下载
加入VIP
  • 专属下载券
  • 上传内容扩展
  • 资料优先审核
  • 免费资料无限下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 山东大学金融研究院随机分析讲义(PDF格式,64页)

山东大学金融研究院随机分析讲义(PDF格式,64页).pdf

山东大学金融研究院随机分析讲义(PDF格式,64页)

xiu_zhijun
2011-04-17 0人阅读 举报 0 0 0 暂无简介

简介:本文档为《山东大学金融研究院随机分析讲义(PDF格式,64页)pdf》,可适用于高等教育领域

=y���u�m�ÆdσV�#u�#Kl�J`(�pÆ�σ�g�S,•Ω:I�uuj�dNΩ�jYGBtqktω•�QΩj�dA,�ω`A�eBωQA,k�Æω∈A,�eBωQA,k�ω∈A•A⊆B*NNQAjYGxQB,fABj�d•��uCdN>edNj℄IÆ�ÆA∩B={ω:ω∈A,�ω∈B},ÆA∪B={ω:ω∈A℄mω∈B}ÆAc={ω:ω∈Ωω∈A}<ÆAB={ω:ω∈Aω∈B}�B<ÆA△B={ω:ω∈AB℄mω∈BA}•{Aα,α∈I}t:d�It|)duCÆ⋃α∈IAα={ω:ω∈Aα,∀α∈I}⋂α∈IAα={ω:∃α∈I,ω∈Aα}•�Æ�I={α}de:⋃α∈IAα=Ø,⋂α∈IAα=Ωod�Mq�•�ZMÆA∩B=B∩A,A∪B=B∪A•�NMÆ(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)•�vMÆ(A∩B)∪C=(A∪C)∩(B∪C),(A∪B)∩C=(A∩C)∪(B∩C)•DeMorganeÆ(A∩B)c=Ac∪Bc,(A∪B)c=Ac∩Bc,(Ac)c=Aod�nj•udN$CÆ{An,n≥},()B∞⋃k=∞⋂n=kAnt{An,n≥}j�k�limn→∞Anlimn→∞An=liminfnAn=∞⋃k=∞⋂n=kAn,MΩ�QAn�jN�jYGC�()B∞⋂k=∞⋃n=kAnt{An,n≥}j�k�limn→∞Anlimn→∞An=limsupnAn=∞⋂k=∞⋃n=kAn,MΩ�Q{�AnjYGC�•dlimn→∞An=limn→∞An),BAnN,k�limn→∞An>{•A⊂Ω,HAIA(ω)=ω∈Aω∈AcBtAj�HA•��ÆI∩αAα=∧αIAα(=infαIAα)I∪αAα=∨αIAα(=supαIAα)I(ΣαAα)=∑αI(Aα)IAc=−IAIA−B=IA−IBIA△B=|IA−IB|Ilimn→∞An=limn→∞IAnIlimn→∞An=limn→∞IAn�Æu�:tIlimn→∞An=I∩∞k=∪∞n=kAn=infk≥I∪∞n=kAn=infk≥supn≥kIAn=limn→∞IAnQ(FP|)udN{Ai,≤i≤n},en⋃i=Ai=n∑i=(Ai⋃j≤i−Aj)�Æ�ω∈A⋃A⋃···⋃An,eN:��ji,‘iωQAi�QA,A���Ai−�j�M:�O~�n⋃i=Ai�YG�YG<�QhdNAi����>{MΩj�dNCjdNB�dTjP(Ω)*MΩj�djÆXNCjd>{•P(Ω)j��dABtV�DV�Æ()�A∈A,eAc∈A()�A,B∈A,eA⋃B∈A•�AVeNÆ()Ω∈A,Ø∈A()�A,B∈A,eA⋂B∈A,AB∈A,A△B∈A()�Aj∈A,≤j≤n,en⋃j=Aj∈A,n⋂j=Aj∈A•xÆVt�GΩ,Ø,��N�,℄I�$jd>{P(Ω)j��dRBtXs�V�Æ�A∈R,B∈R,eAB∈R,A⋃B∈R�Q<L,℄I�$jEVP��B<℄I�$•CaÆ()AtVeAGΩjX�()�RtXeØ∈R()�XGΩ,etV>{•�dC,�GCj��VABtMC$CjVk�A(C)•P(Ω)j��dFBtσ�V�DÆ()�A∈F,eAc∈F()�An∈F,n≥,e∞⋃n=An∈F•�Ftσ�VeFtV�dn≥)An∈FeNÆ∞⋃n=An∈F,limn→∞An∈F,limn→∞An∈F,∞⋂n=An∈F(zm�u)•P(Ω)j�dCBtσ�X�DÆ()�A,B∈C,eAB∈C()n≥)�An∈C,e∞⋃n=An∈C�ÆFtσ�V⇔FGΩjσ�X•�GCj��σ�VBtMC$Cjσ�Vktσ(C)•z�R�M�djÆX=$jσ�VBtBorelVk�B(R),B(R)�jdBt:uBoreld:�j�Etg}uB(E)*E�j�djÆX$Cjσ�V�jdNBtE�jBoreld�Hj�Q`nusuC�*�t�l�*�t�)�s>{ΩtdNFtMΩj�dCjσVe(Ω,F)Bt#uF��:dNBtF#d`�^#NQ��(Ω,F)t#uePN��GCÆΩ*g::#nL�j�DjÆX(PBt^u),ΩjYGωt^yFtJ`yjÆXBtyσ�VF�jdNAB�J`y℄myΩ*�yØ*#nyAc*Ajpy(A$y)��Æ�dNj℄I^LQy�ylimnAnBt{An}j�y*{An}N{^)$jyN>k�{Anio}=limnAnk�)�s>{(Ωi,Fi)≤i≤n,tn#uΩ={(ω,···ωn):ωi∈Ωi,≤i≤n}tDbukΩ=n∏i=Ωi,�Ai⊂Ωi,≤i≤n,eÆA={(ω,···ωn):ωi∈Ai,≤i≤n}Bt��dkA=n∏i=Ai=A×···×AndAi∈Fij)QBA=n∏i=Ait#��>{�(Ωi,Fi),≤i≤ntn#uC*Ω=n∏i=Ωn�#��jÆXeF=σ(C)BtDbσVk�F=n∏i=Fi,(Ω,F)=n∏i=(Ωi,Fi)BtDb#uQ(Ωi,Fi)≤i≤nn#u≤m≤n,eÆn∏i=Ωi=m∏i=Ωi×n∏i=mΩi,n∏i=Fi=m∏i=Fi×n∏i=mFi,n∏i=(Ωi,Fi)=m∏i=(Ωi,Fi)×n∏i=m(Ωi,Fi)>{�(Ωα,Fα),α∈Jt:�#ueΩ={(ωα,α∈J),ωα∈Ωα,α∈J}t(Ωα,α∈J)jDbuktΩ=∏α∈JΩα,�ItJjN�d�Aα∈Fα,α∈J,B={(ωα,α∈J),ωα∈Aα,α∈I,ωα∈Ωα,α∈J}BtNu^m#��vBNu��∏α∈IAαBtBjm>{ΩtDbuItJj�A�dA⊂ΩI=∏α∈I,eB={(ωα,α∈J):(ωα,α∈I)∈A}BtΩ�jdABtBjmdA∈∏α∈IFα)eBBt>At^mj#dTjdItN|)d)BBtNu^m#d�dIt#C|)d)BBt#Cu^m#d��vBtNud℄#Cud��ÆRn*nusufAz�Rjn�DbuBn*Rn�jBoreldÆXeÆ(Rn,Bn)=(R,B)×······×(R,B),Bn#��M#��℄N~q���ÆX$Cjσ�V�*~��Oi!��)}Æ>{ftΩ→ΩjKlf�ω∈Ω,Y`�ujω∈Ωω=f(ω)�A⊂Ω,f−(A)={ω∈Ω:f(ω)∈A}BtAjZ��P(Ω)j�A:f−(A)={f−(A):A∈A}BtAjZ�QftΩ→ΩjKl(#),eNÆ()f−(φ)=φ,()f−(Ω)=Ω,()(f−(A))c=f−(Ac)()f−(⋃αAα)=⋃αf−(Aα),()f−(⋂αAα)=⋂αf−(Aα),()f−(∑αAα)=∑αf−(Aα)�*eW�x#>z�uz℄�Æu()Et�α,⋂αAα⊂Aα,f−(⋂αAα)⊂f−(Aα)��Nf−(⋂αAα)⊂⋂αf−(Aα)()Æy�ω∈⋂αf−(Aα),e�α,ω∈f−(Aα),ff(ω)∈Aα,f(ω)∈⋂αAα,��Nω∈f−(⋂αAα),f⋂αf−Aα⊂f−(⋂αAα)()"�()e()fi()��ÆMeW()#x()f−SdNj,�<�B<l℄I#�Zj��Q#C℄IMVxÆΩ��:σ�VCjZ��RL#C,℄I�$E�f−(C)Ω�jσ�V()�A⊂Ω,Buf(A)={f(ω):ω∈A},ef(⋃αAα=⋃αf(Aα)�CjffS,℄I#�Zj�Rde�j℄ISfw#�Zj|�ftΩ→ΩjKlCtP(Ω)j�eÆσΩ(f−(C))=f−(σΩ(C))�*MQC⊂σΩ(C),Æf−(C)⊂f−(σΩ(C)),PMeWj�()#xÆf−(σΩ(C))σ�VÆσΩ(f−(C))⊂f−(σΩ(C))^)ÆFH={B:f−(B)∈σΩ(f−(C))},eH⊃C,�uÆHσ�VσΩ(C)⊂H,fÆf−(σΩ(C))⊂σΩ(f−(C)),eWiu>{(Ω,F),(Ω,F)t#uf:Ω→Ω,��QA∈F,f−(A)∈F,℄ltjÆf−(F)⊂F,eBft(Ω,F)f(Ω,F)j#KlktÆf∈FF,,kσ(f)=f−(F),BPtMf$Cjσ�VQ�(Ω,F),(Ω,F)t#uC⊂P(Ω),PF=σ(C),eÆf∈FF⇐⇒f−(C)⊂F�*=⇒C⊂σ(C)=F,Æf−(C)⊂f−(σ(C))=f−(F)⊂F⇐=MF:f−(F)=f−(σ(C))=σ(f−(C))⊂Ff∈FFQ(Ωi,Fi),i=,,,t#u�g:(Ω,F)→(Ω,F)f:(Ω,F)→(Ω,F)t#Klef◦g:f◦g(ω)=f(g(ω))(Ω,F)f(Ω,F)j#Kl(uaG��W)Nh�>{M(Ω,F)f(R,B(R))(℄(R,B(R)))j#KlBt#HATjd(Ω,F)t#N#u)(Ω,F)f(R,B(R))(℄(R,B(R)))j#KlXBtN{J`(�(℄AC{J`(�),k�Ærv(randomvariable)Q�E={rn}tR�jJ^deX(Ω,F)�jrv⇐⇒�Qrn∈E,{ω:X(ω)≤rn}∈F�*⇒:{ω:X(ω)≤rn}=X−((−∞,rn)∈F⇐:�C={(−∞,rn),rn∈E},eÆX−(C)⊂F�σ(C)=B(R),MeWxÆX∈FB(R),fX(Ω,F)�jrvQ�{Xn}n≥trv$Cesupn≥Xn,infn≥Xn,limnXn,limnXnxrv�*{supn≥Xn≤c}=∞⋂n≥{Xn≤c}∈F{infn≥Xn<c}=∞⋃n≥{Xn<c}∈F{infn≥Xn≤c}=∞⋂k={infn≥Xn<ck}∈FlimnXn=infk>supn>kXn∈F,limnXn=supk>infn>kXn∈F>{�Y`(Ω,F)j:N�,{Ai,i∈I},(fINAi∈F�Ai⋂Aj=Ø,i=j,∑iAi=Ω)eT�^jA{xi,i∈I}Ω�jHAX*tÆX(ω)=xi,Aω∈Ai(i∈I)eBXt�U�rv��dxiT�^)xi,AiMXs:�u�A∈F,IA(ω)':�UJ`(����uC�jXP#*tÆX(ω)=∑i∈IxiIAi(ω)QXt(Ω,F)�jrv⇐⇒Y`�Urv$C{Xn,n≥}�ω∈Ω,xNX(ω)=limn→∞Xn(ω)�dXt�!){Xn,n≥}#�C�!pgjd|X|≤M){Xn,n≥}#>�C|Xn|≤Mj�*⇐=,MX(ω)=limn→∞Xn(ω),MeWxXtrv=⇒,�Xt�!j�Xn=nn−∑k=knIkn≤X<knnI{X>n}()eÆXn�UHA�Xn≤X,Jn↑,Xnpg��ω∈Ω,X(ω)=limn→∞Xn(ω)�:�jX,�X=X∨,X−=(−X)∨,eX,X−trv�X=X−X−�X,X−,MQ�!�Y`{Yn},{Zn}�f�{Xn}j�Le{Yn−Zn}ftNj<QXj�Urv$CX()#�LdX�!)Xn�!�pgn<QXd|X|≤M)|Xn|≤M>{�FtFj�σV�f∈FB(R),eBftF#ktÆf∈FQ(Doob)�f(Ω,F)f#u(E,E)j#Klσ(f)=f−(E),e(Ω,F)�jrvXtσ(f)#⇐⇒Y`(E,E)�jrvh,iÆX=h◦f�*⇐=,X−(B(R))=(h◦f)−(B(R))=f−(h−(B(R)))⊂f−(E)=σ(f)=⇒,�X=n∑i=αiIAitσ(f)#jU�rv,�{Ai}i∈It(Ω,F)j:�,AiAj=Ø,(i=j)eMAi∈σ(f)=f−(E)xY`Bi∈E,Ai=f−(Bi)�Ci=Bi(⋃j≤iBj),eCitE�P��jdN�f−(Ci)=Ai(⋃j≤iAj)=AiFh=n∑i=αiICi,eht(E,E)�jrv,�dω∈Ai)f(ω)∈Cih(f(ω))=αi=X(ω),fÆX=h◦f,�:�jX,MeW,Y`σ(f)#U�rv$C{Xn},iX=limnXn,�Xn#*tÆXn=hn◦f,�hnt(E,E)�jrv,�h=limnhn,eht(E,E)�jrv,�h◦f(ω)=(limnhn)◦f(ω)=limnXn(ω)=X(ω)I^Nh�>{�X,···Xntrv,eÆX=(X,···Xn)BtnuJ`(�BtJ`��QX=(X,···Xn)tnurv⇐⇒X(Ω,F)→(Rn,B(Rn))j#Kl�σ(X)=σ(Xi,≤i≤n)>{f:(Rn,B(Rn))→(R,B)j#HAeBftnYjBorel#HA℄vBBorelHAQ�X=(X,···Xn)tnurv,eNrvYtσ(X)#⇐⇒Y`nYBorelHAh(X,···Xn),Y=h(X,···Xn)=L�U�ZT*G)F�s>{Ωt:uC⊂P(Ω),C�j{HA(#�∞)µBtdHA��A∈C,|µ(A)|<∞,BµtNj���A∈C,Y`{An,n≥}⊂C,A=⋃nAn,��n,|µ(An)|<∞,eBµ`C�tσNjvBtσNj����AjA,B∈C,A∩B=Ø,�AB∈C,xNµ(AB)=µ(A)µ(B),eBµtN#qj����Aj{An,n≥}⊂C,Ai∩Aj=Ø,i=j,�∞∑i=Ai∈C,xNµ(∞∑i=Ai)=∞∑i=µ(Ai),eBµ`C�tσ#qj℄#C#qj���µtσ#qj�Ø∈C,µ(Ø)=,eµtN#qjP�µtN#q℄σ#qjØ∈C,µ(Ø)=±∞,eµ(Ø)=>{Ωt:uC⊂P(Ω),�Ø∈C,C�jdHAµBt|℄t|�PV�Æi)µ(Ø)=�ii)µt�!jf�A∈C,µ(A)≥�iii)µt#C#qj�Ω∈C,�C�j|µV�µ(Ω)=,eBµt#N|yAj#N|{µ(A)BtAj#N��Ænz℄SQµ`R�{j��:�n#Lµ`�Nq℄IL℄IjdN��{j��Tn�µt��{j#C#qdHAeBt�|�`P(Ω)�Buµ��ÆdAtNd)µ(A)=A�GjYGjA�dAt{d)µ(A)=∞n)µ'P(Ω)�j|dΩtNd)µtNj�dΩt#Cd)µtσNj>{�(Ω,F)t#uµtF�j|e(Ω,F,µ)Bt|udPtF�j#N|)(Ω,F,P)Bt#Nu)FqX�f>{C,H�tΩj�dCjdC⊂H,Pµ,ν�tC,H�jdHA��A∈C,µ(A)=ν(A),eBνtµ`H�jg℄)jµtν`C�j�k�Ƶ=ν|C>{µtσ�VF�j|L={A:A∈F,µ(A)=},PFN={N:∃A∈L,stN⊂A},eN�jYGBtµ�#Pd�N⊂F,eBµ`F�i�j>�(X�f)�(Ω,F,µ)t|uNtµ�#PdjÆXeÆi)F={A⋃N:A∈F,N∈N}tσ�VF⊃Fii)`F�Fµ(A⋃N)=µ(A),eµF�j|µ|F=µ,�dµt#N|)µ��iii)(Ω,F,µ)i�|ufƵ`F�i�j(�*XP)>{u�j(Ω,F,µ)Bt(Ω,F,µ)ji�V)j��ÆMu,mm#su|ui�j�e~�i�V)jf#P'`Gq:)FQ�(Ω,F,µ)t|uft(Ω,F)f#u(E,E)j#KleMν(B)=µ(f−(B)),B∈E,*Bu(E,E)�j|Tjdµt#N|)ν#N|>{M�BujνBtf`(E,E)�jeL|Tj(Ω,F,µ)t#Nu)νBtf`(E,E)�jeL�℄��(Ω,F,P)t#NuXtN{J`(�eF(x)=P(X≤x)BtXj�HA�X=(X,···Xn)tnuJ`(�eÆF(x,···xn)=P(X≤x,···Xn≤xn)BtXjnu�HAQ�F(x)tN{J`(�X(ω)j�HAeÆ()F(x)w�()F(x)O�()limx→∞F(x)=,limx→−∞F(x)=(MiuCu)Q�J`��(X,···Xn)S(Y,···Yn)N�^jnu�HAe�RnfRmj�:BorelHAg,g(X,···Xn)Lg(Y,···Yn)N�^j�f�:�Rm�j�:BoreldB,NÆP{g(X,···Xn)∈B}=P{g(Y,···Yn)∈B}fÆJ`(�j�MPj�HAs:�u>��F(x)tR�OwjNHAe`(R,B)�Y`s:Nj|µ,iµ(a,b=F(b)−F(a),−∞≤a<b<∞��ua#xjn��^#NQ^P�>{�FtR�NOwHAeMF`(R,B)�$Cjσ�Ni�|µBtMF=$jLebesgue�Stieltjes|vBLS|Tn�F(t)=t,MV=$ji�V|BtLebesgue|>��F(x)tV�ieWjHAeY`#Nu(Ω,F,P)e�jrvX,iP(X≤x)=F(x)lQ�Y>{�X(ω)=∑ixiIAi(ω)t�Urv,eB∑ixiP(Ai)tXj~n℄BX>QPjb�ktEX℄E(X)℄∫X(ω)P(dω)>{EtE�j���H�DPV�ÆA,B∈E,α,β∈R=⇒E(αIAβIB)=αEIAβEIBA∈E,IA≥=⇒EIA≥Q�LE*(Ω,F)��U�J`(�jÆXeÆ(i)~nE(·)s:V�ÆEIA=P(A),A∈FjE�jt���H(ii)�{Xn,n≥}⊂E,Xn↑(↓)X∈E,eEXn↑(↓)EX(iii)�E(·)tE�jt���HE()=,�dE�$CXn↓)EXn↓eMQ(A)=EIABu(Ω,F�j#N|�*()Ejt��#z�us:�ME(IA)=P(A)e���eL()ME(·)j�!����#eLE(·)`tjXn↓,�kktXnj��e≤Xn≤kI(Xn>ε)ε≤EXn≤kP(Xn>ε)εEtXn↓,E(Xn)g�(Xn>ε)↓Ø,MV�O~pwQε,MQε#t�AtAE(Xn)↓�:�j`t$Cdn→∞)NXn↓X∈E=⇒(Xn−X∈E,Xn−X↓)=E(Xn−X)↓=EXn↓EXXn↑X∈E=⇒−Xn↓−X∈E=⇒E(−Xn)↓E(−X)=⇒EXn↑EX()z�uQ()#N|Q�A�!#HA#>*C�j�!�UHA$Cj>{�X�!#HA{Xn}�UHA$C≤Xn↑XuCX`Ω��Pjb�(~n):EX=∫XdP=limn→∞∫XndP=sup{∫ZdP,≤Z≤X,Zt�UHA>{AC{J`(�X,�EX<∞,EX−<∞,eBXt#bj�>EX=EX−EX−*X>QPjb�B~n℄A(~nkt∫XdP:�n�EX,EX−��N:�N{eBXtÆ#bxÆNJ`(�℄�UJ`(�#b�!J`(�Æ#bX~njuC#>�L�P(X=)=,eX#b�EX=���Xt�!J`(�eP(X≥a)≤aE(XIX≥a)≤aEX(a>)�*∫X≥aadP(ω)≤∫X≥aXdP=EXIX≥a≤EXFnYNÆP(|X|>a)≤apE|X|p(a>,p>),P(|X|>a)≤f(a)Ef(|r|),f(x)t,∞)�j�!wHA�"*�lÆP(|ξ−Eξ|≥ε)≤εD(ξ)Q(Levi|�)(i)�Xn↑X,��gn,X−n#belimn↑EXn=EX(ii)�Xn↓X,��gn,Xn#belimn↓EXn=EXQ(Fatou|�)�{Xn,n≥}tJ`(�$CYZt#bJ`(�eÆ(i)�Xn≥Z,∃n,n≥n,eE(liminfn→∞Xn)≤liminfn→∞(EXn)(ii)�Xn≤Y,∃n,n≥n,eE(limsupn→∞Xn)≥limsupn→∞(EXn)�*(i)�Yn=infk≥nXk≤Xn,e{Yn,n≥n}tpg$CYn≥Z,Zt#bjMLeviFElimnXn=ElimnYn=limnEYn≤limnEXn(ii)~"�supf#Q(Lebesgue�C�>�)�{Xn,n≥}tJ`(�$C|Xn|≤Y,Y#b�limn→∞Xn=XY`elimn→∞EXn=EX�*�A{Xn,n≥}V�FatouFy(�Z=−Y),MFatouFEX=ElimnXn≤limnEXn≤limnEXn≤ElimnXn=EXMQ|Xn|≤Y,|X|≤Y,X#bEVlimnEXnY`N�limnEXn=EX>{XtJ`(�A∈F,�XtÆ#bjek∫AXdP=EXIA,�ϕ(A)=∫AXdP(��A∈FjHA)BtXjub��ÆϕF�jσ−#qdHA�X≥,ϕF�j|eP(A)=⇒ϕ(A)=Q�(Ω,F,µ)t|uY(Ω,F)f(E,E)j#KlµY−tY`(E,E)�jeL|Pf(E,E)�j#HAe�~�:~Y`(N),#eLE:~Y`(N),�N∫Ef(x)µY−(dx)=∫Ωf(Y(ω))µ(dω)QMiux(Ω,F,µ)�nuJ`(�X,�HAF(x,,xn)#`(Rn,Bn)�=$:L−S|�X`(Rn,Bn)�j�Rn�jBorelHAf>QPjb�kt∫fdF℄∫f(x)dF(x),Btf>QFjL−Sb����ftN�ua,b�jHAFta,b�NLS|eÆ∫(a,bf(x)dF(x)=limn→∞,max|∆xi|→n∑i=f(ξi)F(xi)−F(xi−)ξi∈xi−,xi)�a=xo<x<<xn=b,ξi∈(xi−,xi,≤i≤nfV)L−Sb�SRiemann−Stieltjesb�:�jQ�Xt(Ω,F,P)�nuJ`(�FtXjnY�HAPg(x,,xn)tnYBorelHAFg(x)*g(x)j�HAedEg(x)Y`)Eg(x)=∫Ωg(X(ω))P(dω)=∫RydFg(x)(y)=∫Rng(x,,xn)dFX(x,,xn)��ÆnuCaL∫ydFg(x)(y)℄∫g(x)dFx(x)jIJ`(�HAg(x)j~nNi{�lSyHvYF(Ω,F,P)t#NuXtΩfRjJ`(�iE|X|<∞,�H⊂Ftσ−^Ae�Hjy~nktEX|H℄EHX>{EX|Ht(s:j)MΩfRjHAV�Æ(i)EX|HtH#j(ii)∫AEHXdP=∫AXdP,∀A∈H>{#u(Ω,F)�j|µ,ν,��A∈F,µ(A)=⇒ν(A)=,eBν>Qµ��k�ν≪µ�µ≪νSν≪µ^)CeBµ,ν�Tltk�µ∼ν�Y`A∈F,iµ(A)=,ν(Ac)=,Bµ,ν�T�Dk�µ⊥ν>��(Ω,F)t#uµ,νt�jσ−N|e#|νs:*tν=νν,ν,νtσ−N|�ν≪µ,ν⊥µ,����Btν>QµjLebesgue����ju�uBEX|HjY`s:�>�(Radon−Nikody>�)FµtH�j|,µ(A)=∫AXdP,A∈H,eµ>QP|H���Y`P|Hs:uC`Ω�H#HAF,iµ(A)=∫AFdP∀A∈H(F=EX|Has)m��u�X,νt(Ω,F)�j|�ν≪P,eY`s:J`(�fiν(A)=∫Af(ω)P(dω),∀A∈F,ftν>QPjR−NeAktÆf=dνdPeν=f·P>�suX,YtΩfRjJ`(��E|X|<∞,E|Y|<∞,a,b∈R,eÆ(a)EHc=c(ct>A)(b)EHaXbY=aEHXbEHY(c)EEHX=EX(d)EHX=X,�XtH#(e)EHX=EX,�X>QHy(f)EHY·X=Y·(EHX),�YtH#v�(a)Et>A$Cjσ−^At(Ω,∅),>Q(Ω,∅)#jJ`(�:u>A(e)�X>QHy,z℄N∀A∈H,∫AXdP=∫ΩXIAdP=∫ΩXdP·∫ΩIAdP=∫AEXdPQEXV�uCNEHX=EX(f)<��Y=IB*uB∈H,∀A∈H∫AYEHXdP=∫A∩BXdP=∫AYXdPY=IBYEHXV�uC(i)(ii),YEHX=EHYX,X��v`HAC�:�#HAC>�C,Htσ−^A�C⊂H,eECX=ECEHX�*:�A∈C,eA∈H,∫AECEHXdP=∫AEHXdP=∫AXdP=∫AECXdPMy~njs:�#iuC>�X,Y#bJ`(�(i)�X≥Y,eEHX≥EHY,as,�EHX≤EH|X|(ii)Ho¨lderlÆr>,s>,rs=,eÆEHXY≤EH|X|rrEH|Y|ssP|Has(iii)MinkowskilÆ�r≥,eEH|XY|rr≤EH|X|rrEH|Y|rr�r<,eEH|XY|r≤EH|X|rEH|Y|r(iv)JessenlÆ�ϕR�jHA�XLϕ(X)t#bJ`(�eϕ(EX|H)≤Eϕ(X)|HQYt#brv,{Xn,n≥}trv$CeÆ()(y~njLeviF)�Y≤Xn↑Xelimn→∞EXn|H=EX|H�Y≥Xn↓X�C()(y~njFatouF)�Xn≥YeElimnXn|H≤limnEXn|H�Xn≤Y,eElimnXn|H≥limnEXn|H()(y~njLebesgue'�<u)�|Xn|≤Y,�dn→∞)Xnas→X,elimnEXn|H=EX|Has>{L(Ω,F,P)={X:Xtrv,�E|X|<∞},t��$�u�A∈F,IA∈L(Ω,F,P),H⊂Ft�σ−^Ay#NuCtÆP(A|H)=EHIA��():>QHjy#NJ`(�Æ(i)P(∅|H)=(ii)P(·|H)�!(iii)P(A∪B|H)=EHIA∪B=EHIAEHIB=P(A|H)P(B|H)A,B{���():L(Ω,HP)L(Ω,F,P)j��$�ueEHξtL(Ω,F,P)`L(Ω,H,P)�jaJf‖ξ−EHξ‖L(Ω,F,P)=infη∈L(Ω,H,P)‖ξ−η‖L(Ω,F,P)=�E�s�$�m�Æy�MvHAD�r>{nσ−^AC,,CnyjÆdCi∈Ci,≤i≤n)P(n⋂i=Ci)=n∏i=P(Ci)��AJ`��dN{Xi,i∈I},z℄kσ{Xi,i∈I}t�G⋃i∈Iσ(Xi)j��σ−^Az℄CJ`��dN{Xi,i∈I}L{Yi,i∈J}yfσ{Xi,i∈I}Lσ{Yi,i∈J}y|�FIt�A|)dX,Yi,i∈It�AujJ`��eÆXL{Yi,i∈I}y⇐⇒�AN�d{i,,in}⊂I,XL{Yik≤k≤n}y{Xi,i∈I}tyJ`(��{fi,i∈I}tBorel#HA���i∈I,fi(Xi)#be�Ij�:N�dJ,NE∏i∈Jfi(Xi)=∏i∈JEfi(Xi)#>{Bσ−^AC=∞⋂n=σ(ξn,ξn,)tξ,ξ,jvσ−^AC�jyBtξ,ξ,jvyΩ�>QC#jHABtξ,ξ,jvHAKkξ,ξ,Sξn,ξn,�N�^j<V�<Q^:�fJ`(�$Cj<�eHA�uQPj�A�>RjvQliminfn→∞ξn,limsupn→∞ξnξ,ξ,jvHATndlimn→∞ξnY`)Pξ,ξ,jvHA�*liminfm→∞ξm=limminfk≥mξk=limminfk≥mξnk=liminfm→∞ξnm>Qvσ(ξn,ξn,),n=,j#HAE�liminfm→∞ξm>Q∞⋂n=σ(ξn,ξn,)#liminfm→∞ξmξ,ξ,jvHA>�(")yJ`(�$Cjvyj#Nt℄�*<��yALyA!yfP(A)=P(A)P(A),V)ltQP(A)=℄MV#xtuau~"uyJ`(�$Cξ,ξ,jvσ−^ACS!yf#(C�j:yfvyxS�!yE�#Nt℄)�C⊂σ(ξn,ξn,),(∀n),�σ(ξ,ξn)Sσ(ξn,ξn)yCSσ(ξ,ξn),(∀n)yCS∞⋃n=σ(ξ,ξn)yMy)juxÆCSσ(∞⋃n=σ(ξ,ξn))=σ(ξ,ξ,)yC⊂σ(ξ,ξ,),CSCy•�C�>�(x≪#NQ^P≫zl)F(Ω,F,P)t#Nu�{At,t∈T}�jy�Æ()y{At,t∈T}y�()At�N��$f�A()t,A()t,,A(n)t∈At,en⋂i=A(i)t∈AtiZ{σ(At),t∈T}yjyV'�MyjJ`(�$CjvHAhSRRlQ>A�*ξyJ`(�$Cξ,ξ,j:vHA�u(M),��AAx,MQ{ξ<x}:vyE�P{ξ<x}=℄N��#nÆ(i)∀x∈R,P{ξ<x}=,n��NP{ξ=−∞}=limn→∞P{ξ<−n}=,fξ=−∞ae(ii)∀x∈R,P{ξ<x}=,S(i)FV)NÆξ=∞ae(iii)∃x<x,stP{ξ<x}=,P{ξ<x}=,x,xtNA�a=sup{x:P{ξ<x}=},MsatNAn)�∀n,P{ξ<a−n}=P{ξ<an}=,QP{a−n≤ξ<an}=,Fn→∞,eNP{ξ=a}=fξ=aae�Na=inf{x:P{ξ<x}=}|�(Borel−Cantelli|�)()�yC{An,n≥}(k{Anio}={ω:ωQAn,n∈N�j{��})NÆ∞∑n=P(An

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

评分:

/12

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利