、实验报告 1、用实验测得的数据验证对称三相电路中的 关系。 2、用实验数据和观察到的现象,总结三相四线供电系统中中线的作用。 3、不对称三角形联接的负载,能否正常工作?实验是否能证明这一点? 4、根据不对称负载三角形联接时的相电流值作相量图,并求出线电流值,然后与实验测得的线电流作比较,分析之。 6、​ 心得体会及其他。 实验九 含受控源电路的实验分析 (设计性实验) 一、实验目的 1)​ 培养学生设计实验进行科学探索的能力; 2)​ 加深对含受控源电路、加压求流法求等效电阻的理解; 3)​ 培养学生发现问题、独立思考并在实验中解决问题的能力。 二、实验内容 1、​ 电路结构如下图所示: 其中:M是有源二端网络,N是无源网络,设计N和M电路,证明a,b两点左边含有受控源的电路可以等效成一个电阻。 自拟实验步骤、数据表格,和最后的结论分析。 2、更高要求:设计一个含有受控源的电路(N),其等效电阻为负值。设计实验方法和步骤,观察并确认这个负电阻。 三、实验要求 1、​ 使用EWB对所设计的电路仿真。 2、​ 自主决定N和M电路的复杂程度,建议在达到实验目的的前提下,尽量简单一些。 3、​ 受控源个数、类型没有限制。 4、​ 先完成“实验四 受控源实验”,获得实验台上受控源的转移曲线,包括线性范围、电压电流等参数,设计N和M电路时需要这些参数。 5、​ 电路图和实验方案需要指导老师确认,才可以开始实验。 6、​ 实验数据和计算数据的比较。 7、​ 进入实验室要登记,并有详细的实验记录,原始数据需要实验室老师签字确认,并附在实验报告后。 8、​ 除实验报告之外,还需要上交一份实验心得体会,包括收获、感想、意见和建议等等。 四、实验设备 DGX-1型电工技术实验装置+KHDG-1型高性能电工综合实验装置(天煌教仪) 五、评价方法 1、​ 电路设计的正确与合理性。 2、​ 电路仿真。 3、​ 实验过程中的实践动手能力和解决问题的能力。 4、​ 实验效果。 5、​ 设计中的独立性和创新性。 6、​ 实验报告质量。
本文档为【电路分析实验指导书】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_406543
暂无简介~
格式:doc
大小:2MB
软件:Word
页数:31
分类:工学
上传时间:2011-06-27
浏览量:110