下载
加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 钱钟明+应坚刚.随机分析引论(复旦)--(2010-1-7)

钱钟明+应坚刚.随机分析引论(复旦)--(2010-1-7).pdf

钱钟明+应坚刚.随机分析引论(复旦)--(2010-1-7)

xiu_zhijun
2011-04-17 0人阅读 举报 0 0 0 暂无简介

简介:本文档为《钱钟明+应坚刚.随机分析引论(复旦)--(2010-1-7)pdf》,可适用于高等教育领域

zxw{|yY$^�}yiZ<��mJ��^j�A�S^K�v<U���<J�v�g~vJ��r���f�{nEf�>f�,mfw�vA<℄v^P��℄^����RyqI�"��I�)#�=n<{wv�q�ÆItoˆo�"POvH��G�℄iJ�v^E�Jy�H�I�o"�K*hiI�r�(OIimÆ�v�pv')vo"�K�O$#~dXtdt=A(t,Xt)σ(t,Xt)W˙t��v�Æ�nT$W˙t℄Qi�N"�q�!lS$�℄�℄v�}*�vv��BvI�r�Pn�yfBrown��hJq)#�JwBrown��*"<q#�GVvK�J'vv=)#�JqH���L*i��RBrownT>"<hv�Brown��v=$#O"*gAEinstein�HE�*mAnnalenderPhysik,vUq“Onthemotionofsmallparticlessuspendedinliquidsatrestrequiredbythemolecularkinetictheoryofheat”v�xrQv�f{�℄���LBachelier|�KvUq“The´oriedelaspe´culation”v�x�O!f�Brown��h)OHB�Kv℄�*�AnnSciEcoleNormsup,(),,�vq*zHE(Brown��℄fm<{v�x�p��Brown��vH�=J���ABrown��vtz*�g�=�NWiener�O�x“Differentialspace”,JMathPhys,jIv�iSBrown��v$�v℄PCv**gPLe´vy����vsiJ$v�OLe´vy��Brown��vnJit*|Vov�WOSm�vr=W˙t�CSUa��P�{�i#C(Z!vI�o"�K��IqdXt=A(t,Xt)dtσ(t,Xt)dWtL#*�,q!v�"�KXt−X=∫tA(s,Xs)ds∫tσ(s,Xs)dWsiiDL*A�{�(C�UlD∫σ(t,Xt)dWt$#v�"�L�pD��CSUa��KItoˆ�i℄qBrown��'v��"n��W'v�I�o"�Kvn��S��OL=�rv℄f�Itoˆn�vGBvGq~}v℄f*�<{n��r�CUItoˆ�t�i�uFields*�oKv'Bgm,�℄fItoˆo�"n�vQEJ�uNobel*vF��(u~vHMarkowitz,WSharpeandMMiller,vRobertMerton,andMScholes)�'AX��Jv|q�ÆI�)#O�<{I�`(w�rv℄f"ivtTG�#CvI�"����Æ�'Z`=~"��o"f��`"���e"��=nPPDEw��v�DiiavZ���vx��h*�i�p��"v�OI�"�|P�>fvH�Nj�o#mz�vJ��,mf^v��a���Z!~v|�Wqf�=K��l���!v#C�U���Bv�*��nI�"�v��D*Æ=�K�vS�Ce��ifvN�*v����|�aFIH�Nvj�^K�^�!u���*A{�v��{�H��U�O"v�Udg�TG��*$��dH�*vYv�{��K�v'B��q�*ÆK�*$�eMr�R*��)�MTG�=�{�|�=sdv�Uvd��{��!�OiH�*vYv�~VitaliHahnSaks�nv���i�UWv��x℄�M�~��P<TQ,�'S$�X,#UniversityofOxford,UK℄�,mf>�m�℄v���§§`=p�"§*Daniell�"p*$§�Updmy��:�d§I�'p"§I�'v{§R�`=§Y=Nm§|rv�§F~I�^Kvu�§�UpdmF��:�d§σi=p�§PpP�§z�P§�UpdmU�Brown�r§Brown��v�UOMarkov§Brown��vJ�§A�D§�vn§P*§�℄'^K§�Updiiih�eivmo�Itoˆe��§Y�§ItoˆF~I��"§�℄'^K§Sm�PvItoˆ�"§ItoˆH#§ItoˆH#v℄f§Le´vyvBrown��P℄t§MPv�'|*Brown��§I�!=§Girsanov�n§P*$�n§�Updm�X�e�}a§Y�§I�o"�KvH�u�§�Gaussf�§fBrown��§CameronMartinH#§�a�pH§Pp�!ks��n��^w����H�{�(Z>�v��:�L�D*I�"�n�v�U�{�(!��l�^y�vC:e�n�v*q�K��I�"�v℄f�q�qCA{��{�(!CyBo��§x����hR*$�=�Q*$in=�Z*$�=�N*$Ap=�)*$!uEkV�~R*$!�=�OKlD�fΩ*$H�uSB�v!h�Ω*$Ωv�kVFIvh�Hq�ΩvH��l*!ΩvH���{�AH��lÆhv�G"�*!�lvhF^�Gmusvh{��l�{����MF�Smh�GOY��qHH�O�p�ΩvH�!�lFHq*Ω�vσi=(�σr),~℄LÆm�Ge��G"�|Q���σi=H��i∅,ΩquEÆmiÆ�iÆ�w�G�*"v�h�vH�σi=CYJqh�vJ�ΩO�vH�σi=FFIv=(Ω,F)Hq*H���p�lΩp{∅,Ω}*Ω�vσi=�L�*Ω�vJ�σi=�)F*�=Rv����*���kV��F*R�vH�σi=�g�U��Ω�uS��σi=vD*H�σi=�A*Ω�H��l�fC(A)*$Ω��Aq�vσi=kV�WqΩ∈C(A),PC(A)*!v��σ(A):=⋂F∈C(A)F(����b:=�J#)KC)σ(A)*Ω�vσi=�L*g�YJpHn�vσi=F:(i)F⊃A(ii)�F′*σi=F′⊃A,YquVsb^F′⊃FWHσ(A)*�AvG�σi=�gA�Ivσi=��*�If�=Cvσi=vCf���)~℄Ω*H�hK�OJiXFIvl�Ivσi=Hq*Ω�vBoreli=��qB(Ω),WqXv*"�PLD*kV"�Ivσi=�ÆmEuclid�{��B(Rn)�Bn*nrEuclidRn�vBoreli=�H�σi=A*��Iv�~℄a���{An}!uA=σ({An})�B(Rn)*��Iv�p�(Ω,F)*H��HF�vH�!�XU(h|v)`=µq(Ω,F)�v�~℄()µ(∅)=()�{An}*FvH�p�v��µ(⋃nAn)=∑nµ(An)��*Hqv������H(Ω,F,µ)*�~℄A∈F,µ(A)=,B⊂A�=B∈F,H(Ω,F,µ)*j��qµ(Ω)<∞��Hµ*iÆ�qµ(Ω)=��Hµq��qa��{An}⊂F�D⋃nAn=Ωpµ(An)<∞��Hµ*σiÆ��i~℄µ*hKΩOBorel�v�~℄µ�uf�iÆ�HµqRadon�(Ω,F)viH�F�Hν≤µ,~℄ÆufA∈F,ν(A)≤µ(A)�i�uf�!vSUPj�v�(Ω,F,µ)*��N:={N⊂Ω:a�N′∈F!uN⊂N′,µ(N′)=},Fµ:=σ(F∪N)NvhCHqµ���Fµ={A∪N:A∈F,N∈N}�BµA�y:hsFµ��µ(A∪N):=µ(A)��(C���U|QU�(Ω,Fµ,µ)*H�j��Hq*vvj�v�W~i#C�{�CP�*j�v�F��()Fµ={A∪N:A∈F,N∈N}()(Ω,Fµ,µ)*H�j��!iSv*g�U�du�YquVsb^()(iÆ�)�A,···,An∈Fp���µ(n⋃i=Ai)=n∑i=µ(Ai)()(l�)�A,B∈FA⊂B,µ(A)≤µ(B)()(℄��)�{An}*FvH����µ(⋃nAn)≤∑nµ(An)()(z){An}*Fl���v��µ(limAn)=limµ(An)()(�z){An}*Fl�,v�a�k!uµ(Ak)<∞,µ(limAn)=limµ(An)Ry��∅V�z���{An}*Fl�,q∅v�a�k!uµ(Ak)<∞,limµ(An)=()iÆ�p℄��~�hw�m�����{�hY�!lvCf�jwm�vHq*����wm����!�wm∞v`=D*H��)Ω*!�ÆuSA⊂Ω,f#(A)*$hAuEv�=��p#*(Ω,Ω)�v�qΩ*iÆ��L*iÆ�qΩ*���L*σiÆ��qΩ���L*σiÆv�#CHqΩ�v�=�)(Ω,F)*�H�!lCv`=�$`=�ÆA⊂Ω,�UAv$`=A(ω)=,ω∈A,,ω∈AÆuSω∈Ω,�Uεω(A):=A(ω),A∈F,℄B�pεω*�C�HqωVvl}�Dirac�YquVsb^v�U!C*~!l�����qh�vJq,�����!uB�Æ���U�Iq*v�W{�C*�H��Æ!lvl��y�UH�(t)�pmf��(O:hl�Ivσi=����*!(v'vCarathe´odoryf��nvCB��LvS*iv:�p��ΩvJi��i�Uv`=µ∗:Ω→,∞Hq*Ω�vH�i�~℄L�D()µ∗(∅)=()(l�)�A⊂B,µ∗(A)≤µ∗(B)()(℄��)�{An}*ΩvH�����µ∗(⋃nAn)≤∑nµ∗(An)ivJ�*|Qv�!vYnAΩvuSH���wm�v!`=CPkrH�i�Lv�*!lv��'F*ΩvH��v�l�µ*F�v!`=µ(∅)=ÆA⊂Ω,�Uµ∗(A):=inf{∑nµ(An):{An}⊂F,⋃nAn⊃A}({�inf∅=∞),µ∗*Ω�vH�i�F�Ynv��µ∗*H�i�ΩvuS�AHq*µ∗v�~℄ÆufE⊂Ωiµ∗(E)=µ∗(A∩E)µ∗(Ac∩E)giv*��#w�mµ∗(E)≥µ∗(A∩E)µ∗(Ac∩E)�MqΩvµ∗�kV��'(Ω,M,µ∗)*j��YquVsb^P�{�*�M*Ω�σi=µ∗*M�v��p∅,Ω∈MMÆ�G"�P#*��MÆ��G"�'���MÆiÆ�G"�Wq�A,B∈M,ÆE⊂Ω,µ∗(E)=µ∗(A∩E)µ∗(Ac∩E)=µ∗(A∩E)µ∗(B∩Ac∩E)µ∗(Bc∩Ac∩E)=µ∗(A∩(A∪B)∩E)µ∗((A∪B)∩Ac∩E)µ∗((B∪A)c∩E)=µ∗((A∪B)∩E)µ∗((B∪A)c∩E),dQA∪B∈M�MÆiÆ�GD"�P{��*��MÆ��v��G"�{An}*M����Bn:=n⋃i=Ai,A:=∞⋃n=An,givl�uµ∗(E)=µ∗(E∩Bn)µ∗(E∩Bcn)≥µ∗(E∩Bn)µ∗(E∩Ac)=µ∗(E∩Bn∩Bn−)µ∗(E∩Bn∩Bcn−)µ∗(E∩Ac)=µ∗(E∩Bn−)µ∗(E∩An)µ∗(E∩Ac)=······=n∑i=µ∗(E∩Ai)µ∗(E∩Ac)gnvuSpµ∗v℄��dQµ∗(E)≥∞∑i=µ∗(E∩Ai)µ∗(E∩Ac)≥µ∗(E∩A)µ∗(E∩Ac),WA∈M�~�^�!v�^KPYQÆufE⊂Ω,µ∗(E∩(n⋃i=Ai))=n∑i=µ∗(E∩Ai),YquVsb^Pµ∗iiÆ�µ∗(n⋃i=Ai)=n∑i=µ∗(Ai)hµ∗v℄���dQµ∗�M�i���Wµ∗*(Ω,M)�v�A*µ∗���µ∗(A)=,ÆufE⊂Ω,iµ∗(E)≤µ∗(E∩Ac),Wµ∗(E)=µ∗(E∩Ac)=µ∗(E∩A)µ∗(E∩Ac),PA∈M,��uj���!~�YnA^ufH�a}v`=Q��{�C*PJ�QH�h�!CQ���Y��*vhv�`=vf��p�Ωv!�lFHq*H�z�~℄FÆhvpiÆ~�G"��pziÆmiÆ�GD"�)uf!hviÆ�kV*H�z��UR�v�l~B:={n⋃i=(ai,bi:n≥,ai≤bi,≤i≤n},B*R�vH�z�L�Ivσi=D*Boreli=�PYQ�zvJCσi=vJ!lu��P�z��UH�D�σi=��UC!lu��p�F*!hΩ�vH�z�F�v!XU�`=µHq*iÆ�`=�~℄�Y�D()µ(∅)=()(iÆ�)�A,···,An∈Fp��µ(n⋃i=Ai)=n∑i=µ(Ai)AHy�~℄(()f!(’)i�(′)(��)��{An}⊂F�⋃nAn∈F,µ(⋃nAn)=∑nµ(An)YquVsb^Hµ*t��F:=σ(F),~℄µ*(Ω,F)�vO�F�pµH�Hµ*µ�vf��FΩ*H!�H��lRHq*�z�~℄∅∈R,ÆufA,B∈R,iA∩B∈RAB*qRuEviÆ���(a)��zRvG�z*RuEviÆkV�(b)µ*�zR�v��`=µ(∅)=,µpHy:hq�RvG�z�vt��p�#C�h�G"vZT�v*PdXsz�vt�����A�������{�DC!fv*i=vJ�Ω�vH�zFHq*i=�~℄Ω∈Fp'(Carathe´odory)F*!hΩ�vz�µ*F�vt�µ∗*µkrvi�M*µ∗�kV�i�*�()�A∈F,µ∗(A)=µ(A)()M⊃FP�()A∈Fg�U�µ∗(A)≤µ(A)*�pv�Æufvε>,a�{An:n≥}⊂F,!uµ∗(A)ε≥∑n≥µ(An)�gµv℄��u�µ∗(A)ε≥µ(A),gmε*uSu�Pµ∗(A)≥µ(A)()A∈F,ÆufE⊂Ω,�µ∗(E)<∞,Æufε>,a���{An}⊂F�D⋃nAn⊃E∑nµ(An)<µ∗(E)ε,W�µ∗(E∩A)µ∗(E∩Ac)≤∑nµ(An∩A)µ(An∩Ac)=∑nµ(An)<µ∗(E)ε,Ovw#hAiv�U�Gmvw#hAµviÆ��gdQµ∗(E∩A)µ∗(E∩Ac)≤µ∗(E),�A∈M�F⊂Mg�ndQM⊃F:=σ(F),µ∗Æ(�F�*µvH�f��HLqµvCarathe´odoryf�,�mYS���w�qµS�σi=MpFeµ�iS��F�pFiS�(Ω,M,µ∗)*j���(Ω,F,µ)H�*j�v�z�tvCarathe´odoryf�H�*pHvf��YquVsb^)huR�vzB,ÆA∈B,�Uµ(A):=,A=∅∞,A=∅µvCarathe´odoryf�*(R,B)�vPV���p�=D*µvH�f��L℄mCarathe´odoryf��!{�(�tvσiÆ��Carathe´odoryf�*pHf��HzF�tµ*σiÆv�~℄a��{Ωn}⊂F�D⋃nΩn=Ωµ(Ωn)<∞(Ω,F,µ)*�ÆΩ∈F,�UF∩Ω:={Ω∩A:A∈F},F∩Ω*Ω�vσi=��µΩ*µ�F∩Ω�vÆ(��(Ω,F∩Ω,µΩ)D*H��{�{(CDynkinvH�B��LBQ�H��l*σi=vH�����!�nv��!fL�HH��l*πl�~℄LÆiÆ"��HH��l*Dynkin��λl�~℄L�i∅,ΩÆm�Gp��G"��p�z*πl�σi=*Dynkin����Æ�|QYQuS��Dynkin�vw*Dynkin��WÆΩvuf�lA,pHa�H��AvG�Dynkin���qδ(A),DlDyHqgA�IvDynkin����:*EBDynkin℄Yv!*Dynkin�Kv<vzH�Yn��'(Dynkin)F*H�πl�δ(F)*H�σi=�Wσ(F)=δ(F)P�g�U��*��δ(F)ÆiÆ�G"�uhA∈δ(F),�UκA:={B∈δ(F):A∩B∈δ(F)}��κA*H�Dynkin��'���#(�κA()Æ�G"�()Æ��v��G"�Æ(),hB∈κA,A,Ac,A∩B∈δ(F),WA∩Bc=Ac∪(A∩B)c∈δ(F),WBc∈κAq�(),h{Bn}⊂κA*���p{A∩Bn}*δ(F)��WA⋂(⋃nBn)∈δ(F),dQ⋃nBn∈κAYquVsb^WF*πl�PA∈F�=κA⊃F�κA⊃δ(F)�Su=qA∈δ(F)��κA⊃FWκA⊃δ(F),�δ(F)uEÆiÆ�G"�F���lA*Dynkin�q�qΩ∈AAÆ�|���Æ�G"�p'F*πl�F=σ(F),ΩP*$qF|��v�~℄F�v�µ,µ′�F�H��F�DH�WzF�vσiÆvt�OG�σi=F�vf�*pHv�P�hΩ∈Fµ(Ω)<∞�A:={A∈F∩Ω:µ′(A)=µ(A)}Wµ′pµ�F∩Ω�*iÆ�P|Q��()A⊃F∩Ω()A*Ω�vDynkin��WF∩Ω*Ω�vπl�PgDynkinYnuA⊃δ(F∩Ω)=σ(F∩Ω)=F∩ΩWµ′pµ�F∩Ω�H�gσiÆ�h|��{Ωn}⊂F�D⋃nΩn=Ωµ(Ωn)<∞�ÆufA∈F,µ′(A)=limnµ′(A∩Ωn)=limµ(A∩Ωn)=µ(A)�!v��nAH�P�z�J�us�o�����CP�D!lv�z�A($�U)�u��Um((a,b)=b−a,��!�nv��m*B�vH�t�Jkrvm∗HqLebesgue��hqL,krvHqLebesgue�S()*JiRv��*Lebesguev���AH�JK'v��`=*�kV���Uv�()Ly�Boreli=B,����LpRvHHÆ℄�BpRHHÆ℄�Ω,Ω′*~�!h�ξ*ΩsΩ′vH��ÆA′⊂Ω′,�Uξ−(A′):={ω∈Ω:ξ(ω)∈A′},|Q���*�()ξ−(Ω′)=Ω,ξ−(∅)=∅()ξ−(A′)c=ξ−(A′)c()Æuf��{A′i},ξ−(⋃iA′i)=⋃iξ−(A′i)YquVsb^A′*Ω′vH��l��ξ−(A′):={ξ−(A′):A′∈A′}g�<*�~℄A′*Ω′�σi=�ξ−(A′)*Ω�σi=�FΩ,Ω′*~�!h�ξ*ΩsΩ′vH��A′*Ω′vH��l���σf−(A′)=f−σ(A′)(Ω,F)s(Ω′,F′)vξHq*v(�ny�FF′v),~℄ξ−(F′)⊂F{ξλ:λ∈Λ}*ΩsΩ′vE�F′*Ω′�vσi=��Ω�a�pHH�!u{ξλ}�vG�σi=F,�()��ξλ*�()~℄Ω��iH�σi=F!u��ξλ���F⊂F'�����F*g⋃λ∈Λξ−λ(F′)J�Ivσi=��qσ({ξλ:λ∈Λ})FF=⋃Fσ(ξλ:λ∈F),OF�(ΛvJiiÆ����()F*i=�()F=σ(F)µ*(Ω,F)�vH��ξ�µq(Ω′,F′)�vµ◦ξ−(��qξ(µ)):ξ(µ)(A′):=µ(ξ−(A′)),A′∈F′Hqµ�ξv��!Hahn"eJordan"�(Ω,F)*�HF�XU�`=µqH�)b�~℄(i)µ(∅)=(ii)µ�D���(O���=��ÆufA∈F,µ(A)<∞��ÆufA∈F,µ(A)>−∞)H)b*iÆv�~℄ÆufA∈F,|µ(A)|<∞A∈F*�(),~℄Ouf�!(!�)�!�µ*(Ω,F)�)b�ÆA∈F,�Uµ(A):=sup{µ(B):B⊂A,B∈F},µ−:=(−µ)�µ,µ−�*F�`=��'�U~��{�i�*�()�v�*��()A*�q�qµ−(A)=*q�qµ(A)=YquVsb^()µ,µ−il���J�U�!*Hahn"�p'(Hahn)a�H∈F!uH*���Hc*�HHq*µvHahn�LpH�P�H���P��µhs∞�b:=sup{µ(A):A∈F}�{����n:�Fs��b>��Æuf<k<b,a��A∈F!uµ(A)≥k'��gbv�U�a�B∈F!uµ(B)>k~℄B*���OqA~℄*��µ−(B)>,ha=µ−(B),a�E⊂B!uµ(E)<−a�pµ(BE)=µ(B)−µ(E)>k~℄BE*���OqA~℄*��ha=µ−(BE)>,a�E⊂BE!uµ(E)<−a�B�����iÆus�A,���pµ(A)>k,��usBv���{En}�=an=µ−(B(n−⋃i=Ei)),n≥,!uµ(En)<−an���E:=⋃nEn,A:=BEµ(E)≤,µ(A)=µ(B)−µ(E)≥µ(B)>k{�h��µ−(A)=f�����µ−(A)>�an=µ−B(n−⋃i=Ei)≥µ−(A)>,Wµ(E)≤−∑nan=−∞,dQk<µ(B)=µ(A)µ(E)=−∞����B��µ−(A)=W�hu��{An},!ulimnµ(An)=b,�H:=⋃nAn,H*H�Hahn�'���H�p*��µ(H)≥b,Pµ(H)=bWb<∞,�iÆHcvuf�A,b≥µ(H∪A)=bµ(A),dQµ(A)≤���Hc*�g�{�usJordan"�p'(Jordan)H*Hahn�()µ(A)=µ(A∩H),µ−(A)=−µ(A∩Hc),A∈F,Wµ,µ−*�O�iH�*iÆv�()µ=µ−µ−~℄a�µ,µ!uµ=µ−µ,µ≤µ,µ−≤µYquVsb^�|µ|:=µµ−,LHq*µvk'�|µ|(Ω)*µvk'�§#TÆ�����(Ω,F,µ)*B�v�(R,B)*XU�(Z�"�v�U)(Ω,F)�v`=*!(Ω,F)s(R,B)v�Ω�vH�`=fHq*!lv�~℄fvr*iÆ��a�p�℄vC=a,···,an∈R,!uf(ω)=n∑i=ai{f=ai}(ω),ω∈Ω~�℄�*#*pHv���q!j$iSU��{��Uµf:=n∑i=aiµ({f=ai})S{�C*{�·∞=fS*$Ω�v!!l`=kV����µ:S→,∞*l�v�v�ÆΩ�vuS!`=f�Uµf:=sup{µ(g):≤g≤f,g∈S}Hq*fSmµv�"�p�f*Ω�`=��f,f−"*fv�e�qµf,µf−~��iH�*iÆ��HfSmµv�"a���fSmµv�"qµf:=µf−µf−�qµf,µf−~��iÆ��HfSmµ*�v��p�'`=f�H�µ��v'�"v��i~℄f!�H�µ��wm∞,µf=∞Sm�"�OKCfv�b{i∫Ωf(ω)µ(dω),∫Ωfdµ,〈f,µ〉w��if�A∈F�v�"�UqµfA,C�q∫Afdµi�l�hAo�"vfm*$�"v$#vo")bdDfh*$�Æ�P!v<�~µ◦f−(dx)=µ(f∈dx)nqÆufvA,µ◦f−(A)=µ({f∈A})Iv��Euclid�`=SmLebesguev�"Hq*Lebesgue�"�H�`=~℄℄�Riemann�Lebesgue��~��"�w�Lebesgue�"Cvq*Riemann�"vdX�oyA�!~�YquVsb^)ZÆ`=f(x)=sinxx,x∈Rλ*R�Lebesgue�λ(f)=λ(f−)=∞,PfvLebesgue�"a���f*Riemann�v∫∞−∞sinxxdx=π^�U�PdQv**�"vl���~℄f≤f*!`=��µf≤µf!Jwvl�{�n*�"n�G��vD*GCv�n�p'{fn}*H�|�{mfv!`=��µf=↑limnµfn,�q↑lim*$�Æ*H�|��Æ�P�gl��{µfn}*H�l���v=��µf≥limnµfn���uhH��f`(v!!l`=g<λ<,�An:={fn≥λg}Wq�{f>}��if>λg,PAn↑Ωµfn≥µfnAn≥λµgAnWg*!lv�Plimnµfn≥limnλµgAn=λµg,Gmvwbtfµ�S�v�z�Wλ*uSv�dQlimnµfn≥µggµfv�UdQlimnµfn≥µfjI���H��iIvv*HqnVVIv�~�(Ω,F,µ)�`=fpfHqnVV�w�*!L��H�µ�i�w��qf=f,µae��xn��!�qf=fae�f=f�!�nvlYquVsb^�PfnVVl�iW��i�uf!`=f�P*$qH�l���v!!l`=�v�Æ�~f=↑limn→∞(nn∑k=k−n{k−n≤f<kn}n{f≥n}),Wgl�{�nPdQO�"*!!l`=�v�"vl����Æ�W��"v*C#(Æ!!l`=���~fl�{�n|Q��Æuf!`=f,giµfg=µfµgpm~℄f,g���fgD�Wq(fg)f−g−=(fg)−fg,Pg�p�"�UdQµfg=µfµg��A��Ol�pOKH�!l*�tf��B�D|Q�!vSm�"v'W|H#�p'f*`=�φ*R�Borel`=�φ�µ◦f−�q�qφ◦f�µ����iµφ◦f=µ◦f−φP�H#�pÆφ=A,A∈BIv�Wq�L*�v�U�WH#Æφ∈SIv�pm�fl�{�n�Æ!`=Iv�W�H#Æ!H#~$�"a�vφIv�!{�(vFatouYneLebesgue`({�n*"�GCvEQ�H�FatouYn�p'(Fatou){fn}*!`=��µliminfnfn≤liminfnµfnP��gn:=infk≥nfk,{gn}*H�l���v!`=�gn≤fn,gl�{�n�µliminfnfn=µlimngn=limnµgn=liminfnµgn≤liminfnµfnYquVsb^)m*,�Lebesgue��Ufn−:=,),fn:=(,,n≥liminffn=�liminfmfn=!*Lebesgue`({�n�p'(Lebesgue){fn}*Ω�v`=��~℄Æufω∈Ω,{fn(ω)}{a�H�Smµ�v`=g�D|fn|≤g,µlimfn=limµfnP��f:=limnfnWq{g−fn}p{gfn}�*!`=��tfFatouYn�µgf=µliminf(gfn)≤liminfµgfn=µgliminfµfnWg��P�µf≤liminfµfn�H�!�Æ{g−fn}℄fFatouYn�dQlimsupµfn≤µf,guµf=limµfnAp=�iH��=�H�=�a=(an)ApyYIqAp=�v`=��aSm�=v�"L*�=∑n≥anWLebesgue`({�nFCfm�=veep�Æ|vzU�

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

评分:

/38

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利