首页 cd4501集成多路模拟开关的应用技巧

cd4501集成多路模拟开关的应用技巧

举报
开通vip

cd4501集成多路模拟开关的应用技巧集成多路模拟开关的应用技巧(cd4051) 2009-12-28 11:00 集成多路模拟开关的应用技巧 摘要:从应用的角度出发,研究了集成多路模拟开关的应用技巧,并结合实例进行了讨论。这些应用技巧具有较强的针对性和可操作性,对集成多路模拟开关的正确选择与合理使用具有指导意义。 关键词:集成多路模拟开关 传输精度 传输速度 集成多路模拟开关(以下简称多路开关)是自动数据采集、程控增益放大等重要技术领域的常用器件,其实际使用性能的优劣对系统的严谨和可靠性重要影响。关于多路开关的应用技术,些文献上介绍有两点不足:一是对...

cd4501集成多路模拟开关的应用技巧
集成多路模拟开关的应用技巧(cd4051) 2009-12-28 11:00 集成多路模拟开关的应用技巧 摘要:从应用的角度出发,研究了集成多路模拟开关的应用技巧,并结合实例进行了讨论。这些应用技巧具有较强的针对性和可操作性,对集成多路模拟开关的正确选择与合理使用具有指导意义。 关键词:集成多路模拟开关 传输精度 传输速度 集成多路模拟开关(以下简称多路开关)是自动数据采集、程控增益放大等重要技术领域的常用器件,其实际使用性能的优劣对系统的严谨和可靠性重要影响。关于多路开关的应用技术,些文献上介绍有两点不足:一是对器件自身介绍较多,而对器件与相关电路的合理搭配与协调介绍较少;二是原则性的东西介绍较多,而操作性的东西介绍较少。研究表明:只有正确选择多路开关的种类,注意多路开关与相关电路的合理搭配与协调,保证各电路单元有合适的工作状态,才能充分发挥多路开关的性能,甚至弥补某性能指标的欠缺,收到预期的效果。本文从应用的角度出发,研究多路开关的应用技巧。目前市场上的多路开关以CMOS电路为主,故以下的讨论除特别 说明 关于失联党员情况说明岗位说明总经理岗位说明书会计岗位说明书行政主管岗位说明书 外,均针对这类产品。 1 “先断后通”与“先通后断”的选择 目前市场上的多路开关的通断切换方式大多为“先断后通”(Break-Before-Make)。 在自动数据采集中,应选用“先断后通”的多路开关。否则,就会发生两个通道短接的现象,严重时会损坏信号源或多路开关自身。 然而,在程控增益放大器中,若用多路开关来改变集成运算放大器的反馈电阻,以改变放大器的增益,就不宜选用“先断后通”的多路开关。否则,放大器就会出现开环状态。放大器的开环增益极高,易破坏电路的正常工作,甚至损坏元器件,一般应予避免。 2 选择合适的传输信号输入方式 传输信号一般有单端输入和差动输入两种方式,分别适用于不同的场合。 单端输入方式如图1所示,即把所有信号源一端接同一信号地,信号地与ADC等的模拟地相接,各信号源的另一端分别接多路开关。图中Vs为传输信号,Vc为系统中的共模干扰信号。 图1(a)接法的优点是无需减少一半通道数,也可保证系统的共模抑制能力;缺点是仅适用于所有传输信号均参考一个公共电位,且各信号源均置于同样的噪声环境下,否则会引入附加的差模干扰。 图1(b)接法适用于所有传输信号相对于系统模拟公共地的测量,且信号电平明显大于系统中的共模干扰。其优点是可得到最多的通道数,缺点是系统基本失去了共模抑制能力。 差动输入方式如图2所示,即把所有信号源的两端分别接至多路开关的输入端。其优点是抗共模干扰的能力强,缺点是实际通道数只有单端输入方式的一半。当传输信号的信噪比较低时,必须使用差动输入方式。 3 减小导通电阻的影响 多路开关的导通电阻RON(一般为数10Ω至1kΩ左右)比机械开关的接触电阻(一般为mΩ量级)大得多,对自动数据采集的信号传输精度或程控制增益放大的增益影响较明显,而且RON通道随电源电压高低、传输信号的幅度等的变化而变化,因而其影响难以进行后期修正。实践中一般是设法减小RON来降低其影响。 以CD4051为例,测试发现[1]:CD4051的RON随电源电压和输入模拟电压的变化而变化。当VDD=5V、VEE=0V时,RON=280Ω,且随V1的变化突变;当VDD>10V、VEE=0V时,RON=100Ω,且随V1的变化缓变。可见,适当提高CD4051的VDD有利于减小RON的影响。必须注意:提高VDD的同时,应相应提高选通控制端A、B、C的输入逻辑电平。例如:取VDD=12V(VEE=0V),可采用电源电压上拉箝位的 方法 快递客服问题件处理详细方法山木方法pdf计算方法pdf华与华方法下载八字理论方法下载 ,上拉电阻的阻值取1.5kΩ以上,使选通控制端信号的有效高电平不低于6V。这样,既保证CD4051理想导通(RON小,又实现了CMOS电平与TTL电平的转换(μP一般为TTL电平)。 可见,根据具体情况,适当提高多路开关的电源电压,是降低其RON影响的一种有效措施。此外,适当提高电源电压,还可以同时减小导通电阻路差ΔRON和加快开关速度。 4 消除抖动引起的误差 和机械开关类似,多路开关在通道切换时也存在抖动过程,会出现瞬变现象。若此时采集多路开关的输出信号,就可能引入很大的误差。例如[2]:某计算机自动数据采集与处理系统采集三个模拟量:水泵转速、流量、压力。三个模拟量对应的TTL电平分别为:1.5454V,1.5698V、2.9394V。采集系统从通道1、2、3分别对这三个模拟量连续采集10次,采集结果位于1.8554~1.8603、1.5625~1.5673、1.62207~1.62695之间,其中1、3、通道的误差很大。研究发现,这种误差是由于系统在多路开关通断切换未稳定下来就采集数据造成的。 消除抖动的常用方法有两种:一是用硬件电路来实现(硬件方法),即用RC滤波器除抖动;另一种是用软件延时的方法来解决(软件方法)。在有μP的系统中,软件方法较硬件方法更显优势。如上例中,只要在原QuickBASIC数据采集程序加入一循环语句来适当延时,则采集结果位于1.5454~1.5478、1.5698~1.5722、2.9394~2.9418之间,采集精度明显提高,采集结果正常。 5 提高切换速度 多路开关的切换速度与其自身的结构、工作条件以及外电路的情况都有关系。在实践中应注意以下几点: 所有的多路开关的平均传输延迟时间tpd均随VDD的升高而减小。以CD4051为例[3],当VDD=5V时,tpd=720ns;当VDD=10V时,tpd=320ns;当VDD=15V时,tpd=240ns。可见,适当提高多路开关的电源电压,可加快其开关速度。 传输信号的信号源内阻Rs对多路开关的切换时间有重要影响。 分析 定性数据统计分析pdf销售业绩分析模板建筑结构震害分析销售进度分析表京东商城竞争战略分析 表明:在其它条件不变的情况下,切换时间近似与Rs成正比,即Rs越小,开关的动作就越快。所以,对高内阻的信号源(一些传感器就是如此),宜用阻抗变换器(如电阻跟随器),将阻抗变低后再接入多路开关。此外,减小Rs还可同时减小多路开关的关断漏电流造成的误差。 当系统需要的信号通道数较多时,宜采用图3所示的两级联接方式。在图3 中,假设系统共需要32个信号通道,将这32个通道分成4组, 各组分别接至4个二级开关,信号由二级开关输出。设每个开关的输出电容为C0,则输出总电容由32Co至大约12Co,电路的时间常数减小,开关速度提高。此外,这种联接方式还可以使多路开关的总关断漏电流由31Iz降至大约10Iz(设每个开关的关断漏电流为Iz),从而减小关断漏电流造成的误差。对上述两种作用,通道数越多效果越显著。当然,这种联接方式需要的开关数相对多些,选通控制也相对复杂些,因而主要用于信号通道数较多的场合。 目前市场上的多路开关以RCA、AD、SILICONIX、MOTOROLA、MAXIN等公司的产品多见,种类繁多,性能、价格差异较大(详见有关公司的相关产品数据 手册 华为质量管理手册 下载焊接手册下载团建手册下载团建手册下载ld手册下载 )。选择和使用多路开关时,考虑的重点是满足系统对信号传输精度和传输速度的要求,同时还必须注意以下两点: 第一,全面了解多路开关的特性,否则可能出现难以预料的问题。例如:CMOS多路开关在电源切断时是断开的,而结型FET多路开关在电源切断时是接通的。若未注意到这一点,就可能因电源的通断而损坏有关芯片。 第二,多路开关只有与相关电路合理搭配,协调工作,才能充分发挥其性能,甚至弥补某些性能的欠缺。否则,片面追求多路开关的高性能,忽略与相关电路的搭配与协调,不但会造成成本与性能指标的浪费,而且往往收不到预期的效果。 此外,受芯片种类或应用场合的限制,在实践中往往有多余的通道。由于多路开关的内部电路相互联系,所以多余的通道可能产生干扰信号,必要时应作适当处理。例如[4]:测试多路开关CC4097和CC4067时发现,所有多余通道的输入端都必须接地,否则将产生干扰信号。 近年来,便携式产品越来越多地采用多源 设计 领导形象设计圆作业设计ao工艺污水处理厂设计附属工程施工组织设计清扫机器人结构设计 ,因此开关功能是视频、音频传输及处理过程中的一个重要组成部分。早期采用的机械开关具有可靠性低、体积大、功耗大的缺点,所以模拟开关已经引起了越来越多人的重视,并已被广泛应用于各种电子产品中。 尽管模拟开关具有机械开关不可取代的优势,然而它的应用较机械开关稍微复杂些,初次使用模拟开关的工程人员往往会由于模拟开关使用不当,引起整个系统的故障。本文通过将模拟开关与普通机械开关作比较,论述了模拟开关的若干基本概念,并结合实例对模拟开关应用的关键技术进行研究。 模拟开关的模拟特性 许多工程师第一次使用模拟开关,往往会把模拟开关完全等同于机械开关。其实模拟开关虽然具备开关性,但和机械开关有所不同,它本身还具有半导体特性: 1. 导通电阻(Ron)随输入信号(VIN)变化而变化 图1a是模拟开关的简单示意图,由图中可以看出模拟开关的常开常闭通道实际上是由两个对偶的N沟道MOSFET与P沟道MOSFET构成,可使信号双向传输,如果将不同VIN值所对应的P沟道MOSFET与N沟道MOSFET的导通电阻并联,可得到图1b并联结构下Ron随输入电压(VIN)的变化关系,如果不考虑温度、电源电压的影响,Ron随Vin呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD)。此外,Ron也受电源电压的影响,通常随着电源电压的上升而减小。 图1:a. 模拟开关原理图;b. 模拟开关导通电阻与输入电压关系 2. 模拟开关输入有严格的输入信号范围 由于模拟开关是半导体器件,当输入信号过低(低于零电势)或者过高(高于电源电压)时,MOSFET处于反向偏置,当电压达到某一值时(超出限值0.3V),此时开关无法正常工作,严重者甚至损坏。因此模拟开关在应用中,一定要注意输入信号不要超出规定的范围。 3. 注入电荷 应用机械开关我们当然希望Ron越低越好,因为低阻可以降低信号的损耗。然而对于模拟开关而言,低Ron并非适用于所有的应用,较低的Ron需要占据较大的芯片面积,从而产生较大的输入电容,在每个开关周期其充电和放电过程会消耗更多的电流。时间常数t=RC,充电时间取决于负载电阻(R)和电容(C),一般持续几十纳秒。这说明低Ron具有更长的导通和关断时间。为此,选择模拟开关应该综合权衡Ron和注入电荷。 4. 开关断开时仍会有感应信号漏出 这一特性指的是当模拟开关传输交流信号时,在断开情况下,仍然会有一部分信号通过感应由输入端传到输出端,或者由一个通道传到另一个通道。通常信号的频率越高,信号泄漏的程度越严重。 5. 传输电流比较小 模拟开关不同于机械开关,它通常只能传输小电流,目前CMOS工艺的模拟开关允许连续传输的电流大多小于500mA。 6. 逻辑控制端驱动电流极小 机械开关逻辑控制端的驱动电流往往都是毫安级,有时单纯靠数字I/O很难驱动。而模拟开关的逻辑控制端驱动电流极小,一般低于纳安级。因此,它完全可以由数字I/O直接驱动,从而达到降低功耗、简化电路的目的。 模拟开关的开关特性 既然称之为模拟开关,自然它还具有开关性,具体表现如下: 1. 信号可双向传输
本文档为【cd4501集成多路模拟开关的应用技巧】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_450749
暂无简介~
格式:doc
大小:130KB
软件:Word
页数:7
分类:互联网
上传时间:2011-04-07
浏览量:45