首页 晶振电路原理

晶振电路原理

举报
开通vip

晶振电路原理 晶振震荡电路原理介绍 晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电 容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐 振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这 个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会 组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路, 由于晶振等效为电感的频率范围很窄,所以即使其他元件的...

晶振电路原理
晶振震荡电路原理介绍 晶体振荡器,简称晶振。在电气上它可以等效成一个电容和一个电阻并联再串联一个电 容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐 振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这 个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会 组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路, 由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频 率也不会有很大的变化。 晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可 以得到晶振标称的谐振频率。 一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶 振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容 量值就应该等于负载电容,请注意一般 IC的引脚都有等效输入电容,这个不能忽略。 一般的晶振的负载电容为 15p或 12.5p ,如果再考虑元件引脚的等效输入电容,则两 个 22p的电容构成晶振的振荡电路就是比较好的选择。 晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文 名称不同,无源晶振为 crystal(晶体),而有源晶振则叫做 oscillator(振荡器)。无源晶 振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并 不准确;有源晶振是一个完整的谐振振荡器。 谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。 晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。 石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片 的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相 应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机 械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较 小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片 的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称 为石英晶体谐振器。 其特点是频率稳定度很高。 石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振 荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置 IC来共 同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供 3.3V电压来维持 工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。 RR的大小直接影响电路的性能,也是各商家竞争的一个重要参数。 概述 微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路; 基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的 RC振 荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。图 1给出了两种 时钟源。图 1给出了两个分立的振荡器电路,其中图 1a为皮尔斯振荡器配置,用于机械式 谐振器件,如晶振和陶瓷谐振槽路。图 1b为简单的 RC反馈振荡器。 机械式谐振器与 RC振荡器的主要区别 基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温 度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电 源电压范围内精度较差,会在标称输出频率的 5%至 50%范围内变化。图 1所示的电路能产 生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认 真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必 须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱 动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、 机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有 些情况下,还会造成振荡器停振。 振荡器模块 上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波 输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成硅振荡器。晶 振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立 RC振荡器高,多数情况下能 够提供与陶瓷谐振槽路相当的精度。 功耗 选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反馈放大器的电源电流以及电 路内部的电容值所决定。CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容 值。比如,HC04反相器门电路的功率耗散电容值是 90pF。在 4MHz、5V电源下工作时, 相当于 1.8mA的电源电流。再加上 20pF的晶振负载电容,整个电源电流为 2.2mA。 陶瓷谐振槽路一般具有较大的负载电容,相应地也需要更多的电流。 相比之下,晶振模块一般需要电源电流为 10mA至 60mA。 硅振荡器的电源电流取决于其类型与功能,范围可以从低频(固定)器件的几个微安到可 编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在 4MHz时只需不到 2 mA的电流。 结论 在特定的微控制器应用中,选择最佳的时钟源需要综合考虑以下一些因素:精度、成本、 功耗以及环境需求。下表给出了几种常用的振荡器类型,并分析了各自的优缺点。 晶振的基本原理及特性 晶振一般采用如图 1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效 电路如图 1b,其中 Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现, 这也是压控作用的机理;把晶体的等效电路代替晶体后如图 1c。其中 Co,C1,L1,RR是 晶体的等效电路。 分析整个振荡槽路可知,利用 Cv来改变频率是有限的:决定振荡频率的整个槽路电容 C=Cbe,Cce,Cv三个电容串联后和 Co并联再和 C1串联。可以看出:C1越小,Co越大,Cv 变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于 C1 很小(1E-15量级),Co不能忽略(1E-12量级,几 PF)。所以,Cv变大时,降低槽路频率的 作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非 线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却 越来越小,最后导致停振。 采用泛音次数越高的晶振,其等效电容 C1就越小;因此频率的变化范围也就越小。 晶振的指标 总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器 频率与给定标称频率的最大偏差。 说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载 特性等共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不 严格要求的场合采用。例如:精密制导雷达。 频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。一个晶振的输出频率随 时间变化的曲线如图 2。图中表现出频率不稳定的三种因素:老化、飘移和短稳。 曲线 1是用 0.1秒测量一次的情况,表现了晶振的短稳;曲线 3是用 100秒测量一次 的情况,表现了晶振的漂移;曲线 4 是用 1天一次测量的情况。表现了晶振的老化。 频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或 带隐含基准温度的最大允许频偏。 ft=±(fmax-fmin)/(fmax+fmin) ftref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] ft:频率温度稳定度(不带隐含基准温度) ftref:频率温度稳定度(带隐含基准温度) fmax :规定温度范围内测得的最高频率 fmin:规定温度范围内测得的最低频率 fref:规定基准温度测得的频率 说明:采用 ftref指标的晶体振荡器其生产难度要高于采用 ft指标的晶体振荡器,故 ftre f指标的晶体振荡器售价较高。 开机特性(频率稳定预热时间):指开机后一段时间(如 5分钟)的频率到开机后另一段 时间(如 1小时)的频率的变化率。表示了晶振达到稳定的速度。这指标对经常开关的仪器如 频率计等很有用。 说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频 繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用 的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用 OCXO作为本振, 频率稳定预热时间将不少于 5分钟,而采用 MCXO只需要十几秒钟)。 频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。 这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变化造成的,因此,其频率偏移的 速率叫老化率,可用规定时限后的最大变化率(如±10ppb/天,加电 72小时后),或规定 的时限内最大的总频率变化(如:±1ppm/(第一年)和±5ppm/(十年))来表示。 晶体老化是因为在生产晶体的时候存在应力、污染物、残留气体、结构工艺缺陷等问题。 应力要经过一段时间的变化才能稳定,一种叫“应力补偿”的晶体切割 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 (SC切割法)使 晶体有较好的特性。 污染物和残留气体的分子会沉积在晶体片上或使晶体电极氧化,振荡频率越高,所用的 晶体片就越薄,这种影响就越厉害。这种影响要经过一段较长的时间才能逐渐稳定,而且这 种稳定随着温度或工作状态的变化会有反复——使污染物在晶体表面再度集中或分散。因 此,频率低的晶振比频率高的晶振、工作时间长的晶振比工作时间短的晶振、连续工作的晶 振比断续工作的晶振的老化率要好。 说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十 年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下, 温度变化引起的频率变化也将大大超过温度补偿晶体振荡器每天的频率老化,因此这个指标 失去了实际的意义)。OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电 72小时后), ±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年)。 短稳:短期稳定度,观察的时间为 1毫秒、10毫秒、100毫秒、1秒、10秒。 晶振的输出频率受到内部电路的影响(晶体的 Q值、元器件的噪音、电路的稳定性、工 作状态等)而产生频谱很宽的不稳定。测量一连串的频率值后,用阿伦方程计算。相位噪音 也同样可以反映短稳的情况(要有专用仪器测量)。 重现性:定义:晶振经长时间工作稳定后关机,停机一段时间 t1(如 24小时),开机一 段时间 t2(如 4小时),测得频率 f1,再停机同一段时间 t1,再开机同一段时间 t2,测得频 率 f2。重现性=(f2-f1)/f2。 频率压控范围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最 小峰值改变量。 说明:基准电压为+2.5V,规定终点电压为+0.5V和+4.5V,压控晶体振荡器在+0.5 V频率控制电压时频率改变量为-2ppm,在+4.5V频率控制电压时频率改变量为+2.1ppm, 则 VCXO电压控制频率压控范围表示为:≥±2ppm(2.5V±2V),斜率为正,线性为+2.4%。 压控频率响应范围:当调制频率变化时,峰值频偏与调制频率之间的关系。通常用规定 的调制频率比规定的调制基准频率低若干 dB表示。 说明:VCXO频率压控范围频率响应为 0~10kHz。 频率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量 度,它以百分数表示整个范围频偏的可容许非线性度。 说明:典型的 VCXO频率压控线性为:≤±10%,≤±20%。简单的 VCXO频率压控线性 计算方法为(当频率压控极性为正极性时): 频率压控线性=±((fmax-fmin)/ f0)×100% fmax:VCXO在最大压控电压时的输出频率 fmin:VCXO在最小压控电压时的输出频率 f0:压控中心电压频率 单边带相位噪声£(f):偏离载波 f处,一个相位调制边带的功率密度与载波功率之比。 输出波形:从大类来说,输出波形可以分为方波和正弦波两类。 方波主要用于数字通信系统时钟上,对方波主要有输出电平、占空比、上升/下降时间、 驱动能力等几个指标要求。 随着科学技术的迅猛发展,通信、雷达和高速数传等类似系统中,需要高质量的信号源 作为日趋复杂的基带信息的载波。因为一个带有寄生调幅及调相的载波信号(不干净的信号) 被载有信息的基带信号调制后,这些理想状态下不应存在的频谱成份(载波中的寄生调制) 会导致所传输的信号质量及数传误码率明显变坏。所以作为所传输信号的载体,载波信号的 干净程度(频谱纯度)对通信质量有着直接的影响。对于正弦波,通常需要提供例如谐波、 噪声和输出功率等指标。 晶振的分类 根据晶振的功能和实现技术的不同,可以将晶振分为以下四类: 1) 恒温晶体振荡器(以下简称 OCXO) 这类型晶振对温度稳定性的解决 方案 气瓶 现场处置方案 .pdf气瓶 现场处置方案 .doc见习基地管理方案.doc关于群访事件的化解方案建筑工地扬尘治理专项方案下载 采用了恒温槽技术,将晶体置于恒温槽内,通过设 置恒温工作点,使槽体保持恒温状态,在一定范围内不受外界温度影响,达到稳定输出频率 的效果。这类晶振主要用于各种类型的通信设备,包括交换机、SDH传输设备、移动通信 直放机、GPS接收机、电台、数字电视及军工设备等领域。根据用户需要,该类型晶振可以 带压控引脚。OCXO的工作原理如下图 3所示: 图 3恒温晶体振荡器原理框图 OCXO的主要优点是,由于采用了恒温槽技术,频率温度特性在所有类型晶振中是最好 的,由于电路 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 精密,其短稳和相位噪声都较好。主要缺点是功耗大、体积大,需要 5 分钟左右的加热时间才能正常工作等。我公司生产的此类晶振的典型指标如下: 2) 温度补偿晶体振荡器(以下简称 TCXO)。 其对温度稳定性的解决方案采用了一些温度补偿手段,主要原理是通过感应环境温度, 将温度信息做适当变换后控制晶振的输出频率,达到稳定输出频率的效果。传统的 TCXO是 采用模拟器件进行补偿,随着补偿技术的发展,很多数字化补偿大 TCXO开始出现,这种数 字化补偿的 TCXO又叫 DTCXO,用单片机进行补偿时我们称之为 MCXO,由于采用了数字 化技术,这一类型的晶振再温度特性上达到了很高的精度,并且能够适应更宽的工作温度范 围,主要应用于军工领域和使用环境恶劣的场合。在广大研发人员的共同努力下,我公司自 主开发出了高精度的 MCXO,其设计原理和在世界范围都是领先的,配以高度自动化的生产 测试系统,其月产可以达到 5000只,其设计原理如图 4。 图 4 MCXO数字温补晶振原理框图 这类型晶振的典型的应用指标如下: 3) 普通晶体振荡器(SPXO)。这是一种简单的晶体振荡器,通常称为钟振,其工作原理 为图 3中去除“压控”、“温度补偿”和“AGC”部分,完全是由晶体的自由振荡完成。这类晶振主 要应用于稳定度要求不高的场合。 4) 压控晶体振荡器(VCXO)。这是根据晶振是否带压控功能来分类,带压控输入引脚的 一类晶振叫 VCXO,以上三种类型的晶振都可以带压控端口。 石英晶体振荡器的特点 石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等 各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定 系统提供基准信号。 一、石英晶体振荡器的基本原理 1、石英晶体振荡器的结构 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件, 它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正 方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引 线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。 其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。下图是一种金属外壳封装 的石英晶体结构示意图。 2、压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧 施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶 片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。 在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率 为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它 与 LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 3、符号和等效电路 石英晶体谐振器的符号和等效电路如图 2所示。当晶体不振动时,可把它看成一个平板 电容器称为静电电容 C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个 PF到几 十 PF。当晶体振荡时,机械振动的惯性可用电感 L来等效。一般 L的值为几十 mH到几百 mH。晶片的弹性可用电容 C 来等效,C 的值很小,一般只有 0.0002~0.1pF。晶片振动时 因摩擦而造成的损耗用 R来等效,它的数值约为 100Ω。由于晶片的等效电感很大,而 C很 小,R 也小,因此回路的品质因数 Q 很大,可达 1000~10000。加上晶片本身的谐振频率 基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振 器组成的振荡电路可获得很高的频率稳定度。 4、谐振频率 从石英晶体谐振器的等效电路可知,它有两个谐振频率,即 (1)当 L、C、R支路发生串联谐振时,它的等效阻抗最小(等于 R)。串联揩振频率 用 fs表示,石英晶体对于串联揩振频率 fs呈纯阻性, (2)当频率高于 fs时 L、C、R支路呈感性,可与电容 C。发生并联谐振,其并联频率 用 fd表示。 根据石英晶体的等效电路,可定性画出它的电抗—频率特性曲线如图 2e所示。可见当 频率低于串联谐振频率 fs 或者频率高于并联揩振频率 fd 时,石英晶体呈容性。仅在 fs<f <fd极窄的范围内,石英晶体呈感性。 二、石英晶体振荡器类型特点 石英晶体振荡器是由品质因素极高的石英晶体振子(即谐振器和振荡电路组成。晶体的 品质、切割取向、晶体振子的结构及电路形式等,共同决定振荡器的性能。国际电工委员会 (IEC)将石英晶体振荡器分为 4类:普通晶体振荡(TCXO),电压控制式晶体振荡器(VCXO), 温度补偿式晶体振荡(TCXO),恒温控制式晶体振荡(OCXO)。目前发展中的还有数字 补偿式晶体损振荡(DCXO)等。 普通晶体振荡器(SPXO)可产生 10^(-5)~10^(-4)量级的频率精度,标准频率 1—100MHZ,频率稳定度是±100ppm。SPXO没有采用任何温度频率补偿措施,价格低廉, 通常用作微处理器的时钟器件。封装尺寸范围从 21×14×6mm及 5×3.2×1.5mm。 电压控制式晶体振荡器(VCXO)的精度是 10^(-6)~10^(-5)量级,频率范围 1~30MHz。 低容差振荡器的频率稳定度是±50ppm。通常用于锁相环路。封装尺寸 14×10×3mm。 温度补偿式晶体振荡器(TCXO)采用温度敏感器件进行温度频率补偿,频率精度达到 10^(-7)~10^(-6)量级,频率范围 1—60MHz,频率稳定度为±1~±2.5ppm,封装尺寸从 30×30×15mm至 11.4×9.6×3.9mm。通常用于手持电话、蜂窝电话、双向无线通信设备等。 恒温控制式晶体振荡器(OCXO)将晶体和振荡电路置于恒温箱中,以消除环境温度变 化对频率的影响。OCXO频率精度是 10^(-10)至 10^(-8)量级,对某些特殊应用甚至达到更 高。频率稳定度在四种类型振荡器中最高。 三、石英晶体振荡器的主要参数 晶振的主要参数有标称频率,负载电容、频率精度、频率稳定度等。不同的晶振标称频 率不同,标称频率大都标明在晶振外壳上。如常用普通晶振标称频率有:48kHz、500 kHz、 503.5 kHz、1MHz~40.50 MHz等,对于特殊要求的晶振频率可达到 1000MHz以上,也有 的没有标称频率,如 CRB、ZTB、Ja等系列。负载电容是指晶振的两条引线连接 IC块内部 及外部所有有效电容之和,可看作晶振片在电路中串接电容。负载频率不同决定振荡器的振 荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英晶体振荡器有两个谐振 频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。 所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电 器工作不正常。频率精度和频率稳定度:由于普通晶振的性能基本都能达到一般电器的要求, 对于高档设备还需要有一定的频率精度和频率稳定度。频率精度从 10^(-4)量级到 10^(-10) 量级不等。稳定度从±1 到±100ppm 不等。这要根据具体的设备需要而选择合适的晶振, 如通信网络,无线数据传输等系统就需要更高要求的石英晶体振荡器。因此,晶振的参数决 定了晶振的品质和性能。在实际应用中要根据具体要求选择适当的晶振,因不同性能的晶振 其价格不同,要求越高价格也越贵,一般选择只要满足要求即可。 四、石英晶体振荡器的发展趋势 1、小型化、薄片化和片式化:为满足移动电话为代表的便携式产品轻、薄、短小的要 求,石英晶体振荡器的封装由传统的裸金属外壳覆塑料金属向陶瓷封装转变。例如 TCXO这 类器件的体积缩小了 30~100 倍。采用 SMD 封装的 TCXO 厚度不足 2mm,目前 5×3mm 尺寸的器件已经上市。 2、高精度与高稳定度,目前无补偿式晶体振荡器总精度也能达到±25ppm,VCXO的频 率稳定度在 10~7℃范围内一般可达±20~100ppm,而 OCXO在同一温度范围内频率稳定 度一般为±0.0001~5ppm,VCXO控制在±25ppm以下。 3、低噪声,高频化,在 GPS通信系统中是不允许频率颤抖的,相位噪声是表征振荡器 频率颤抖的一个重要参数。目前 OCXO主流产品的相位噪声性能有很大改善。除 VCXO外, 其它类型的晶体振荡器最高输出频率不超过 200MHz。例如用于 GSM 等移动电话的 UCV4 系列压控振荡器,其频率为 650~1700MHz,电源电压 2.2~3.3V,工作电流 8~10mA。 4、低功能,快速启动,低电压工作,低电平驱动和低电流消耗已成为一个趋势。电源 电压一般为 3.3V。目前许多 TCXO和 VCXO产品,电流损耗不超过 2mA。石英晶体振荡器 的快速启动技术也取得突破性进展。例如日本精工生产的VG—2320SC型VCXO,在±0.1ppm 规定值范围条件下,频率稳定时间小于 4ms。日本东京陶瓷公司生产的 SMD TCXO,在振 荡启动 4ms后则可达到额定值的 90%。OAK公司的 10~25MHz的 OCXO产品,在预热 5 分钟后,则能达到±0.01 ppm的稳定度。 五、石英晶体振荡器的应用 1、石英钟走时准、耗电省、经久耐用为其最大优点。不论是老式石英钟或是新式多功 能石英钟都是以石英晶体振荡器为核心电路,其频率精度决定了电子钟表的走时精度。石英 晶体振荡器原理的示意如图 3所示,其中 V1和 V2构成 CMOS反相器石英晶体 Q与振荡电 容 C1及微调电容 C2 构成振荡系统,这里石英晶体相当于电感。振荡系统的元件参数确定 了振频率。一般 Q、C1及 C2均为外接元件。另外 R1为反馈电阻,R2为振荡的稳定电阻, 它们都集成在电路内部。故无法通过改变 C1或 C2 的数值来调整走时精度。但此时我们仍 可用加接一只电容 C 有方法,来改变振荡系统参数,以调整走时精度。根据电子钟表走时 的快慢,调整电容有两种接法:若走时偏快,则可在石英晶体两端并接电容 C,如图 4所示。 此时系统总电容加大,振荡频率变低,走时减慢。若走时偏慢,则可在晶体支路中串接电容 C。如图 5所示。此时系统的总电容减小,振荡频率变高,走时增快。只要经过耐心的反复 试验,就可以调整走时精度。因此,晶振可用于时钟信号发生器。 2、随着电视技术的发展,近来彩电多采用 500kHz或 503 kHz的晶体振荡器作为行、 场电路的振荡源,经 1/3的分频得到 15625Hz的行频,其稳定性和可靠性大为提高。面且 晶振价格便宜,更换容易。 3、在通信系统产品中,石英晶体振荡器的价值得到了更广泛的体现,同时也得到了更 快的发展。许多高性能的石英晶振主要应用于通信网络、无线数据传输、高速数字数据传输 等。
本文档为【晶振电路原理】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_288544
暂无简介~
格式:pdf
大小:350KB
软件:PDF阅读器
页数:11
分类:互联网
上传时间:2011-04-27
浏览量:99