下载

1下载券

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 初中数学知识点总结PPT

初中数学知识点总结PPT

初中数学知识点总结PPT

Andrea丹丹
2018-10-24 0人阅读 举报 0 0 暂无简介

简介:本文档为《初中数学知识点总结PPTppt》,可适用于初中教育领域

数与式考点一 实数的有关概念.数轴规定了、、的直线叫做数轴.和数轴上的点是一一对应的..相反数()实数a的相反数为()a与b互为相反数hArr()相反数的几何意义:在数轴上表示相反数的两个点位于原点的两侧且到原点的距离.这两个点关于对称.原点正方向单位长度实数-aa+b=相等原点.倒数()实数a的倒数是其中a()a和b互为倒数hArr.绝对值在数轴上表示一个数的点离开的距离叫做这个数的绝对值.即一个正数的绝对值是它的绝对值是负数的绝对值是它的neab=原点本身相反数即|a|=eqblc{rc(avsalco(a a>, a=,-a a<))eqf(,a)温馨提示:()绝对值是a(a>)的数有两个它们互为相反数即为plusmna()绝对值相等的两个数相等或互为相反数即:若|a|=|b|,则a=b或ab=()任意实数的绝对值都是非负数即|a|ge()去掉绝对值符号进行化简运算时关键是判断绝对值符号里面的代数式的正负考点二实数的分类.按定义分类实数eqblc{rc(avsalco(有理数blc{rc(avsalco(整数blc{rc(avsalco(blcrc}(avsalco(正整数,零))自然数,负整数)),分数blc{rc}(avsalco(正分数,负分数))avsal(有限小数或无,限循环小数))),无理数blc{rc}(avsalco(正无理数,负无理数))无限不循环小数)).按正负分类无理数包括:()()()实数实数eqblc{rc(avsalco(正实数blc{rc(avsalco(正有理数blc{rc(avsalco(正整数,正分数)),正无理数)),零既不是正数也不是负数,负实数blc{rc(avsalco(负有理数blc{rc(avsalco(负整数,负分数)),负无理数))))温馨提示:eqo(sup(),sdo(  正确理解实数的分类如:f(pi,))是无理数不是分数f(,)是分数不是无理数)考点三平方根、算术平方根、立方根温馨提示:在应用x=a时一定不要忘记age这一条件注意算术平方根与平方根的区别与联系如的平方根是plusmn而的算术平方根是ge平方根正的平方根互为相反数.若x=a(a)则x叫做a的记作plusmneqr(a)正数a的叫做算术平方根记作eqr(a).平方根有以下性质()正数有两个平方根它们()的平方根是()负数没有平方根..如果x=a那么x叫做a的立方根记作eqr(,a)考点四科学记数法、近似数与有效数字把一个数N表示成atimesn(le|a|<n是整数)的形式叫科学记数法.当|N|ge时n等于原数N的整数位数减当|N|<且Nne时n是一个负整数它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零)..近似数与有效数字一个近似数四舍五入到哪一位就说这个近似数精确到哪一位这时从左边第个非零数字起到末位数字为止所有的数字都叫做这个近似数的有效数字.一考点一实数的运算在实数范围内运算顺序是:先算再算最后算有括号的先算括号内的同一级运算从左到右依次进行计算考点二零指数、负整数指数幂考点三实数大小比较在数轴上表示两个数的点右边的点表示的数总比左边的点表示的数两个负数比较绝对值大的反而设a、b是任意两个数若ab>则ab若ab=则ab若ab<则ab乘方(或开方)乘除加减大小>=<三个重要的非负数a(age)、|a|、a若ane则a=若anen为正整数则a-n=eqf(,an)考点一整式的有关概念.单项式和多项式统称整式.单项式是指用乘号把数和字母连接而成的式子而多项式是指几个单项式的.单项式中的数字因数叫做单项式的单项式中所有字母的叫做单项式的次数..多项式中每一个单项式叫做多项式的项其中不含字母的项叫做常数项多项式中次数的次数就是这个多项式的次数.和系数指数和最高项考点二整式的运算整式的加减()同类项与合并同类项所含的相同并且也分别相同的单项式叫做同类项把多项式中的同类项合并成一项叫做合并同类项合并的法则是系数相加所得的结果作为合并后的系数字母和字母的不变()去括号与添括号①括号前是ldquordquo号去掉括号和它前面的ldquordquo号括号里的各项都不改变符号括号前是ldquordquo号去掉括号和它前面的ldquordquo号括号里的各项字母相同字母的指数指数都改变符号②括号前是ldquordquo号括到括号里的各项都不改变符号括号前是ldquordquo号括到括号里的各项都改变符号()整式加减的实质是合并同类项温馨提示:在进行整式加减运算时,如果遇到括号应根据去括号法则先去括号再合并同类项当括号前是负号去括号时括号内每一项幂的运算同底数幂相乘,底数不变,指数相加,即ammiddotan=(m、n都是整数)幂的乘方,底数不变,指数相乘,即(am)n=(m、n都是整数)积的乘方等于把积的每一个因式分别乘方再把所有的幂相乘amnamn都要变号即(ab)n=anbn(n为整数)同底数幂相除底数不变指数相减即amdividean=(anem、n都为整数)整式的乘法单项式与单项式相乘把系数、同底数幂分别相乘作为积的因式只在一个单项式里含有的字母则连同它的指数作为积的一个因式单项式与多项式相乘就是根据分配律用单项式去乘多项式的每一项再把所得的积相加即m(abc)=多项式与多项式相乘先用多项式的每一项乘以另一个多项式的每一项再把所得的积相加即(mn)(ab)=mambnanbamnmambmc整式的除法单项式除以单项式把分别相除作为商的因式对于只在被除式里含有的字母则连同它的指数作为商的一个因式多项式除以单项式把这个多项式的每一项除以这个单项式然后把所得的商相加乘法公式()平方差公式两个数的和与这两个数的差的积等于这两个数的平方差即(ab)(ab)=()完全平方公式系数、同底数幂ab两数和(或差)的平方等于它们的平方和加上(或减去)它们的积的倍即(aplusmnb)=考点三因式分解因式分解的定义及与整式乘法的关系(),这种运算就是因式分解()因式分解与整式乘法是互逆运算..因式分解的常用方法()提公因式法()运用公式法()十字相乘aplusmnabb把一个多项式化为几个整式的积的形式.因式分解的一般步骤()一提:如果多项式的各项有公因式那么先提公因式()二用:如果各项没有公因式那么可以尝试运用公式法来分解()三查:分解因式必须进行到每一个多项式都不能再分解为止.考点一分式形如(A、B是整式且B中含有字母B)的式子叫做分式()分式有无意义:B=时分式无意义Bne时分式有意义()分式值为:A=且Bne时分式的值为考点二分式的基本性质分式的分子与分母都乘以(或除以)同一个 的整式分式的值不变温馨提示:若原分式的分子(或分母)是多项式运用分式基本性质时要先把分式的分子(或分母)用括号括上再乘以(或除以)整式应用分式基本性质时要深刻理解ldquo都rdquo与ldquo同rdquo这两个字的含义避免犯只乘分子或分母一项的错误ne不等于零eqf(A,B)考点三分式的运算同分母的分式相加减分母不变把分子相加减即eqf(a,c)plusmneqf(b,c)=异分母的分式相加减先通分变为同分母的分式然后相加减即eqf(a,b)plusmneqf(c,d)=.分式的乘除法分式乘以分式用分子的积做积的分子分母的积做积的分母即eqf(a,b)middoteqf(c,d)=分式除以分式把除式的分子、分母颠倒位置后与被除式相乘即eqf(a,b)divideeqf(c,d)==.分式的乘方分式的乘方是把分子、分母各自乘方即(eqf(n,m))k=(k是正整数).eqf(aplusmnb,c)eqf(adplusmnbc,bd)eqf(ac,bd)eqf(a,b)middoteqf(d,c)eqf(ad,bc)eqf(nk,mk).分式的混合运算考点四分式求值分式的求值方法很多主要有三种:()先化简后求值()由值的形式直接转化成所求的代数式的值()式中字母表示的数未明确告知而是隐含在方程等题设条件中解这类题一方面从方程中求出未知数或未知代数式的值另一方面把所求代数式化简只有双管齐下才能获得简易的解法考点一二次根式考点二最简二次根式最简二次根式必须同时满足条件:()被开方数的因数是因式是整式()被开方数中不含能开得尽方的因数或因式ge正整数式子eqr(a)(a)叫做二次根式.温馨提示:()eqr(a)age)表示a的算术平方根它是一个非负数即age()二次根式eqr(a)(age)中eqr(a)可以表示数、单项式、多项式以及符合条件的一切代数式考点三同类二次根式几个二次根式化成后如果相同这几个二次根式就叫做同类二次根式温馨提示:判断几个二次根式是否是同类二次根式必须先化成最简二次根式后再判断否则很容易出错考点四二次根式的性质最简二次根式被开方数非负aeqr(a)(age)是数.(eqr(a))=(age)考点五二次根式的运算.二次根式的加减法先将各根式化为然后合并同类二次根式.>最简二次根式最简二次根式geeqr(ab)=(agebge)eqr(f(a,b))=eqf(r(a),r(b))(ageb).eqr(a)middoteqr(b).二次根式的乘除法二次根式的乘法:eqr(a)middoteqr(b)=eqr(ab)(ageb)二次根式的除法:eqf(r(a),r(b))=eqr(f(a,b))(ageb>).二次根式的运算结果一定要化成方程(组)与不等式(组)考点一等式及方程的有关概念等式及其性质温馨提示:在等式两边都除以同一个代数式时一定要保证这个代数式的值方程的有关概念不为零考点二 一元一次方程.一元一次方程.解一元一次方程的一般步骤()去分母()去括号()移项()合并同类项()系数化为考点三二元一次方程组及解法考点四列方程(组)解应用题列方程(组)解应用题的一般步骤()把握题意搞清楚条件是什么求什么()设未知数()找出能够包含未知数的等量关系(一般情况下设几个未知数就找几个等量关系)eqblc{rc(avsalco(直接设未知数就事论事问什么设什么,间接设未知数))()列出方程(组)()求出方程(组)的解(注意排除增根)()检验(看是否符合题意)()写出答案(包括单位名称)列方程(组)解应用题的关键是:确定等量关系考点一一元二次方程的定义在整式方程中只含有个未知数并且含未知数项的最高次数是这样的整式方程叫一元二次方程一元二次方程的标准形式是考点二一元二次方程的常用解法一ax+bx+c=(ane)直接开平方法:如果x=a(age),则x=plusmneqr(a)则x=eqr(a),x=-eqr(a).配方法:如果x+px+q=且p-qge则eqblc(rc)(avsalco(x+f(p,)))=-q+eqblc(rc)(avsalco(f(p,)))x=-eqf(p,)+eqr(-q+blc(rc)(avsalco(f(p,))))x=-eqf(p,)-eqr(-q+blc(rc)(avsalco(f(p,)))).公式法:如果方程ax+bx+c=且b-acge则x=eqf(-bplusmnr(b-ac),a).因式分解法:若ax+bx+c=(ex+f)(mx+n)则ax+bx+c=的根为x=-eqf(f,e)x=-eqf(n,m)考点三一元二次方程根的判别式关于x的一元二次方程ax+bx+c=(ane)的根的判别式为b-ac一般用符号Delta表示.()b-ac>hArr一元二次方程ax+bx+c=(ane)有两个不相等的实数根则x,=eqf(-bplusmnr(b-ac),a)()b-ac=hArr一元二次方程ax+bx+c=(ane)有两个相等的实数根即x=x=-eqf(b,a)()b-ac<hArr一元二次方程ax+bx+c=(ane)没有实数根.温馨提示:只有一元二次方程才具有根的判别式因此在逆用判别式时一定要保证二次项系数不等于零考点四一元二次方程根与系数之间的关系.若关于x的一元二次方程ax+bx+c=(ane)有两根分别为x、x则x+x=-eqf(b,a)xmiddotx=eqf(c,a).(简易形式)若关于x的一元二次方程x+px+q=有两个根分别为x、x则x+x=-pxmiddotx=q考点五列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题步骤一样即审、找、设、列、解、答六步.温馨提示:在应用根与系数的关系时一定要保证一元二次方程有实数根分式方程验根考点二与增根有关的问题.分式方程的增根必须同时满足两个条件()().增根在含参数的分式方程中的应用由增根求参数的值.解答思路为:()将原方程化为整式方程()确定增根()将增根代入变形后的整式方程求出参数的值.是由分式方程化成的整式方程的根使最简公分母为零考点三列分式方程解应用题列分式方程解应用题和其他列方程解应用题一样,不同之处是列出的方程是分式方程求出分式方程解后一定要记住对所列方程和实际问题验根不要缺少了这一步应用问题中常用的数量关系及题型()数字问题(包括日历中的数字规律)①设个位数字为c十位数字为b百位数字为a则这个三位数是②日历中前后两日差上下两日差abc()体积变化问题()打折销售问题①利润=成本②利润率=times()行程问题路程=times若用v表示轮船的速度用v顺、v逆、v水分别表示轮船顺水、逆水和水流的速度在下列式子中填空v顺=v+      v逆=v-v=v水=售价速度时间v水v水eqf(利润,成本)eqf(v顺-v逆,)eqf(v顺-v逆,)在轮船航行问题中知v顺、v逆、v、v水中的任何两个量总能求出其他的量.()教育储蓄问题.①利息=②本息和==本金times(+利率times期数)③利息税=④贷款利息=贷款数额times利率times期数.本金times利率times期数本金+利息利息times利息税率不等式考点一不等式的基本概念考点二不等式的基本性质温馨提示:一定要注意应用不等式的基本性质时要改变不等号的方向不等式组考点一一元一次不等式组的有关概念考点二一元一次不等式组的解法.两个一元一次不等式所组成的不等式组的解集情况见下表(其中a<b):x<ax>ba<x<b无解不等式组在数轴上表示口 诀解 集eqblc{rc(avsalco(x<a,x<b))小小取小eqblc{rc(avsalco(x>a,x>b))大大取大eqblc{rc(avsalco(x>a,x<b))大小小大中间找eqblc{rc(avsalco(x<a,x>b))大大小小无解温馨提示当不等式组中含有ldquogerdquo或ldquolerdquo时不等式组的解法和解集取法不变只是表示在数轴上需要注意区分实心点和空心圆圈的使用考点三一元一次不等式组的特殊解一元一次不等式组的特殊解主要是指整数解、非负整数解、负整数解等不等式组的特殊解包含在它的解集中因此解决此类问题的关键是先求出不等式组的解集然后求其特殊解平面直角坐标系考点一平面内点的坐标.有序数对()平面内的点可以用一对来表示.例如点A在平面内可表示为A(ab)其中a表示点A的横坐标b表示点A的纵坐标.()平面内的点和有序实数对是的关系即平面内的任何一个点可以用一对来表示反过来每一对有序实数都表示平面内的一个点.()有序实数对表示这一对实数是有的即(,)和(,)表示两个的点.有序实数一一对应有序实数不同顺序考点一平面内点的坐标平面内点的坐标规律()各象限内点的坐标的特征点P(xy)在第一象限hArrx>y>点P(xy)在第二象限hArrx<y>点P(xy)在第三象限hArrx<y<点P(xy)在第四象限hArrx>y<()坐标轴上的点的坐标的特征点P(xy)在x轴上hArry=x为任意实数点P(xy)在y轴上hArrx=y为任意实数点P(xy)在坐标原点hArrx=y=考点二特殊点的坐标特征.平行于坐标轴的直线上的点的坐标特征()平行于x轴(或垂直于y轴)的直线上点的相同横坐标为不相等的实数.()平行于y轴(或垂直于x轴)的直线上点的相同纵坐标为不相等的实数..各象限角平分线上的点的坐标特征()第一、三象限角平分线上的点横、纵坐标()第二、四象限角平分线上的点横、纵坐标纵坐标横坐标相等互为相反数.对称点的坐标特征点P(xy)关于x轴的对称点P的坐标为(x-y)关于y轴的对称点P的坐标为(-xy)关于原点的对称点P的坐标为(-x-y).以上特征可归纳为:()关于x轴对称的两点横坐标相同纵坐标()关于y轴对称的两点横坐标纵坐标相同.()关于原点对称的两点横、纵坐标均互为相反数互为相反数互为相反数直线型考点一线段、射线、直线.线段的性质()所有连接两点的线中,最短即过两点有且只有一条直线()线段垂直平分线上的点到这条线段的的距离相等..射线、线段又可看作是直线的一部分即整体与部分的关系将线段无限延长一方得到射线两方无限延长可得到直线..直线、射线、线段的区别与联系线段两个端点项目类别端点个数可延伸方向个数表 示图 形直 线两个大写字母或一个小写字母射 线两个大写字母线 段两个大写字母或一个小写字母考点二角.有公共端点的两条射线组成的图形叫做角如果一个角的两边成一条直线那么这个角叫做平角平角的一半叫直角大于直角小于平角的角叫做钝角大于deg小于直角的角叫做锐角..周角=度平角=度直角=度deg=分分=秒..余角、补角及其性质互为补角:如果两个角的和是一个,那么这两个角叫做互为补角互为余角:如果两个角的和是一个,那么这两个角叫做互为余角性质:同角(或)的余角相等同角(或等角)的补角相等.平角直角等角温馨提示:互为补角、互为余角是相对两个角而言它们都是由数量关系来定义与位置无关考点三相交线.对顶角及其性质对顶角:两条直线相交所得到的四个角中没有公共边的两个角叫做对顶角.性质:对顶角.垂线及其性质垂线:两条直线相交所构成的四个角中有一个角是直角则这两条直线互相垂直其中一条直线叫另一条直线的性质:①经过一点有且只有一条直线与已知直线垂直②直线外一点与直线上各点连接的所有线段中垂线段最短(简说成:垂线段最短).相等垂线考点四平行线.平行线的定义在同一平面内的两条直线叫平行线..平行公理经过已知直线外一点有且只有条直线与已知直线平行..平行线的性质()如果两条直线平行那么相等()如果两条直线平行那么相等()如果两条直线平行那么互补.不相交一同位角内错角同旁内角.平行线的判定()定义:在同一平面内的两条直线叫平行线()相等两直线平行()相等两直线平行()同旁内角两直线平行.温馨提示:除上述平行线识别方法外还有ldquo在同一平面内垂直于同一直线的两条直线平行rdquo及ldquo平行于同一直线的两条直线平行rdquo的识别方法不相交同位角内错角互补三角形考点一三角形的概念与分类.由三条线段所围成的平面图形叫做三角形..三角形按边可分为:三角形和三角形按角可分为三角形、三角形和三角形.首尾顺次相接不等边等腰锐角钝角直角考点二三角形的性质.三角形的内角和是三角形的外角等于与它的两个内角的和三角形的外角大于任何一个和它不相邻的内角..三角形的两边之和第三边两边之差第三边..三角形中的重要线段()角平分线:三角形的三条角平分线交于一点这点叫做三角形的内心它到三角形各边的距离相等.()中线:三角形的三条中线交于一点这点叫做三角形的重心.()高:三角形的三条高交于一点这点叫做三角形的垂心.deg不相邻大于小于()三边垂直平分线:三角形的三边垂直平分线交于一点这点叫做三角形的外心外心到三角形三个顶点距离相等.()中位线:三角形中位线平行于第三边且等于第三边的一半.温馨提示:三角形的边、角之间的关系是三角形中重要的性质在比较角的大小、线段的长短及求角或线段中经常用到学习时应结合图形做到熟练、准确地应用三角形的角平分线、高、中线均为线段考点三全等三角形的概念与性质.能够完全重合的两个三角形叫做全等三角形..全等三角形的性质()全等三角形的、分别相等()全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等.对应边对应角考点四全等三角形的判定.一般三角形全等的判定()如果两个三角形的三条边分别那么这两个三角形全等简记为SSS()如果两个三角形有两边及其夹角分别对应相等那么这两个三角形全等简记为SAS()如果两个三角形的两角及其夹边分别对应相等那么这两个三角形全等简记为ASA()如果三角形的两角及其中一角的对边分别对应相等那么这两个三角形全等简记为AAS对应相等.直角三角形全等的判定()两直角边对应相等的两个直角三角形全等()一边及该边所对锐角对应相等的两个直角三角形全等()如果两个直角三角形的斜边及一条分别对应相等那么这两个直角三角形全等.简记为HL.证明三角形全等的思路直角边()已知两边eqblc{rc(avsalco(找夹角,找直角,找另一边))()已知一边一角eqblc{rc(avsalco(边为角的对边时找另一角,边为角的邻边时blc{rc(avsalco(找夹角的另一边,找夹边的另一角,找边的对角))))()已知两角eqblc{rc(avsalco(找夹边,找任意一边))温馨提示:()判定三角形全等必须有一组对应边相等()判定三角形全等时不能错用ldquoSSArdquoldquoAAArdquo来判定考点一等腰三角形.概念及分类有的三角形叫等腰三角形有的三角形叫做等边三角形也叫正三角形等腰三角形分为的等腰三角形和的等腰三角形..等腰三角形的性质()等腰三角形两腰相等等腰三角形的两个底角()等腰三角形的顶角角平分线、底边上的中线和高互相简称ldquo三线合一rdquo三边相等腰和底不相等腰和底相等相等重合两边相等()等腰(非等边)三角形是轴对称图形它有一条对称轴.温馨提示:应用性质ldquo三线合一rdquo时一定要注意是顶角的平分线、底边上的中线、底边上的高互相重合利用它可以证明线段相等、角相等及直线垂直考点二等边三角形的性质与判定.性质:()等边三角形的内角都相等且等于deg()等边三角形是轴对称图形等边三角形每条边上的中线、高和所对角的平分线都ldquo三线合一rdquo它们所在的直线都是等边三角形的对称轴..判定:三个角相等的三角形是等边三角形有一个角是deg的等腰三角形是等边三角形.温馨提示:()顶角是直角的等腰三角形是等腰直角三角形()等边三角形外心、内心、重心、垂心四心合一考点三线段的中垂线.概念:垂直且平分一条线段的直线叫做这条线段的垂直平分线也叫中垂线..性质:线段中垂线上的点到这条线段两端点的距离相等..判定:到一条线段的两个端点距离相等的点在中垂线上线段的中垂线可以看作是到线段两端点距离相等的点的集合.考点四直角三角形的性质、判定.性质()直角三角形的两个锐角()勾股定理:a+b=c(在Rt△ABC中angC=deg)()在直角三角形中如果有一个锐角等于deg那么它所对的直角边等于斜边的()在直角三角形中如果一条直角边等于斜边的一半那么这条直角边所对的锐角为()直角三角形上的中线等于斜边的一半.互余一半deg斜边.判定()有一个角是的三角形是直角三角形()勾股定理的逆定理:如果三角形的三边长a、b、c满足a+b=c那么这个三角形是直角三角形()如果一个三角形一边上的中线等于这边的一半那么这个三角形为三角形()在一个三角形中,如果有两个角互余,那么这个三角形是三角形.直角直角直角温馨提示:()勾股定理的逆定理是判定三角形为直角三角形的重要方法()能够成为直角三角形三条边长的三个正整数称为勾股数()若a、b、c为一直角三角形的三边长则以ma、mb、mc(m>)为三边的三角形也是直角三角形考点定义、命题、定理、公理有关概念()定义是能明确指出概念含义或特征的句子它必须严密.()命题:判断一件事情的语句.①命题由题设和两部分组成.②命题的真假:正确的命题称为的命题称为假命题③互逆命题:在两个命题中如果第一个命题的题设是第二个命题的结论而第一个命题的结论是第二个命题的题设那么这两个命题称为互逆命题.每一个命题都有逆命题.真命题错误结论()定理:经过证明的真命题叫做定理.因为定理的逆命题不一定都是真命题所以不是所有的定理都有逆定理.()公理:有一类命题的正确性是人们在长期的实践中总结出来的并把它们作为判断其他命题真伪的原始依据这样的真命题叫公理.温馨提示:对命题的正确性理解一定要准确判定命题不成立时有时可以举反例说明道理命题有正、误错误的命题也是命题考点三证明.证明:根据题设、定义、公理及定理经过逻辑推理来判断一个命题是否正确这一推理过程称为证明..证明的一般步骤:①审题找出命题的和②由题意画出图形具有一般性③用数学语言写出、④分析证明的思路⑤写出每一步应有根据要推理严密.证明过程题设结论已知求证多边形考点一多边形不相邻(n-)middotdegdeg.多边形:在平面内由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形的两个顶点的线段.注意:从n边形的一个顶点出发可以引出(n-)条对角线共有n(n)条对角线把多边形分成了(n-)个三角形..n边形的内角和是外角和是考点二平面图形的密铺.密铺的定义用形状大小完全相同的一种或几种平面图形进行拼接彼此之间不留空隙、不重叠地铺成一片这就是平面图形的密铺又称作平面图形的镶嵌..平面图形的密铺温馨提示:能密铺的图形在一个拼接点处的特点:几个图形的内角拼接在一起时其和等于deg,并使相等的边互相重合考点三平行四边形的定义、性质与判定.定义:两组对边的四边形是平行四边形..性质:()平行四边形的对边()平行四边形的对角邻角()平行四边形的对角线()平行四边形是对称图形..判定:()两组对边分别的四边形是平行四边形()两组对边分别的四边形是平行四边形()一组对边的四边形是平行四边形()两组对角分别的四边形是平行四边形()对角线的四边形是平行四边形.分别平行平行且相等相等互补互相平分中心平行相等平行且相等相等互相平分考点一矩形的定义、性质和判定.定义:有一个角是直角的平行四边形是矩形..性质:()矩形的四个角都是直角()矩形的对角线()矩形既是轴对称图形又是中心对称图形它有两条对称轴它的对称中心是对角线的交点..判定:()有的平行四边形是矩形()有三个角是直角的四边形是矩形()对角线相等的是矩形.互相平分且相等一个角是直角平行四边形考点二菱形的定义、性质和判定.定义:有一组邻边相等的平行四边形是菱形..性质:()菱形的四条边对角线互相并且每条对角线平分一组对角()菱形既是轴对称图形又是中心对称图形..判定:()有一组邻边相等的平行四边形是菱形()四条边都相等的四边形是菱形()对角线的平行四边形是菱形()对角线互相垂直平分的四边形是菱形.都相等垂直平分互相垂直考点三正方形的定义、性质和判定.定义:有一个角是直角的菱形是正方形或有一组邻边相等的矩形是正方形..性质:()正方形四个角都是四条边都()正方形两条对角线并且互相每条对角线平分一组对角.()正方形既是轴对称图形又是中心对称图形..判定:()有一个角是直角的菱形是正方形()有一组邻边相等的矩形是正方形(正方形的判定可借助平行四边形、矩形、菱形来判定).直角相等相等垂直平分考点四平行四边形、矩形、菱形、正方形的关系温馨提示:矩形、菱形和正方形具有平行四边形的所有性质平行四边形及特殊平行四边形的有关知识点较多要想做到准确而不混淆就要从ldquo边、角、对角线、对称性rdquo这四个方面来研究它们的性质和判定多用数形结合法掌握它们的区别及联系把握它们的特征是关键考点一梯形的定义、分类及面积.定义:一组对边平行而另一组对边的四边形叫做梯形.其中平行的两边叫做底两底间的距离叫做梯形的不平行高.分类:梯形:eqblc{rc(avsalco(两腰不相等的梯形,等腰梯形:两腰相等的梯形叫做等腰梯形,直角梯形:一腰与底垂直的梯形叫做直角,  梯形)).面积:S梯形=eqf(,)(上底+下底)times高=中位线times高.考点二等腰梯形的性质与判定.性质:()等腰梯形的两腰相等两底()等腰梯形在同一底边上的两个角()等腰梯形的对角线()等腰梯形是轴对称图形..判定:()定义法()同一底边上的两个角的梯形是等腰梯形()对角线相等的梯形是等腰梯形.平行相等相等相等考点三梯形的中位线.定义:连接梯形的线段叫做梯形中位线..判定:()经过梯形一腰中点与的直线必平分另一腰()定义法..性质:梯形的中位线两底并且等于的一半两腰中点底平行平行于两底和考点四解决梯形问题的基本思路及辅助线的作法.基本思路:梯形问题eqo(――rarr,sup(转化),sdo(分割、拼接))三角形或平行四边形..常见辅助线的作法:相似考点一相似多边形的判断及性质.多边形相似的判断:各角对应相等各边对应成比例..相似多边形的性质()对应角对应边()周长之比等于面积之比等于相等成比例相似比相似比的平方考点三位似图形及性质.定义:如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一点那么这样的两个图形叫做位似图形这个点叫做位似中心这时的相似比又称为位似比.因此位似图形一定是相似图形但相似图形不一定是位似图形..性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.考点一相似三角形的定义定义:如果两个三角形的各角对应各边对应那么这两个三角形相似考点二相似三角形的性质.相似三角形的对应角对应边.相似三角形的对应高的比、对应角平分线的比、对应中线的比都等于相似三角形的周长之比等于面积之比等于相等成比例相等成比例相似比相似比的平方相似比考点三相似三角形的判定.两边对应且夹角的两个三角形相似..两角对应相等的两个三角形相似..三边对应的两个三角形相似.温馨提示:直角三角形相似的条件:()两直角边对应成比例的两个直角三角形相似()有一个锐角对应相等的两直角三角形相似()有斜边和一直角边对应成比例的两个直角三角形相似成比例相等成比例考点一锐角三角函数定义若在Rt△ABC中angC=degangA、angB、angC的对边分别为a、b、c则sinA=cosA=tanA=温馨提示:()锐角三角函数是在直角三角形中定义的()sinA,cosA,tanA表示的是一个整体是指两条线段的比没有单位()锐角三角函数的大小仅与角的大小有关与该角所处的直角三角形的大小无关eqf(a,c)eqf(b,c)eqf(a,b)()当A为锐角时<sinA<,<cosA<,tanA>考点二特殊角的三角函数值alphasinalphacosalphatanalphadegeqf(,)eqf(r(),)eqf(r(),)degeqf(r(),)eqf(r(),)degeqf(r(),)eqf(,)eqr()考点四解直角三角形.解直角三角形的定义由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.(直角三角形中除直角外一共有个元素即条边和个锐角).直角三角形的边角关系在Rt△ABC中angC=degangA、angB、angC的对边分别为a、b、c()三边之间的关系:()两个锐角之间的关系:a+b=cangA+angB=deg()边角之间的关系:sinA=eqf(a,c)cosA=eqf(b,c)tanA=eqf(a,b)sinB=eqf(b,c)cosB=eqf(a,c)tanB=eqf(b,a)()互余角的三角函数值之间的关系:若angAangB=deg,那么sinA=cosB或sinB=cosA()同角的三角函数值之间的关系:①sinAcosA=②tanA=考点一解直角三角形的应用中的相关概念.仰角、俯角:如图①在测量时视线与水平线所成的角中视线在水平线上方的角叫仰角在水平线下方的角叫俯角..方向角:指南或指北的方向线与目标方向线所成的小于deg的水平角叫做方向角.如图③表示北偏东deg方向的一个角.水平距离l.坡度(坡比)、坡角:如图②坡面的高度h和的比叫坡度(或坡比)即i=tanalpha=eqf(h,l)坡面与水平面的夹角alpha叫坡角.注意:东北方向指北偏东方向东南方向指南偏东deg方向西北方向指北偏西deg方向西南方向指南偏西deg方向.我们一般画图的方位为上北下南左西右东..方位角:从指北方向线按顺时针方向转到目标方向线所成的角叫做方位角.deg考点二直角三角形的边角关系的应用日常生活中的很多问题可以转化为直角三角形的问题因此直角三角形的边角关系在解决实际问题中有较大的作用在应用时要注意以下几个环节:()将实际问题抽象为数学问题(画出平面图形转化为解直角三角形的问题)()根据条件的特点适当选用锐角三角函数等去解直角三角形()得到数学问题的答案()得到实际问题的答案.图形的变换考点一图形的轴对称.轴对称图形的定义如果一个图形沿着一条直线折叠后直线两旁的部分能够互相那么这个图形叫做轴对称图形..轴对称的定义把一个图形沿着某一条直线翻折过去如果它能够和另一个图形重合那么这两个图形关于直线对称两个图形关于直线对称也称轴对称.这条直线叫做对称轴.重合.轴对称变换的基本性质()对应点所连的线段被对称轴()对应线段对应角.轴对称和轴对称图形的区别轴对称涉及两个图形是两个图形的位置关系轴对称图形是对一个图形本身而言的..镜面对称原理()镜中的像与原来的物体()镜子中的像改变了原来物体的左右位置即像与物体左右位置互换.垂直平分相等相等轴对称考点二中心对称图形和中心对称.在平面内一个图形绕某个点旋转deg能与原来的图形重合这个图形叫做中心对称图形这个点叫做它的对称中心旋转前后图形上能够重合的点叫做对称点..在平面内一个图形绕某一定点旋转deg它能够与另一个图形重合就说这两个图形关于这个点成中心对称这个点叫做对称中心旋转后两个图形上能够重合的点叫做关于对称中心的对称点..中心对称与中心对称图形的区别与联系区别:()中心对称是指两个图形的位置关系而中心对称图形是指具有某种性质的一类图形()成中心对称的两个图形的对称点分别在两个图形上而中心对称图形的对称点在同一个图形上.联系:若把中心对称图形的两部分看成两个图形则它们成中心对称若把成中心对称的两个图形看成一个整体则成为中心对称图形.考点一平移的定义、条件.定义:在平面内将某个图形沿某个移动一定的这样的图形运动称为平移..条件:确定一个平移运动的条件是和温馨提示:画平移图形时必须确定平移的方向和距离还需注意图形上的每个点都沿同一方向移动相同的距离方向距离平移的方向距离考点二平移的性质.平移不改变图形的与即平移后所得的新图形与原图形.连接各组对应点的线段平行且.对应线段平行.对应角温馨提示:画平移图形的依据是:平移的性质关键是:正确找出所画图形的形状大小全等相等相等关键点考点三图形的旋转.定义:在平面内将一个图形绕一个定点沿某个方向旋转一个这样的图形运动称为旋转.这个称为旋转中心转动的称为旋转角..条件:图形的旋转是由旋转中心、和确定的..性质:图形旋转过程中图形上每一个点都绕旋转中心沿相同方向转动了相同角度注意一对对应点与旋转中心的连线所成的角度都是旋转角旋转角都对应点到旋转中心的距离..一个图形只要满足这一条件就是旋转对称图形.角度角度旋转方向旋转角相等相等绕一点旋转某个角度后能与原图形重合定点.把一个图形绕某个点旋转后能与另一个图形完全重合则这两个图形成中心对称对应点连线都经过且被对称中心平分对应线段.温馨提示:一对对应点与旋转中心所形成的角就是旋转角图形旋转时要注意旋转方向方向不同旋转后的图形不同中心对称图形是特殊的旋转对称图形它是有一个旋转角为deg的旋转对称图形deg对称中心平行或在同一直线上且相等立体图形考点一生活中的立体图形.生活中常见的立体图形有:球体、柱体、它们之间的关系可用下面的示意图表示.多面体:由围成的立体图形叫锥体平面图形多面体立体图形eqblc{rc(avsalco(球体,柱体blc{rc(avsalco(圆柱,棱柱blc{rc(avsalco(三棱柱,四棱柱,五棱柱,helliphellip)))),锥体blc{rc(avsalco(圆锥,棱锥blc{rc(avsalco(三棱锥,四棱锥,五棱锥,helliphellip))))))考点二由立体图形到视图.视图:从正面、上面和侧面(左面或右面)三个不同方向看一个物体然后描绘三张所看到的图即视图.其中从正面看到的图形称为正视图从上面看到的图形,称为俯视图从侧面看到的图形称为侧视图..常见几何体的三种视图几何体正视图左视图俯视图圆 柱长方形长方形圆圆 锥三角形三角形圆和圆心球圆圆圆考点三物体的投影()阳光下的影子为平行投影在同一时刻两物体的影子应在同一方向上并且物高与影长成正比.()灯光下的影子为中心投影影子应在物体背对光的一侧.()盲区是视线不能直接到达的区域范围.温馨提示:在解决物体投影的问题时,一定要先确定出该投影是平行投影还是中心投影,特别在解决计算解答题时,一定要正确找出比例关系准确求解投影eqblc{rc(avsalco(平行投影:阳光下物体的影子,中心投影blc{rc(avsalco(灯光与影子,视点、视线和盲区))))圆考点一圆的定义及其性质.圆的定义有两种方式()在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆固定的端点叫,线段OA叫做()圆是到定点的距离等于定长的点的.圆的对称性()圆是轴对称图形经过圆心的每一条直线都是它的对称轴.()圆是以圆心为对称中心的中心对称图形.()圆是旋转对称图形.圆绕圆心旋转任意角度都能和原来的图形重合这就是圆的.圆心半径集合旋转不变性考点二垂径定理及推论.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧..推论:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧弦的垂直平分线经过圆心并且平分弦所对的两条弧平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧.温馨提示:注意平分弦的直径不一定垂直于弦等弧指能完全重合的弧其度数一定相同但度数相同的弧不一定是等弧①过圆心②平分弦③垂直于弦④平分弦所对的优弧⑤平分弦所对的劣弧若一条直线具备这五项中任意两项则必具备另外三项其中由①、②得③、④、⑤时被平分的弦不是直径考点三圆心角、弧、弦、弦心距之间的关系.定理:在同圆或等圆中相等的圆心角所对的弧相等所对的弦相等所对弦的弦心距相等..推论:同圆或等圆中:()两个圆心角相等()两条弧相等()两条弦相等()两条弦的弦心距相等.四项中有一项成立则其余对应的三项都成立.考点四圆心角与圆周角.定义:顶点在圆心上的角叫圆心角顶点在圆上角的两边和圆都相交的角叫圆周角..性质()圆心角的度数等于它所对弧的度数()一条弧所对的圆周角的度数等于它所对圆心角的()同弧或等弧所对的圆周角.同圆或等圆中相等的圆周角所对的相等()半圆(或直径)所对的圆周角是deg的圆周角所对的弦是直径.度数的一半相等直角弧温馨提示:圆周角定理是把圆周角和圆心角这两类不同的角联系在一起同一条弧所对的圆周角相等同一条弦所对的圆周角相等或互补半圆所对的圆周角是deg,deg的圆周角所对的弧是半圆已知条件中如果有直径时常常作直径所对的圆周角这是圆中常添加的辅助线考点一点与圆的位置关系.点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.如果圆的半径是r点到圆心的距离为d那么:()点在圆上hArrd=r()点在圆内hArrdr()点在圆外hArrdr.过三点的圆()经过三点作圆:①经过在同一直线上的三点不能作圆②经过不在同一直线上的三点有且只有一个圆.()三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆外接圆的圆心叫做三角形的外心这个三角形叫做这个圆的内接三角形.()三角形外接圆的作法:①确定外心:作任意两边的中垂线交点即为外心②确定半径:两边中垂线的交点到三角形任一个顶点的距离作为半径.温馨提示:锐角三角形的外心在三角形内部直角三角形的外心在斜边中点处钝角三角形的外心

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/164

初中数学知识点总结PPT

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利