下载

2下载券

加入VIP
  • 专属下载特权
  • 现金文档折扣购买
  • VIP免费专区
  • 千万文档免费下载

上传资料

关闭

关闭

关闭

封号提示

内容

首页 面板数据(4-7)

面板数据(4-7).doc

面板数据(4-7)

晓盆
2018-09-08 0人阅读 举报 0 0 暂无简介

简介:本文档为《面板数据(4-7)doc》,可适用于经济金融领域

面板数据模型.面板数据定义。时间序列数据或截面数据都是一维数据。例如时间序列数据是变量按时间得到的数据截面数据是变量在截面空间上的数据。面板数据(paneldata)也称时间序列截面数据(timeseriesandcrosssectiondata)或混合数据(pooldata)。面板数据是同时在时间和截面空间上取得的二维数据。面板数据示意图见图。面板数据从横截面(crosssection)上看是由若干个体(entity,unit,individual)在某一时刻构成的截面观测值从纵剖面(longitudinalsection)上看是一个时间序列。面板数据用双下标变量表示。例如yit,i=,,…,Nt=,,…,TN表示面板数据中含有N个个体。T表示时间序列的最大长度。若固定t不变yi,(i=,,…,N)是横截面上的N个随机变量若固定i不变yt,(t=,,…,T)是纵剖面上的一个时间序列(个体)。图N=T=的面板数据示意图例如年个省份的农业总产值数据。固定在某一年份上它是由个农业总产总值数字组成的截面数据固定在某一省份上它是由年农业总产值数据组成的一个时间序列。面板数据由个个体组成。共有个观测值。对于面板数据yit,i=,,…,Nt=,,…,T来说如果从横截面上看每个变量都有观测值从纵剖面上看每一期都有观测值则称此面板数据为平衡面板数据(balancedpaneldata)。若在面板数据中丢失若干个观测值则称此面板数据为非平衡面板数据(unbalancedpaneldata)。注意:EViwes、、既允许用平衡面板数据也允许用非平衡面板数据估计模型。例(file:panel):年中国东北、华北、华东个省级地区的居民家庭人均消费(不变价格)和人均收入数据见表和表。数据是年的每一年都有个数据共组观测值。人均消费和收入两个面板数据都是平衡面板数据各有个个体。人均消费和收入的面板数据从纵剖面观察分别见图和图。从横截面观察分别见图和图。横截面数据散点图的表现与观测值顺序有关。图和图中人均消费和收入观测值顺序是按地区名的汉语拼音字母顺序排序的。表年中国东北、华北、华东个省级地区的居民家庭人均消费数据(不变价格)地区人均消费CPAH(安徽)CPBJ(北京)CPFJ(福建)CPHB(河北)CPHLJ(黑龙江)CPJL(吉林)CPJS(江苏)CPJX(江西)CPLN(辽宁)CPNMG(内蒙古)CPSD(山东)CPSH(上海)CPSX(山西)CPTJ(天津)CPZJ(浙江)资料来源:《中国统计年鉴》。表年中国东北、华北、华东个省级地区的居民家庭人均收入数据(不变价格)地区人均收入IPAH(安徽)IPBJ(北京)IPFJ(福建)IPHB(河北)IPHLJ(黑龙江)IPJL(吉林)IPJS(江苏)IPJX(江西)IPLN(辽宁)IPNMG(内蒙古)IPSD(山东)IPSH(上海)IPSX(山西)IPTJ(天津)IPZJ(浙江)资料来源:《中国统计年鉴》。图个省级地区的人均消费序列(纵剖面)图个省级地区的人均收入序列(file:panel)图个省级地区的人均消费散点图图个省级地区的人均收入散点图(个横截面叠加)(每条连线表示同一年度个地区的消费值)(每条连线表示同一年度个地区的收入值)用CP表示消费IP表示收入。AH,BJ,FJ,HB,HLJ,JL,JS,JX,LN,NMG,SD,SH,SX,TJ,ZJ分别表示安徽省、北京市、福建省、河北省、黑龙江省、吉林省、江苏省、江西省、辽宁省、内蒙古自治区、山东省、上海市、山西省、天津市、浙江省。个地区年人均消费对收入的面板数据散点图见图和图。图中每一种符号代表一个省级地区的个观测点组成的时间序列。相当于观察个时间序列。图中每一种符号代表一个年度的截面散点图(共个截面)。相当于观察个截面散点图的叠加。图用个时间序列表示的人均消费对收入的面板数据图用个截面表示的人均消费对收入的面板数据(个截面叠加)为了观察得更清楚一些图给出北京和内蒙古年消费对收入散点图。从图中可以看出无论是从收入还是从消费看内蒙古的水平都低于北京市。内蒙古年的收入与消费规模还不如北京市年的大。图给出该个省级地区和年的消费对收入散点图。可见年之后个地区的消费和收入都有了相应的提高。图北京和内蒙古年消费对收入时序图图和年个地区的消费对收入散点图.面板数据的估计。用面板数据建立的模型通常有种。即混合估计模型、固定效应模型和随机效应模型。混合估计模型。如果从时间上看不同个体之间不存在显著性差异从截面上看不同截面之间也不存在显著性差异那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。如果从时间和截面看模型截距都不为零且是一个相同的常数以二变量模型为例则建立如下模型yit=((xit(it,i=,,…,Nt=,,…,T()(和(不随it变化。称模型()为混合估计模型。以例中个地区和年数据建立关于消费的混合估计模型得结果如下:图EViwes估计方法:在打开工作文件窗口的基础上点击主功能菜单中的Objects键选NewObject功能从而打开NewObject(新对象)选择窗。在TypeofObject选择区选择Pool(混合数据库)点击OK键从而打开Pool(混合数据)窗口。在窗口中输入个地区标识AH(安徽)、BJ(北京)、…、ZJ(浙江)。工具栏中点击Sheet键从而打开SeriesList(列写序列名)窗口定义变量CP和IP点击OK键Pool(混合或合并数据库)窗口显示面板数据。在Pool窗口的工具栏中点击Estimate键打开PooledEstimation(混合估计)窗口如下图。图在DependentVariable(相依变量)选择窗填入CP在Commoncoefficients(系数相同)选择窗填入IPCrosssectionspecificcoefficients(截面系数不同)选择窗保持空白在Intercept(截距项)选择窗点击Common在Weighting(权数)选择窗点击Noweighting。点击PooledEstimation(混合估计)窗口中的OK键。得输出结果如图。相应表达式是=IPit()()R=,SSEr=,t()=个省级地区的人均支出平均占收入的。如果从时间和截面上看模型截距都为零就可以建立不含截距项的((=)的混合估计模型。以二变量模型为例建立混合估计模型如下yit=(xit(it,i=,,…,Nt=,,…,T()对于本例因为上式中的截距项有显著性(t=>t()=)所以建立截距项为零的混合估计模型是不合适的。EViwes估计方法:在PooledEstimation(混合估计)对话框中Intercept(截距项)选择窗中选None其余选项同上。固定效应模型。在面板数据散点图中如果对于不同的截面或不同的时间序列模型的截距是不同的则可以采用在模型中加虚拟变量的方法估计回归参数称此种模型为固定效应模型(fixedeffectsregressionmodel)。固定效应模型分为种类型即个体固定效应模型(entityfixedeffectsregressionmodel)、时刻固定效应模型(timefixedeffectsregressionmodel)和时刻个体固定效应模型(timeandentityfixedeffectsregressionmodel)。下面分别介绍。()个体固定效应模型。个体固定效应模型就是对于不同的个体有不同截距的模型。如果对于不同的时间序列(个体)截距是不同的但是对于不同的横截面模型的截距没有显著性变化那么就应该建立个体固定效应模型表示如下yit=(xit(W(W…(NWN(it,t=,,…,T()其中Wi=(it,i=,,…,Nt=,,…,T表示随机误差项。yit,xit,i=,,…,Nt=,,…,T分别表示被解释变量和解释变量。模型()或者表示为yt=((xt(t,i=(对于第个个体或时间序列)t=,,…,Tyt=((xt(t,i=(对于第个个体或时间序列)t=,,…,T…yNt=(N(xNt(Nt,i=N(对于第N个个体或时间序列)t=,,…,T写成矩阵形式y=(x)(=(x((…yN=(xN)(N=(NxN((N上式中yi(i(ixi都是N(阶列向量。(为标量。当模型中含有k个解释变量时(为k(阶列向量。进一步写成矩阵形式=EMBEDEquation(上式中的元素都是T(阶列向量。面板数据模型用OLS方法估计时应满足如下个假定条件:()E((it|xi,xi,…,xiT,(i)=。以xi,xi,…,xiT,(i为条件的(it的期望等于零。()(xi,xi,…,xiT),(yi,yi,…,yiT),i=,,…,N分别来自于同一个联合分布总体并相互独立。()(xit,(it)具有非零的有限值阶矩。()解释变量之间不存在完全共线性。()Cov((it(is|xit,xis,(i)=,t(s。在固定效应模型中随机误差项(it在时间上是非自相关的。其中xit代表一个或多个解释变量。对模型()进行OLS估计全部参数估计量都是无偏的和一致的。模型的自由度是NT––N。当模型含有k个解释变量且N很大相对较小时因为模型中含有kN个被估参数一般软件执行OLS运算很困难。在计量经济学软件中是采用一种特殊处理方式进行OLS估计。估计原理是先用每个变量减其组内均值把数据中心化(entitydemeaned)然后用变换的数据先估计个体固定效应模型的回归系数(不包括截距项)然后利用组内均值等式计算截距项。这种方法计算起来速度快。具体分步如下。()首先把变量中心化(entitydemeaned)。仍以单解释变量模型()为例则有=(i(,i=,,…,N()其中===,i=,,…,N。公式()、()相减得(yit)=((xit)((it)()令(yit)=(xit)=((it)=上式写为=(()用OLS法估计()、()式中的(结果是一样的但是用()式估计可以减少被估参数个数。()用OLS法估计回归参数(不包括截距项即固定效应)。在k个解释变量条件下把用向量形式表示则利用中心化数据按OLS法估计公式计算个体固定效应模型中回归参数估计量的方差协方差矩阵估计式如下()=(')()其中=是相对于的残差向量。()计算回归模型截距项即固定效应参数(i。=()以例(file:panel)为例得到的个体固定效应模型估计结果如下:注意:个体固定效应模型的EViwes输出结果中没有公共截距项。图EViwes估计方法:在EViwes的PooledEstimation对话框中Intercept选项中选Fixedeffects。其余选项同上。注意:()个体固定效应模型的EViwes输出结果中没有公共截距项。()EViwes输出结果中没有给出描述个体效应的截距项相应的标准差和t值。不认为截距项是模型中的重要参数。()当对个体固定效应模型选择加权估计时输出结果将给出加权估计和非加权估计两种统计量评价结果。()输出结果的联立方程组形式可以通过点击View选Representations功能获得。()点击View选WaldCoefficientTests…功能可以对模型的斜率进行Wald检验。()点击View选ResidualsTable,Graphs,CovarianceMatrix,CorrelationMatrix功能可以分别得到按个体计算的残差序列表残差序列图残差序列的方差协方差矩阵残差序列的相关系数矩阵。()点击Procs选MakeModel功能将会出现估计结果的联立方程形式进一步点击Solve键在随后出现的对话框中可以进行动态和静态预测。输出结果的方程形式是=安徽xt=xt()=北京xt=xt…()=浙江xt=xt()R=,SSEr=,t()=从结果看北京、上海、浙江是消费函数截距(自发消费)最大的个地区。相对于混合估计模型来说是否有必要建立个体固定效应模型可以通过F检验来完成。原假设H:不同个体的模型截距项相同(建立混合估计模型)。备择假设H:不同个体的模型截距项不同(建立个体固定效应模型)。F统计量定义为:F==()其中SSErSSEu分别表示约束模型(混合估计模型)和非约束模型(个体固定效应模型)的残差平方和。非约束模型比约束模型多了N个被估参数。(混合估计模型给出公共截距项。)注意:当模型中含有k个解释变量时F统计量的分母自由度是NTNk。用上例计算已知SSEr=SSEu=F====F(,)=因为F=>F(,)=所以拒绝原假设。结论是应该建立个体固定效应模型。()时刻固定效应模型。时刻固定效应模型就是对于不同的截面(时刻点)有不同截距的模型。如果确知对于不同的截面模型的截距显著不同但是对于不同的时间序列(个体)截距是相同的那么应该建立时刻固定效应模型表示如下yit=(xit((D…(TDT(it,i=,,…,N()其中Dt=(it,i=,,…,Nt=,,…,T表示随机误差项。yit,xit,i=,,…,Nt=,,…,T分别表示被解释变量和解释变量。模型()也可表示为yi=((xi(i,t=(对于第个截面)i=,,…,Nyi=((()(xi(i,t=(对于第个截面)i=,,…,N…yiT=(((T)(xiT(iT,t=T(对于第T个截面)i=,,…,N如果满足上述模型假定条件对模型()进行OLS估计全部参数估计量都具有无偏性和一致性。模型的自由度是NT–T。图EViwes估计方法:在PooledEstimation(混合估计)窗口中的DependentVariable(相依变量)选择窗填入CP在Commoncoefficients(系数相同)选择窗填入IP和虚拟变量D,D,D,D,D,D在Crosssectionspecificcoefficients(截面系数不同)选择窗保持空白在Intercept(截距项)选择窗点击Common在Weighting(权数)选择窗点击Noweighting。点击PooledEstimation(混合估计)窗口中的OK键。以例为例得到的时刻固定效应模型估计结果如下:=xi=xi()()=xi=xi()()()…=xi=xi()()()R=,SSEr=,t()=相对于混合估计模型来说是否有必要建立时刻固定效应模型可以通过F检验来完成。H:对于不同横截面模型截距项相同(建立混合估计模型)。H:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。F统计量定义为:F==()其中SSErSSEu分别表示约束模型(混合估计模型的)和非约束模型(时刻固定效应模型的)的残差平方和。非约束模型比约束模型多了T个被估参数。注意:当模型中含有k个解释变量时F统计量的分母自由度是NTTk。用上例计算已知SSEr=SSEu=F====F(,)=因为F=>F(,)=拒绝原假设结论是应该建立时刻固定效应模型。()时刻个体固定效应模型。时刻个体固定效应模型就是对于不同的截面(时刻点)、不同的时间序列(个体)都有不同截距的模型。如果确知对于不同的截面、不同的时间序列(个体)模型的截距都显著地不相同那么应该建立时刻个体效应模型表示如下yit=(xit((D…(TDT(W(W…(NWN(it,i=,,…,Nt=,,…,T()其中虚拟变量Dt=(注意不是从开始)Wi=(注意是从开始)(it,i=,,…,Nt=,,…,T表示随机误差项。yit,xit,(i=,,…,Nt=,,…,T)分别表示被解释变量和解释变量。模型也可表示为y=(((x(,t=i=(对于第个截面、第个个体)y=(((x(,t=i=(对于第个截面、第个个体)…yN=((N(xN(N,t=i=N(对于第个截面、第N个个体)y=((()((x(,t=i=(对于第个截面、第个个体)y=((()((x(,t=i=(对于第个截面、第个个体)…yN=((()(N(xN(N,t=i=N(对于第个截面、第N个个体)…yT=(((T)((x(T,t=Ti=(对于第T个截面、第个个体)yT=(((T)((x(T,t=Ti=(对于第T个截面、第个个体)…yNT=(((T)(N(xNT(NT,t=Ti=N(对于第T个截面、第N个个体)如果满足上述模型假定条件对模型()进行OLS估计全部参数估计量都是无偏的和一致的。模型的自由度是NT–N–T。注意:当模型中含有k个解释变量时F统计量的分母自由度是NT–NTk。以例为例得到的截面、时刻固定效应模型估计结果如下:图EViwes估计方法:在PooledEstimation(混合估计)窗口中的DependentVariable(相依变量)选择窗填入CP在Commoncoefficients(系数相同)选择窗填入IP和虚拟变量D,D,D,D,D,D在Crosssectionspecificcoefficients(截面系数不同)选择窗保持空白在Intercept(截距项)选择窗中选Fixedeffects在Weighting(权数)选择窗点击Noweighting。点击PooledEstimation(混合估计)窗口中的OK键。注意:()对于第个截面(t=)EViwes输出结果中把(((i),(i=,,…,N)估计在一起。()对于第,…,T个截面(t=)EViwes输出结果中分别把(((t),(t=,…,T)估计在一起。输出结果如下:=x=x(年安徽省)=x=x(年北京市)…=x=x(年安徽省)=x=x(年北京市)…=x,=()x,(年浙江省)R=,SSEr=,t()=相对于混合估计模型来说是否有必要建立时刻个体固定效应模型可以通过F检验来完成。H:对于不同横截面不同序列模型截距项都相同(建立混合估计模型)。H:不同横截面不同序列模型截距项各不相同(建立时刻个体固定效应模型)。F统计量定义为:F==()其中SSErSSEu分别表示约束模型(混合估计模型的)和非约束模型(时刻个体固定效应模型的)的残差平方和。非约束模型比约束模型多了NT个被估参数。注意:当模型中含有k个解释变量时F统计量的分母自由度是NTNTk。用上例计算已知SSEr=SSEu=F====F(,)=因为F=>F(,)=拒绝原假设结论是应该建立时刻个体固定效应模型。()随机效应模型在固定效应模型中采用虚拟变量的原因是解释被解释变量的信息不够完整。也可以通过对误差项的分解来描述这种信息的缺失。yit=((xit(it()其中误差项在时间上和截面上都是相关的用个分量表示如下。(it=uivtwit()其中ui(N(,(u)表示截面随机误差分量vt(N(,(v)表示时间随机误差分量wit(N(,(w)表示混和随机误差分量。同时还假定uivtwit之间互不相关各自分别不存在截面自相关、时间自相关和混和自相关。上述模型称为随机效应模型。随机效应模型和固定效应模型比较相当于把固定效应模型中的截距项看成两个随机变量。一个是截面随机误差项(ui)一个是时间随机误差项(vt)。如果这两个随机误差项都服从正态分布对模型估计时就能够节省自由度因为此条件下只需要估计两个随机误差项的均值和方差。假定固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应而且对均值的离差分别是ui和vt固定效应模型就变成了随机效应模型。为了容易理解先假定模型中只存在截面随机误差项ui不存在时间随机误差分量(vt)yit=((xit(witui)=((xit(it()截面随机误差项ui是属于第个个体的随机波动分量并在整个时间范围(t=,,…,T)保持不变。随机误差项ui,wit应满足如下条件:E(ui)=,E(wit)=E(wit)=(w,E(ui)=(u,E(wituj)=,包括所有的i,t,j。E(witwjs)=,i(j,t(sE(uiuj)=,i(j因为根据上式有(it=witui所以这种随机效应模型又称为误差分量模型(errorcomponentmodel)。有结论E((it)=E(wituj)=,()式yit=((xit(witui)也可以写成yit=((ui)(xitwit。服从正态分布的截距项的均值效应(u被包含在回归函数的常数项中。E((it)=E(wituj)=(w(u,E((it(is)=E(witui)(wisui)=E(witwisuiwiswituiui)=(u,t(s令(i=((i,(i,…(iT)'则(=E((i(i')==(wI(T(T)(u(T()(T()'其中I(T(T)是(T(T)阶单位阵(T()是(T()阶列向量。因为第i期与j期观测值是相互独立的所以NT个观测值所对应的随机误差项的方差与协方差矩阵V是V==((=IN(N((其中IN(N表示由(T()阶列向量为元素构成的单位阵其中每一个元素或都是(T()阶列向量。(表示科罗内克积(Kroneckerproduct)。其运算规则是AN(K(B=检验个体随机效应的原假设与检验统计量是H:(u=。(混合估计模型)H:(u(。(个体随机效应模型)LM=EMBEDEquation=EMBEDEquation=EMBEDEquation其中表示由个体随机效应模型计算的残差平方和。表示由混合估计模型计算的残差平方和。统计量LM服从个自由度的(分布。可以对随机效应模型进行广义最小二乘估计。以观测值方差的倒数为权。为了求权数必须采用两阶段最小二乘法估计。因为各随机误差分量的方差一般是未知的第一阶段用普通最小二乘估计法对混合数据进行估计(采用固定效应模型)。用估计的残差计算随机误差分量的方差。第二步用这些估计的方差计算参数的广义最小二乘估计值。如果随机误差分量服从的是正态分布模型的参数还可以用极大似然法估计。仍以例为例给出随机效应模型估计结果如下:图注意:随机效应模型EViwes输出结果中含有公共截距项。图以例为例用个体随机效应模型和混合模型计算的统计量的值是LM=EMBEDEquation=EMBEDEquation=(()=F()=因为F=>F()=所以拒绝原假设结论是应该建立个体随机效应模型。假定截面截距和时间截距都是随机的。分别服从均值为(u和(v方差为(u和(v的正态分布。随机误差项将由部分组成并有方差。Var((it)=Var(ui)Var(vt)Var(wit)=(u(v(w当(u和(v都等于零随机效应模型退化为固定效应模型。随机效应模型和固定效应模型哪一个更好些?实际是各有优缺点。随机效应模型的好处是节省自由度。对于从时间序列和截面两方面上看都存在较大变化的数据随机效应模型能明确地描述出误差来源的特征。固定效应模型的好处是很容易分析任意截面数据所对应的因变量与全部截面数据对应的因变量均值的差异程度。此外固定效应模型不要求误差项中的个体效应分量与模型中的解释变量不相关。当然这一假定不成立时可能会引起模型参数估计的不一致性。()回归系数不同的面板数据模型当认为对于不同个体解释变量的回归系数存在显著性差异时还可以建立回归系数不同的面板数据模型。EViwes估计方法:在PooledEstimation(混合估计)窗口中的DependentVariable(相依变量)选择窗填入CP在Commoncoefficients(系数相同)选择窗保持空白(如果需要估计时刻固定效应也可输入虚拟变量D,D,D,D,D,D)在Crosssectionspecificcoefficients(截面系数不同)选择窗填入IP在Intercept(截距项)选择窗中选Fixedeffects(也可以做其他选择)在Weighting(权数)选择窗点击Noweighting(也可以做其他选择)。点击PooledEstimation(混合估计)窗口中的OK键。图=安徽xt=xt()=北京xt=xt()…=浙江xt=xt()R=,SSEr=用EViwes建立面板数据估计模型步骤。利用~年个省级地区城镇居民家庭年人均消费性支出和年人均收入数据(不变价格数据)介绍面板数据模型估计步骤。()建立混合数据库(Pool)对象。首先建立工作文件。在打开工作文件窗口的基础上点击EViwes主功能菜单上的Objects键选NewObject功能(如图)从而打开NewObject(新对象)选择窗。在TypeofObject选择区选择Pool(合并数据库)并在NameofObject选择区为混合数据库起名Pool(初始显示为Untitled)。如图点击OK键从而打开混合数据库(Pool)窗口。在窗口中输入个地区的标识AH(安徽)、BJ(北京)、…、ZJ(浙江)如图。图图图()定义序列名并输入数据。在新建的混合数据库(Pool)窗口的工具栏中点击Sheet键(第种路径是点击View键选Spreadsheet(stackeddata)功能)从而打开SeriesList(列写序列名)窗口定义时间序列变量CP和IP(?符号表示与CP和IP相连的个地区标识名)如图。点击OK键从而打开混合数据库(Pool)窗口(点击Edit键使EViwes处于可编辑状态)输入数据。输入完成后的情形见图。图所示为以截面为序的阵列式排列(stackeddata)。点击Order键还可以变换为以时间为序的阵列式排列。工作文件也可以以合并数据(Pooldata)和非合并数据的形式用复制和粘贴的方法建立。图图()估计模型图点击Estimation键随后弹出PooledEstimation(混合估计)对话窗(见图)。先对PooledEstimation(混合估计)对话窗中各选项功能给以解释。DependentVariable(相依变量)选择窗:用于填写被解释变量。Sample(样本范围)选择窗:用于填写样本区间。BalancedSample(平衡样本)选择块:点击挑勾后表示用平衡数据估计。Commoncoefficients(系数相同)选择窗:用于填写对于不同横截面斜率(回归系数)相同的解释变量和虚拟变量。Crosssectionspecificcoefficients(截面系数不同)选择窗:用于填写对于不同横截面斜率(回归系数)不同的解释变量。Intercept(截距项)选择窗:从中可以选None(不要截距项)、Common(同一截距项)、Fixedeffects(个体不同截距项不同)、Randomeffects(随机效应截距项)。Weighting(权数)选择窗:从中可以选Noweighting(等权估计)、Crosssectionweights(按截面取权数)、SUR(似不相关回归)、iteratetoconvergence(迭代至收敛)。“等权估计”的方法是所有的观测值都给以相等的权数“按截面取权数”的方法是以横截面模型残差的方差为权数属于广义最小二乘法估计。“似不相关回归”的方法是利用横截面模型残差的协方差进行广义最小二乘法估计该法将自动修正横截面中出现的异方差和短期自相关“迭代至收敛”方法当选择广义最小二乘法估计时点击此键将保证参数估计一直到收敛为止。在Options对话框中可以给出收敛准则和最大迭代次数。用EViwes可以估计固定效应模型(包括个体固定效应模型、时刻固定效应模型和时刻个体固定效应模型种)、随机效应模型、带有AR()参数的模型、截面不同回归系数也不同的面板数据模型。用EViwes可以选择普通最小二乘法、加权最小二乘法(以截面模型的方差为权)、似不相关回归法估计模型参数。可以在Commoncoefficients选择窗和Crosssectionspecificcoefficients选择窗中填入AR()项。如果把AR()项填在Commoncoefficients选择窗中相当于假设模型有相同的自回归误差项如果把AR()项填在Crosssectionspecificcoefficients选择窗中相当于假设模型有不同的自回归误差项。注意:如果把解释变量填入Crosssectionspecificcoefficients选择窗中将会得到很多的回归参数。估计过程中的缺省方法是等权(Noweighting)估计。还可以选择Crosssectionweights(按截面取权数)和SUR(似不相关回归)。解释种方法如下:PAGEunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknownunknown

用户评价(0)

关闭

新课改视野下建构高中语文教学实验成果报告(32KB)

抱歉,积分不足下载失败,请稍后再试!

提示

试读已结束,如需要继续阅读或者下载,敬请购买!

文档小程序码

使用微信“扫一扫”扫码寻找文档

1

打开微信

2

扫描小程序码

3

发布寻找信息

4

等待寻找结果

我知道了
评分:

/21

面板数据(4-7)

VIP

在线
客服

免费
邮箱

爱问共享资料服务号

扫描关注领取更多福利