下载
加入VIP
  • 专属下载券
  • 上传内容扩展
  • 资料优先审核
  • 免费资料无限下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 徐胜芝实分析--许志军处理过

徐胜芝实分析--许志军处理过.pdf

徐胜芝实分析--许志军处理过

xiu_zhijun
2011-04-17 0人阅读 举报 0 0 0 暂无简介

简介:本文档为《徐胜芝实分析--许志军处理过pdf》,可适用于高等教育领域

kf�K:C"§�Rq�R=(dRO��RqDescartes~�§s�℄AFV:F�FKF§V�RR,V�R,,q§�ERG�{X�RIX�{�TRI�TER�E��K{�CU{§TO$C§mRTOmRvt>TOv�Bm§TOÆ��TOEU>�Tiszxufudaneducnµ∗{T�σITTO§LebesgueTOBorel�RBorelJE�|vR$#Iv{jvRWvo§{T>�{T�R{Tjt�${TJE�${TJE§JERTORTOIÆvF�yK�CU§~t$C§~tvs�{TJE~t��{TJE~tRRiemann~tF§~t�TF��Bv�v��~t�o§~t�j~TO�~tK�K=C§IRÆ�~tI$nK�K=CQP§�{NTOTO�$TOR~tmV*�vRv�K��Cu��§I�YJETY�I�YJEv*�JETY§IF~trÆa{�vmV*�JEK�K=P§Stieltjes~tLebesgueStieltjesTOLebesgueStieltjes~tK�K=P§i~:Ai~vi~MR�)Vt:A§Fourier()oLFourieroYJEFouriero�$TOFourieroe�E℄*�e�a:C�eyBaire�ZeU{C�yS���LD#§{v|,��RQ�E�|~��PI�m(���RP�|�Cantord��Rf�ky�O!XF�V`uX�V`℄��R^W�af℄fIynFvfsyq`V`Ts<����R�{$iP�X�YD{O(R)>�{v(��RP:A�R�aIlPItZ�iP�:t��CX:~℄A�hT{=(�R℄AhT{=(�R^W(�f�hb)=�x∈X=(x�RX��^W℄y∈X=(yIX^W��(K�I�R^W{�IIrf�jEPZ�Ts�Eah�R��R,dvIR{f�B�B��g^WIZ�R{A�s#^WA�x��j{}��RII��^W�R�℄{g��H�k}Ds�vs^W,h�R�Aabd=(�R��^W�ItL^>�^WI���j�R{�V}R�R{V�}h�RBIX^W�R�℄)X=Y=(�RXRYX�j{,,,}={,}�P℄h�RH={���B�D����#�j�`�},�`��℄h�RE={O�t��^��T�����G�x�G}��pRETsN{abh{,,,···}�ETsZ{abh{,±,±,···},�f��BK�ETs{ab�{,±,±,···}hFZ=(��ETs{,,···}ab��ON:pXNmU�x|�{�Z�g�j^�{,,,···}�ON{��=,,�{��=a,b,c�aI�RJ{A�A#hh{x|P(x)}y{x:P(x)},P~j��R^Wn���v�j{x|x=x}|RIIQ^W�R�d��∅M{x∈R:|x|<}=��"W{K(−,)abd=(�RR�{AnCd=(�j{±}={x∈R|x=}EU>�Tiszxufudaneducn,By,��C{nC�{xiy|x,y∈R},izE�)√−��BQ{nC�{ba|a,b∈Z>a=}ImnC�eZm�FEZmZx={n∑i=aixi|n∈Na,···,an∈Z}�FEZmCx={n∑i=aixi|n∈Na,···,an∈C}�abdRnCd{vR#A�j{x,x∈R|xx=,x−x=}=(�R{,}����RXX^�{x|x∈X}nC�XjC�RA^WJv�RB�|fAB'RyBA�RC��A⊆ByB⊇A(MAINByB�IA)j��Q�RO�∅⊆A!A⊆B>A=B��fAB�'RC��A⊂ByB⊃A(MA�INByB��IA)j∅⊂N⊂Z⊂Q⊂R⊂CTs�ERa$�−∞P�a$�∞℄h}BR,)IQ�K��O�(−∞ab∞):()`KpKa,b)={x∈R|ax<b}�R>=,∞)()`pKK(a,b={x∈R|a<xb}�R>=(,∞)()pK(a,b)={x∈R|a<x<b}jR=(−∞,∞)()Ka,b={x∈R|axb}jR=−∞,∞a��^Os<K�II�E�I�E((�J�F�)�OA⊆B=(A=ByA⊂BIe>⊆hh⊂,�)>��Ktdf���A⊆B{hh∀x∈A:x∈Byx∈A⇒x∈B�{N∀=(‘VQ’y‘aI’,℄{N⇒℄~℄��=(`y*)K=P�)A*B=(AsBO���AI�^WIvB∃x∈A:x∈B�{N∃=(‘�v’y‘I’{(�srohhsr��{N∀R∃fo�)>tA“P!>I!Q”y“P⇔Q”�=“Po�y*�Q”,“!”�=otv(�Q⇒P)℄“I!”�=�v(�P⇒Q)Fy*{�o�y*�j�Ex�B!>I!x{(�{�RRhvA⊆AhfvA⊆B>B⊆A��A=B�:vA⊆B>B⊆C��A⊆CF^vICPD#C⊆A⊆D>C⊆B⊆D�)�:v��{AI��Nx∈A⇒x∈B⇒x∈C�agGDeA�RXO�Ts{A|A⊆X}f�X�RC��X���)�R�hbs��R�f�R=(�℄A)ITsABCDEFGHIJKLMNOPQRSTUVWXYZjsA={(n−,n|n∈Z},����hbJK�I���=(hAi(i∈I),I��tR℄Ai)i��t�R�j(x−,x(x∈R)eK,h��abdV^WK�I�℄��:Atye^W�K���~℄AN��h�j(�V)R(V�):�VN=(��^W�℄`�^W�V�^�VN=(��^W�V℄`�^W������^W℄h�r(a,b)��^WDn�^W℄hn^℄(x,···,xn)���^W�{$��x,^W�RL^KI>�^WI����(,)R(,)IX�℄(,)R�IX�txiJ�En^℄xf���n℄l�a�q℄x=(�^xxn,jn=Q:Fn!�^x��|x|=(x···xn)n!�^xTs��Rn�n!�^xRy�QEuclidt�|x−y|^�Rnf�Euclid|℄x�f�Rn��=�FFR=RImC�Euclid�RnÆ��O�()y:!r>��O(x,r)={y∈Rn:|y−x|<r}()q:!r>��B(x,r)={y∈Rn:|y−x|r}()�:!r>��S(x,r)={y∈Rn:|y−x|=r}v��R{�dfty���q��P�"v�"WR{�dftpK(x−r,xr)�Kx−r,xrP=�{x−r,xr}()�jRS:�∃r>∀x∈S:|x|rj()()�JI��()yRU:�∀x∈U∃r>:O(x,r)⊆UjpHO(x,r)p���RKV�Rp�!>I!VpK�()qRE:�RnE�p�(v��{vv^lP)jHPHm���y∈RnB(x,r)��O(y,|x−y|−r)⊆RnB(x,r)�=�{x}(��V�<H)��ITO����G(a,b)={{a},{a,b}},w��*�C}(a,b)�L��,^|*�EU>�Tiszxufudaneducn:GÆI�{A�q=(�R�f�VennVvK�Æ=(�RA℄aq=(�RB,Lt=()I�Rq=C�uA∪B={x|x∈Ayx∈B},DARBaI^W℄h�j{,}∪{,}={,,}℄(−∞,∪,∞)=RAB={x|x∈A>x∈B},DIANBA^W℄h�j{,}{,}={}℄(−∞,,∞)=(−∞,)aA∩B={x|x∈A>x∈B},dDARB(*^W℄h�j{,}∩{,}={}℄(−∞,∩,∞)=,!A∩B=∅��fAPBwha��dfI(*^W�j(,P(,���I=(�)K!(�)K�{DY�=�A∩B=A(AB)�x∈A>x∈B!>I!x∈A>x∈AB�A△B=(AB)∪(BA),dD)vAPB���R^W℄h�j(−∞,△,∞)=(−∞,)∪(,∞)��v�RqA℄℄<vQ|qAA∪∅=A∅=AA∩∅=A△A=∅RoMA∪B=B∪A,A∩B=B∩A,A△B=B△A=RM(A∪B)∪C=A∪(B∪C)=RM(A∩B)∩C=A∩(B∩C)=RM(A△B)△C=A△(B△C)t�M(AB)∩C=(A∩C)(B∩C)t�M(A△B)∩C=(A∩C)△(B∩C)�BvA⊆A>B⊆B��AB⊆AB�℄A�fR{j�:F���E�IT��<�fEXB�nIT�Ib∈E#E{b}�E�n−IT���Eqj{a,···,an}jvTs�E℄�Ts�EagGDeAsIT�f�afR�{Ai|i∈I}<�I{)IT��{)T��Q:F��aIhbaI^W℄hu⋃i∈IAi=⋃{Ai|i∈I}={x|∃i∈I:x∈Ai}j⋃pXG(−p,p)=RhF⋃i∈∅Ai=∅OE=∐i∈IEiBaau�Ei(i∈I)d��J�C�oEinJs��f{Ei|i∈I}�E��I(j{(n−,n|n∈Z}P{{x}|x∈R}JRjt�!Is����Ai:i∈IaIhb(*^W℄ha⋂i∈IAi=⋂{Ai|i∈I}={x|∀i∈I:x∈Ai},j�E�RQ=⋂r∈Q(R{r})FF��I:F⋂i∈∅Aiv�p��R=�X��FF∀V:∩℄∃V:∪RkMIs���⋃i∈IA=⋂i∈IA=A(�Ai=A)=RM⋃i∈IAi=⋃j∈J⋃i∈IjAi,I=⋃j∈JIj=RM⋂i∈IAi=⋂j∈J⋂i∈IjAi,I=⋃j∈JIj>�Ijs��t�MB∩(⋃{Ai|i∈I})=⋃{B∩Ai|i∈I}t�MB∩(⋂{Ai|i∈I})=⋂{B∩Ai|i∈I}t�M(⋃{Ai|i∈I})B=⋃{AiB|i∈I}t�M(⋂{Ai|i∈I})B=⋂{AiB|i∈I}t�MB∪(⋂{Ai|i∈I})=⋂{B∪Ai|i∈I}t�MB∪(⋃{Ai|i∈I})=⋃{B∪Ai|i∈I}�BvAi⊆Bi(i∈I)��⋃i∈IAi⊆⋃i∈IBi>⋂i∈IAi⊆⋂i∈IBiDeMorganMB(⋃i∈IAi)=⋂i∈I(BAi)>B(⋂i∈IAi)=⋃i∈I(BAi)�)^��^Wxv`!>I!x∈B>∃i∈I:x∈Ai!>I!∃i∈I:x∈BAi!>I!xvK�!A⊆X��fXA�AvXvRy�R,��AcX�APAc*Rj(,∞)vT�RH�(−∞,T�{fsy�℄F�j(,∞)vT�(−,∞)H��(−,$AH�{$k�e�Rq�!�N)I=P�EU>�TiszxufudaneducnR()AB=A(A∩B)=A∩Bc()A⊆B⇔Bc⊆Ac⇔A∩Bc=∅()V�M(⋃i∈IAi)c=⋂i∈IAci>(⋂i∈IAi)c=⋃i∈IAci�QvlPR)��En�I<�(An)∞n=$��(An)�Tq��(An)efRlimn→∞An=⋃n>⋂k>nAk,d�I^Wx!>I!∃n>∀k>n:x∈Ak!>I!x(An)y^aI(*^W��(An)fRlimn→∞An=⋂n>⋃k>nAk,d�I^Wx!>I!∀n>∃kn>n:x∈Akn!>I!x(An)y�O(*^W�!�(En)XfI��dOJ(*^W��limn→∞En=∅En−=,En=,�⋃k>nEk=,,a)limn→∞En=,M⋂k>nEk=,,a)limn→∞En=,�!limn→∞An=limn→∞An���limn→∞An,f�(An)QfR()⋂n>An⊆limn→∞An⊆limn→∞An⊆⋃n>An()limn→∞An⊆limn→∞Akn>limn→∞Akn⊆limn→∞An()limn→∞(BAn)=Blimn→∞An>limn→∞(BAn)=Blimn→∞An()(An)��R(�A⊆···⊆An⊆···)��limn→∞An=⋃n>An()(Bn)��^R(�B⊇···⊇Bn⊇···)��limn→∞Bn=⋂n>Bn()�A=⋃n>An,D⋂k>nAk=An�limn→∞An=Ad()�limn→∞An=A��f(An)���A�!:�(Bn)�T�B��f(Bn)�^�BK(An=n,−n)∞n=:���T(,)<x<⇔∃n>:nx−n>F∃R∪F�(An)!C(,)�limn→∞An=(,)K(Bn=(−n,n))∞n=:���T,x⇔∀n>:−n<x<n>F∀R∩F�(Bn)!,�limn→∞Bn=,�agGDeADescartesC}��RXi(i∈I)DescartesO�)I�R∏i∈IXi={(xi)i∈I|∀i∈I:xi∈Xi}(xi)i∈IP(x′i)i∈IXV:tXi∈I�xi=x′iIT��RX,···,XnDescartes~���X×···×Xn,d{(x,···,xn)|x∈X,···,xn∈Xn}vXi�X���Xn,jX=XDescartes~Zn^W�e<tJ�E�℄Qn^W���e<tJI�E�Descartes~Rn℄Euclid���e�q{DDescartes~=(�j,^��lq�℄,^��ls�AX×YO��!a∈X>b∈Y��“"W”{a}×YxALtvY<{�)e~Aa={y∈Y|(a,y)∈A}“"W”X×{b}xALtvX<{�)e~Ab={x∈X|(x,b)∈A}()vTsHR�TsE{qh��Descartes~H×E(��O)h��O�H×EI�P����O�SjI�O�t�B�D^���T�#�j�`��G�x�G�BO�Dt���^�#�jT�`����G�Bx�DG�O��t�#�j^�`�T���B��DG�x��G�#O�jt�`�^��T�B�D����G�#x�jG�`O�t��^�B�DT����#��jG�`x�G�S�={O������x}℄SQ={��B��#�`}�G⊆X×Y#x∈X��GxI��^Wf(x),ff:X→Y��℄GVkj�NMW�NJE�℄��grf=G,�grf={(x,f(x))|x∈X}O�A⊆XkRf(A)={f(x)|x∈A},O�B⊆Y�kf−(B)={x∈X|f(x)∈B}jf−(∅)=∅>f−(Y)=XEU>�Tiszxufudaneducn���xTs��U,AXTs��VxAX��f(x)�sP�QJAd�|f({�s}∩{�Q})=∅℄f({�s})∩f({�Q})={d}�{=p℄�Inq�)I℄�R℄�qM�R()℄�n�BvA⊆A⇒f(A)⊆f(A)()℄�nCqf(⋃i∈IAi)=⋃i∈If(Ai)()℄n�BvB⊆B⇒f−(B)⊆f−(B)()℄nCqf−(⋃i∈IBi)=⋃i∈If−(Bi)()℄nqf−(⋂i∈IBi)=⋂i∈If−(Bi)()℄nYqf−(BB)=f−(B)f−(B)()℄nHqf−(YB)=Xf−(B)()℄nvB∩B=∅��f−(B)∩f−(B)=∅��()xv`!>I!f(x)∈BB(�f(x)∈B>f(x)∈B)!>I!x∈f−(B)>x∈f−(B)!>I!xvK��ranf=f(X)Pdomf=X,tf�f�P�}FYO�BXy�O�℄�!>I!B⊆f(X),FM�OwXO�AIQn��Yy�O�℄�Qy=f(x),fxy���ky�f(x)=y��i℄yxkyf:X→Yvx�d�y∈Y,~I��℄�ffÆd�y∈Y,ZI��℄�ff��(�f(x)=f(x)⇒x=x)��MY>�f�C!x∈X��sidX(x)=xa*C��idX:X→XH��R()f(A)∩B=∅!>I!A∩f−(B)=∅()f(f−(B))⊆B,NZV!>I!fY��()A⊆f−(f(A)),NZh!>I!f���()f(⋂i∈IAi)⊆⋂i∈If(Ai),NZV!>I!f���()f(A)f(A)⊆f(AA),NZV!>I!f���XEVK{Wv��VNa∈KS⊆X,saS={ax|x∈S}jS=SVNXO�SPS,�B�S±S={x±x|x∈S,x∈S}‘W’'Y,bJP�BK$Oi'�*J,W|�S�agGDeARVNWv�XO�ER^x,�|xE={xy|y∈E}Ev�|y→xy(�X{H�)I℄��dI)I:M($#n�Bv)E⊆F⇒xE⊆xF($#nCq)x⋃{Ei|i∈I}=⋃{xEi|i∈I}($#nq)x⋂{Ei|i∈I}=⋂{xEi|i∈I}($#nYq)x(EF)=(xE)(xF)($#}�=RM)x(yE)=(xy)E�QvlPDescartes~qM�LF{}×{}={(,)}>{}×{}={(,)},�Descartes~IYZoM�Qv)>�((a,b),c)=(a,(b,c))=(a,b,c)R=RM(A×B)×C=A×(B×C)=A×B×Ct�M(AB)×C=(A×C)(B×C)t�MA×(BC)=(A×B)(A×C)t�M(⋃i∈IAi)×B=⋃i∈I(Ai×B),A×(⋃i∈IBi)=⋃i∈I(A×Bi)t�M(⋂i∈IAi)×B=⋂i∈I(Ai×B),A×(⋂i∈IBi)=⋂i∈I(A×Bi)t�M∏i∈I(Ai∩Bi)=(∏i∈IAi)∩(∏i∈IBi)�BvA⊆A>B⊆B��A×B⊆A×BEMkRl��E��Xk×Xl=Xkl>(Xk)l=Xkl�>�R�℄Xf��XF>�f,f:X→YX!>I!x∈X�f(x)=f(x)!>I!grf=grf>�f:X→YTs��YXfR(f(x))x∈X^�YXNDescartes~∏x∈XYjJEf:Z→CRE(f(),f(),···)�^�CZ=(�ETs�!awL>�i�IaT��{wLLt�℄�Ff�Ex,···,xnVN�Ey,···,yn,I��EIDn�FEZf(x)Z#f(xi)=yi,ÆQ>�I��IDnMWy=aax···anxnSDn�=(x,y),···,(xn,yn)��Flk℄n∑j=xjiaj=yiFE�xjii,jnssDCramerd|{I)��>a,···,an{(��f�TlFNLt�℄{(x,f(x)),···,(xn,f(xn))}�EU>�Tiszxufudaneducn��`!�p()A∪B=(A∩B)⊔(A△B)()A⊆B⇔AB=∅⇔A∩B=A⇔A∪B=B()(AB)C=A(B∪C)()A∩B=∅⇔A⊆XB,ARBXO��()A△B=(A∪B)(A∩B)`!�pA×B=∐a∈A{a}×B=∐b∈BA×{b}`!�p�"W{aIKJ{�I�KC�`!�(En)R(Fn)t:,ERF,Ilimn→∞(En∩Fn)`!VN:�(An),I∐n∈Z(AnAn−)A=∅VN:�(Bn),I∐n>(BnBn)⊔(limn→∞Bn)`!IK(,n(−)n):n>RK,(−)nn:n=,,···{T�RIT��`!jCEPFtEuclid�RmPRnp()���pE×FEuclid�Rmnp()��`!)I�Rx�y�>��℄�(){(x,x)|x>}∪{(x,|x|)|x}(){(x,x)|x>}∪{(x,x)|x}(){(x,x)|x∈R}(){(x,x)|x∈Q}∪{(x,)|x∈RQ}(){(x,±x)|x∈Q}∪{(x,±x)|x∈RQ}`!�(An){T�⋃{∞⋂n=Akn|k<···<kn<···}`!�pRnVW{(t,···,t)|t∈R}��`!f:X→Y>�℄AXO��|YIO�B#A=f−(B)!>I!AfoRyn�R!f(x)=f(x)��xPx�vAy�IvA���A=f−(f(A))`!FAabd=(hT{Ts�`!)O��=(O��)���H�f:X→Y#�℄�R{O��t��d�^�F�T��W����℄�G��x�G>}`!v(�)I�S',S�PSu,SHagGDeA§��)qFA�h>yeV`!)Fl�wL�RP={(x,y)|x,y∈R,x−y�E},dh>�E�x<y!>I!(x,y)∈P��℄��Dye^WV,h�RRf���"Dn^℄,h�R�f�n^F��="V:F�>���℄�`^F�q℄D>�XF�j(I��RXEVK{Wv�IqX×X→X,(x,y)→xyPqK×X→X,(a,x)→ax,dfYZ)I:M()oMx

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

评分:

/49

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利