首页 Physics - Born, Max - The Statistical Interpretations Of Quantum Mechanics

Physics - Born, Max - The Statistical Interpretations Of Quantum Mechanics

举报
开通vip

Physics - Born, Max - The Statistical Interpretations Of Quantum Mechanics M A X B O R N The statistical interpretation of quantum mechanics Nobel Lecture, December 11, 1954 The work, for which I have had the honour to be awarded the Nobel Prize for 1954, contains no discovery of a fresh natural phenomenon, but rather the basis ...

Physics - Born, Max - The Statistical Interpretations Of Quantum Mechanics
M A X B O R N The statistical interpretation of quantum mechanics Nobel Lecture, December 11, 1954 The work, for which I have had the honour to be awarded the Nobel Prize for 1954, contains no discovery of a fresh natural phenomenon, but rather the basis for a new mode of thought in regard to natural phenomena. This way of thinking has permeated both experimental and theoretical physics to such a degree that it hardly seems possible to say anything more about it that has not been already so often said. However, there are some particular aspects which I should like to discuss on what is, for me, such a festive occa- sion. The first point is this: the work at the Göttingen school, which I directed at that time (1926-I927), contributed to the solution of an intellec- tual crisis into which our science had fallen as a result of Planck’s discovery of the quantum of action in 1900. Today, physics finds itself in a similar crisis - I do not mean here its entanglement in politics and economics as a result of the mastery of a new and frightful force of Nature, but I am con- sidering more the logical and epistemological problems posed by nuclear physics. Perhaps it is well at such a time to recall what took place earlier in a similar situation, especially as these events are not without a definite dramat- ic flavour. The second point I wish to make is that when I say that the physicists had accepted the concepts and mode of thought developed by us at the time, I am not quite correct. There are some very noteworthy exceptions, partic- ularly among the very workers who have contributed most to building up the quantum theory. Planck, himself, belonged to the sceptics until he died. Einstein, De Broglie, and Schrödinger have unceasingly stressed the unsatis- factory features of quantum mechanics and called for a return to the con- cepts of classical, Newtonian physics while proposing ways in which this could be done without contradicting experimental facts. Such weighty views cannot be ignored. Niels Bohr has gone to a great deal of trouble to refute the objections. I, too, have ruminated upon them and believe I can make some contribution to the clarification of the position. The matter concerns the borderland between physics and philosophy, and so my physics lecture 256 I N T E R P R E T A T I O N O F Q U A N T U M M E C H A N I C S 257 will partake of both history and philosophy, for which I must crave your indulgence. First of all, I will explain how quantum mechanics and its statistical inter- pretation arose. At the beginning of the twenties, every physicist, I think, was convinced that Planck’s quantum hypothesis was correct. According to this theory energy appears in finite quanta of magnitude hv in oscillatory processes having a specific frequency n (e.g. in light waves). Countless experiments could be explained in this way and always gave the same value of Planck’s constant h. Again, Einstein’s assertion that light quanta have momentum hv/c (where c is the speed of light) was well supported by exper- iment (e.g. through the Compton effect). This implied a revival of the corpuscular theory of light for a certain complex of phenomena. The wave theory still held good for other processes. Physicists grew accustomed to this duality and learned how to cope with it to a certain extent. In 1913 Niels Bohr had solved the riddle of line spectra by means of the quantum theory and had thereby explained broadly the amazing stability of the atoms, the structure of their electronic shells, and the Periodic System of the elements. For what was to come later, the most important assumption of his teaching was this: an atomic system cannot exist in all mechanically possible states, forming a continuum, but in a series of discrete « stationary » states. In a transition from one to another, the difference in energy Em - En is emitted or absorbed as a light quantum hv,, (according to whether Em is greater or less than En). This is an interpretation in terms of energy of the fundamental law of spectroscopy discovered some years before by W. Ritz. The situation can be taken in at a glance by writing the energy levels of the stationary states twice over, horizontally and vertically. This produces a square array E I , E2 , E3 . . . . E1 11 12 13 - E2 21 22 23 - E3 31 32 33 - - - - - in which positions on a diagonal correspond to states, and non-diagonal positions correspond to transitions. It was completely clear to Bohr that the law thus formulated is in conflict with mechanics, and that therefore the use of the energy concept in this 258 1 9 5 4 M - B O R N connection is problematical. He based this daring fusion of old and new on his principle of correspondence. This consists in the obvious requirement that ordinary classical mechanics must hold to a high degree of approximation in the limiting case where the numbers of the stationary states, the so-called quantum numbers, are very large (that is to say, far to the right and to the lower part in the above array) and the energy changes relatively little from place to place, in fact practically continuously. Theoretical physics maintained itself on this concept for the next ten years. The problem was this: an harmonic oscillation not only has a fre- quency, but also an intensity. For each transition in the array there must be a corresponding intensity. The question is how to find this through the considerations of correspondence? It meant guessing the unknown from the available information on a known limiting case. Considerable success was attained by Bohr himself, by Kramers, Sommerfeld, Epstein, and many others. But the decisive step was again taken by Einstein who, by a fresh derivation of Planck’s radiation formula, made it transparently clear that the classical concept of intensity of radiation must be replaced by the statistical concept of transition probability. To each place in our pattern or array there belongs (together with the frequency v,,,~ = (E, - Em)/h) a definite prob- ability for the transition coupled with emission or absorption. In Göttingen we also took part in efforts to distil the unknown mechanics of the atom from the experimental results. The logical difficulty became ever sharper. Investigations into the scattering and dispersion of light showed that Einstein’s conception of transition probability as a measure of the strength of an oscillation did not meet the case, and the idea of an amplitude of oscillation associated with each transition was indispensable. In this connection, work by Ladenburg 1, Kramer2, Heisenberg3, Jordan and me4 should be mentioned. The art of guessing correct formulae, which deviate from the classical for- mulae, yet contain them as a limiting case according to the correspondence principle, was brought to a high degree of perfection. A paper of mine, which introduced, for the first time I think, the expression quantum mechanics in its title, contains a rather involved formula (still valid today) for the recip- rocal disturbance of atomic systems. Heisenberg, who at that time was my assistant, brought this period to a sudden ends. He cut the Gordian knot by means of a philosophical prin- ciple and replaced guess-work by a mathematical rule. The principle states that concepts and representations that do not correspond to physically ob- servable facts are not to be used in theoretical description. Einstein used the I N T E R P R E T A T I O N O F Q U A N T U M M E C H A N I C S 259 same principle when, in setting up his theory of relativity, he eliminated the concepts of absolute velocity of a body and of absolute simultaneity of two events at different places. Heisenberg banished the picture of electron orbits with definite radii and periods of rotation because these quantities are not observable, and insisted that the theory be built up by means of the square arrays mentioned above. Instead of describing the motion by giving a co- ordinate as a function of time, x(t), an array of transition amplitudes xmn should be determined. To me the decisive part of his work is the demand to determine a rule by which from a given array the array for the square can be found (or, more general, the multiplication rule for such arrays). By observation of known examples solved by guess-work he found this rule and applied it successfully to simple examples such as the harmonic and anharmonic oscillator. This was in the summer of 1925. Heisenberg, plagued by hay fever took leave for a course of treatment by the sea and gave me his paper for publica- tion if I thought I could do something with it. The significance of the idea was at once clear to me and I sent the manu- script to the Zeitschrift für Physik. I could not take my mind off Heisenberg’s multiplication rule, and after a week of intensive thought and trial I suddenly remembered an algebraic theory which I had learned from my teacher, Professor Rosanes, in Breslau. Such square arrays are well known to math- ematicians and, in conjunction with a specific rule for multiplication, are called matrices. I applied this rule to Heisenberg’s quantum condition and found that this agreed in the diagonal terms. It was easy to guess what the remaining quantities must be, namely, zero; and at once there stood before me the peculiar formula p q - qp = h/zni This meant that coordinates q and momenta p cannot be represented by figure values but by symbols, the product of which depends upon the order of multiplication - they are said to be « non-commuting ». I was as excited by this result as a sailor would be who, after a long voyage, sees from afar, the longed-for land, and I felt regret that Heisenberg was not 260 1 9 5 4 M . B O R N there. I was convinced from the start that we had stumbled on the right path. Even so, a great part was only guess-work, in particular, the disappearance of the non-diagonal elements in the above-mentioned expression. For help in this problem I obtained the assistance and collaboration of my pupil Pascual Jordan, and in a few days we were able to demonstrate that I had guessed correctly. The joint paper by Jordan and myself6 contains the most important principles of quantum mechanics including its extension to elec- trodynamics. There followed a hectic period of collaboration among the three of us, complicated by Heisenberg’s absence. There was a lively ex- change of letters; my contribution to these, unfortunately, have been lost in the political disorders. The result was a three-author paper7 which brought the formal side of the investigation to a definite conclusion. Before this paper appeared, came the first dramatic surprise: Paul Dirac’s paper on the same subject8. The inspiration afforded by a lecture of Heisenberg’s in Cambridge had led him to similar results as we had obtained in Göttingen except that he did not resort to the known matrix theory of the mathematicians, but discovered the tool for himself and worked out the theory of such non- commutating symbols. The first non-trivial and physically important application of quantum mechanics was made shortly afterwards by W. Pauli9 who calculated the stationary energy values of the hydrogen atom by means of the matrix method and found complete agreement with Bohr’s formulae. From this moment onwards there could no longer be any doubt about the correctness of the theory. What this formalism really signified was, however, by no means clear. Mathematics, as often happens, was cleverer than interpretative thought. While we were still discussing this point there came the second dramatic surprise, the appearance of Schrödinger’s famous papers10. He took up quite a different line of thought which had originated from Louis de Broglie11. A few years previously, the latter had made the bold assertion, supported by brilliant theoretical considerations, that wave-corpuscle duality, familiar to physicists in the case of light, must also be valid for electrons. To each electron moving free of force belongs a plane wave of a definite wavelength which is determined by Planck’s constant and the mass. This exciting disser- tation by De Broglie was well known to us in Göttingen. One day in 1925 I received a letter from C. J. Davisson giving some peculiar results on the reflection of electrons from metallic surfaces. I, and my colleague on the experimental side, James Franck, at once suspected that these curves of I N T E R P R E T A T I O N O F Q U A N T U M M E C H A N I C S 2 6 1 Davisson’s were crystal-lattice spectra of De Broglie’s electron waves, and we made one of our pupils, Elsasser 1 2, to investigate the matter. His result provided the first preliminary confirmation of the idea of De Broglie’s, and this was later proved independently by Davisson and Germer13 and G. P. Thomson14 by systematic experiments. But this acquaintance with De Broglie’s way of thinking did not lead us to an attempt to apply it to the electronic structure in atoms. This was left to Schrödinger. He extended De Broglie’s wave equation which referred to force-free motion, to the case where the effect of force is taken into account, and gave an exact formulation of the subsidiary conditions, already suggested by De Broglie, to which the wave function y must be subjected, namely that it should be single-valued and finite in space and time. And he was successful in deriving the stationary states of the hydrogen atom in the form of those monochromatic solutions of his wave equation which do not extend to infinity. For a brief period at the beginning of 1926, it looked as though there were, suddenly, two self-contained but quite distinct systems of explanation extant: matrix mechanics and wave mechanics. But Schrödinger himself soon demonstrated their complete equivalence. Wave mechanics enjoyed a very great deal more popularity than the Göttingen or Cambridge version of quantum mechanics. It operates with a wave function y, which in the case of one particle at least, can be pictured in space, and it uses the mathematical methods ofpartial differential equations which are in current use by physicists. Schrödinger thought that his wave theory made it possible to return to deterministic classical physics. He propos- ed (and he has recently emphasized his proposal anew’s), to dispense with the particle representation entirely, and instead of speaking of electrons as par- ticles, to consider them as a continuous density distribution jy,jz (or electric density e/y/z). To us in Göttingen this interpretation seemed unacceptable in face of well established experimental facts. At that time it was already possible to count particles by means of scintillations or with a Geiger counter, and to photograph their tracks with the aid of a Wilson cloud chamber. It appeared to me that it was not possible to obtain a clear interpretation of the ψ-function, by considering bound electrons. I had therefore, as early as the end of 1925, made an attempt to extend the matrix method, which obviously only covered oscillatory processes, in such a way as to be applicable to aperiodic processes. I was at that time a guest of the Mas- 262 1 9 5 4 M . B O R N sachusetts Institute of Technology in the USA, and I found there in Norbert Wiener an excellent collaborator. In our joint paper16 we replaced the matrix by the general concept of an operator, and thus made it possible to describe aperiodic processes. Nevertheless we missed the correct approach. This was left to Schrödinger, and I immediately took up his method since it held promise of leading to an interpretation of the ψ-function. Again an idea of Einstein’s gave me the lead. He had tried to make the duality of particles - light quanta or photons - and waves comprehensible by interpreting the square of the optical wave amplitudes as probability density for the occur- rence of photons. This concept could at once be carried over to the ψ-func- tion: iyj2 ought to represent the probability density for electrons (or other particles). It was easy to assert this, but how could it be proved? The atomic collision processes suggested themselves at this point. A swarm of electrons coming from infinity, represented by an incident wave of known intensity (i.e., i@), impinges upon an obstacle, say a heavy atom. In the same way that a water wave produced by a steamer causes secondary circular waves in striking a pile, the incident electron wave is partially transformed into a secondary spherical wave whose amplitude of oscillation y differs for different directions. The square of the amplitude of this wave at a great distance from the scattering centre determines the relative probability of scattering as a function of direction. Moreover, if the scattering atom it- self is capable of existing in different stationary states, then Schrödinger’s wave equation gives automatically the probability of excitation of these states, the electron being scattered with loss of energy, that is to say, inelastic- ally, as it is called. In this way it was possible to get a theoretical basis 17 for the assumptions of Bohr’s theory which had been experimentally confirmed by Franck and Hertz. Soon Wentzel18 succeeded in deriving Rutherford’s famous formula for the scattering of α-particles from my theory. However, a paper by Heisenberg 19, containing his celebrated uncertainty relationship, contributed more than the above-mentioned successes to the swift acceptance of the statistical interpretation of the ψ-function. It was through this paper that the revolutionary character of the new conception became clear. It showed that not only the determinism of classical physics must be abandonded, but also the naive concept of reality which looked upon the particles of atomic physics as if they were very small grains of sand. At every instant a grain of sand has a definite position and velocity. This is not the case with an electron. If its position is determined with increasing ac- curacy, the possibility of ascertaining the velocity becomes less and vice I N T E R P R E T A T I O N O F Q U A N T U M M E C H A N I C S 263 versa. I shall return shortly to these problems in a more general connection, but would first like to say a few words about the theory of collisions. The mathematical approximation methods which I used were quite prim- itive and soon improved upon. From the literature, which has grown to a point where I cannot cope with, I would like to mention only a few of the first authors to whom the theory owes great progress: Faxén in Sweden, Holtsmark in Norway20, Bethe in Germany21, Mott and Massey in England22. Today, collision theory is a special science with its own big, solid text- books which have grown completely over my head. Of course in the last resort all the modem branches of physics, quantum electrodynamics, the theory of mesons, nuclei, cosmic rays, elementary particles and their trans- formations, all come within range of these ideas and no bounds could be set to a discussion on them. I should also like to mention that in 1926 and 1927 I tried another way of supporting the statistical concept of quantum mechanics, partly in collabora- tion with the Russian physicist Fock 2 3. In the above-mentioned three- author paper there is a chapter which anticipates the Schrödinger function, except that it is not thought of as a function y(x) in space, but as a function y,, of the discrete index n = I1 , 2, . . . which enumerates the stationary states. If the system under consideration is subject to a force which is variable with time, y,, becomes also time-dependent, and 1 y,, (t) 12 signifies the prob- ability for the existence of the state n at time t. Starting from an initial distribution where there is only one state, transition probabilities are ob- tained, and their properties can be examined. What interested me in partic- ular at the time, was what occurs in the adiabatic limit
本文档为【Physics - Born, Max - The Statistical Interpretations Of Quantum Mechanics】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
该文档来自用户分享,如有侵权行为请发邮件ishare@vip.sina.com联系网站客服,我们会及时删除。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。
本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。
网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
下载需要: 免费 已有0 人下载
最新资料
资料动态
专题动态
is_473068
暂无简介~
格式:pdf
大小:66KB
软件:PDF阅读器
页数:12
分类:
上传时间:2011-03-04
浏览量:20